EXOTIC STRUCTURES ON QUOTIENT SPACES OF S³-ACTIONS

L. ASTEY, E. MICHA and G. PASTOR

Centro de Investigación del IPN Apartado Postal 14-740 México 07000 D F

and

Instituto Tecnológico Autónomo de México Río Hondo No 1 San Angel, México 01000 D F

(Received May 4, 1994)

ABSTRACT. A correct version of some results by A Rigas regarding S^3 actions on $S^7 \times S^3$ and on the symplectic group Sp_2 with quotients exotic seven-spheres is presented

KEY WORDS AND PHRASES: Exotic spheres, principal bundles, group actions **1991 AMS SUBJECT CLASSIFICATION CODES:** 57R55, 57S25

1. INTRODUCTION

The present note is a result of our interest in finding exotic structures on 7-dimensional manifolds (cf Guest and Micha [3], Astey, Micha and Pastor [1]) and its purpose is to correct some mistakes that occur in a paper by A Rigas [6] Our contribution is simply to provide the correct statement and a different proof of the key corollary that appears on page 76 of Rigas [6], but we take the opportunity to restate several results of the paper which refer to the existence of free S^3 actions on $S^7 \times S^3$ and on the symplectic group Sp_2 with quotients exotic seven-spheres, which also appear incorrectly stated in that paper

2. MAIN RESULTS

We begin by recalling some definitions and notation of Rigas [6] Principal S^3 bundles over S^4 are classified by $\pi_3 S^3$ which is naturally isomorphic to the group of integers Z Let P_n denote the total space of the bundle corresponding to the integer n Similarly, the principal S^3 bundles over S^7 are classified by $\pi_6 S^3$. We shall denote by E_i the total space of the bundle corresponding to $i \in \pi_6 S^3 \cong Z_{12}$. The isomorphism here is such that $E_1 \cong Sp_2$. Let \tilde{P}_n denote the pull-back of P_n under the Hopf map $S^7 \to S^4$. Then, as a principal S^3 bundle, \tilde{P}_n is classified by the composition

$$S^7 \xrightarrow{h} S^4 \xrightarrow{f_n} S^4 \to BS^3$$

where f_n denotes the map of degree n, and the rightmost arrow is the inclusion of the bottom cell

THEOREM. The bundles \tilde{P}_n and $E_{n(n-1)/2}$ are isomorphic as principal S^3 bundles over S^7

This theorem is the correct version of the corollary on page 76 of Rigas [6] The mistake leading to the incorrect statement in Rigas [6] occurs in the calculation of the map $f_n \circ h$, where the author fails to

iterate correctly a formula of Hilton [4] An alternative proof using a different bundle decomposition is presented in §3 below

It follows from the theorem that

(a) \tilde{P}_n and the trivial bundle $S^7 \times S^3$ are isomorphic only if $n \equiv 0, 1, 9$ or 16 mod 24

(b) \tilde{P}_n and the canonical bundle $Sp_2 \to S^7$ are isomorphic only if $n \equiv 2$ or 23 mod 24

In particular, \tilde{P}_{13} is not a trivial bundle This renders §4 of Rigas [6] invalid The theorem also allows us to rectify the statements of two important results of Rigas [6] as follows

COROLLARY. There exist free actions of S^3 on $S^7 \times S^3$ with quotient the exotic seven-spheres of Eells-Kuiper invariants 16, 40 and 48

COROLLARY. There exist free actions of S^3 on Sp_2 with quotient the exotic seven-spheres of Eells-Kuiper invariants 2, 26, 34 and 42

3. PROOF OF THE THEOREM

As is shown in Rigas [6], S^7 can be decomposed into two solid tori $U \cong S^3 \times D^4$ and $V \cong D^4 \times S^3$ such that the restriction of the bundle \tilde{P}_n to each torus is trivial Moreover, the transition map

$$\lambda_{UV}: S^3 imes S^3 o S^3$$

is given by

$$\lambda_{UV}(x,y) = x^{n-1}(yx^{-1})^{n-1}y^{-(n-1)},$$

where the group structure of unit quaternions is understood on S^3 Since the commutator $xyx^{-1}y^{-1}$ generates $\pi_6 S^3$ (Hilton and Roitberg [5]) and since λ factors through S^6 , the theorem is a consequence of the following result

PROPOSITION. The map $\lambda: S^3 \times S^3 \to S^3$ given by $\lambda(x,y) = x^{n-1}(yx^{-1})^{n-1}y^{-(n-1)}$ is homotopic to $(xyx^{-1}y^{-1})^{n(n-1)/2}$

We first prove the following lemma

LEMMA. The maps $x^k y^l x^{-k} y^{-l}$ and $(xyx^{-1}y^{-1})^{kl}$ are homotopic **PROOF.** Consider the following commutative diagram

where $\alpha(x, y) = (x^k, y^l)$, $\beta(x, y) = xyx^{-1}y^{-1}$, $\gamma(x) = x^{kl}$, p is the projection that collapses the 3skeleton, f_{kl} is a map of degree kl, and ω is the generator of $\pi_6 S^3$ But since S^3 is an H-space, homotopy compositions are biadditive (Whitehead [7], p 479), so $\omega \circ f_{kl} \simeq \gamma \circ \omega$ Therefore,

$$x^ky^lx^{-k}y^{-l}=eta\circlpha\simeq\gamma\circeta=(xyx^{-1}y^{-1})^{kl}$$

We now prove the proposition by induction on n Let $c = xyx^{-1}y^{-1}$ If we take k = 1 and l = -1 in the lemma we obtain $xy^{-1}x^{-1}y \simeq c^{-1} = yxy^{-1}x^{-1}$ Hence,

$$egin{aligned} c^{-1}ycy^{-1} &= (yxy^{-1}x^{-1})ycy^{-1}\ &= y(xy^{-1}x^{-1}y)cy^{-1}\ &\simeq yc^{-1}cy^{-1}\ &= 1, \end{aligned}$$

that is, $cy^{-1} = y^{-1}c$

Assume now that $x^n(yx^{-1})^n y^{-n} = c^{k(n)}$ Clearly, k(1) = 1 But now

$$\begin{split} x^{n}(yx^{-1})^{n}y^{-n} &= x^{n}yx^{-1}(yx^{-1})^{n-1}y^{-n} \\ &= (x^{n}yx^{-n}y^{-1})yx^{n-1}(yx^{-1})^{n-1}y^{-n} \\ &= c^{n}y(x^{n-1}(yx^{-1})^{n-1}y^{-(n-1)})y^{-1} \\ &= c^{n}yc^{k(n-1)}y^{-1} \\ &= c^{n+k(n-1)}. \end{split}$$

Therefore, k(n) = n + k(n-1), that is, k(n) = n(n+1)/2 This proves the proposition

REFERENCES

- [1] ASTEY, L, MICHA, E and PASTOR, G., Diffeomorphism type of Eschenburg spaces, to appear in *Differential Geometry and its Applications*.
- [2] EELLS, J and KUIPER, N., An invariant for certain smooth manifolds, Ann. Mat. Pure Appl. 60 (1962), 93-110
- [3] GUEST, M. and MICHA, E, Detecting exotic structures via the Pontrjagin-Thom construction, Mathematika 41 (1994), 145-148.
- [4] HILTON, P, Suspension theorems and the generalized Hopf Invariant, Proc. London Math. Soc., 3 (1951), 462-492.
- [5] HILTON, P and ROITBERG, J, On principal S³-bundles over spheres, Ann. Math. 90 (1969), 91-107
- [6] RIGAS, A., S³-Bundles and exotic actions, Bull. Soc. Math. France 112 (1984), 69-92.
- [7] WHITEHEAD, G, Elements of Homotopy Theory, Springer-Verlag, 1978.