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ABSTRACT. A double integral which came from a cohomology calculation is evaluated explicitly
using the properties of 3F; and 2 F; hypergeometric functions.
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1. INTRODUCTION.

The problem of evaluating the integral

x/2 px/2 _ 2 2
/ / (1 —4cos? scos?t) dsdt
o o (14 8cos? scos?t)3/2

has been proposed by A. Lundell. The computer algebra language Maple tells the user that it
can not be evaluated explicitly but evaluates it numerically to seven decimal places in a couple
of seconds. Mathematica, on the other hand, reduces it to the evaluation of a single integral by
performing one of the single integrals.

The integral arose as a reduction of a surface integral on a torus which came in relating the
cohomology of R® —(CUL) and R® —C where C is the circle r? +y% = a® in the ry-plane
and L is the z-axis and where numerical calculations suggested the value m/4 [2. p.19]. The
purpose of this note is to prove this conjecture.

We first consider the more general integral

x/2 pw/2 2 2
I(a,b,c) :=/ / (+beos scos’t) gy (11)
0 0

(1 4+ acos?scos?t)e

/e find that I(a,b,c) can be expressed as a sum of two 3F,’s with arguement —a. Although
there are no explicit general formulas for the analytic continuation of 3F;’s something remark-
able happens when ¢ = 3/2. In this case each 3;F; can be expressed as a product of ;F}’s
of arguement —a which may now be analyticly continued throughout the complex a-plane
cut along (—o00,—1]. A further simplification occurs when b = —4 with I(a,—4,3/2) being

expressed as a single product of two 2 F} ’s. A final remarkable simplification occurs with a =8
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when each of these 2 Fj’s can be explicitly summed in terms of gamma functions. As an end
result we then obtain
THEOREM 1.
I(8.-4,3/2) = 2 (1.2)

In the next section we prove this result using the theory of hypergeometric functions where

oo ~n
al,a27""ar+l.~ . (alyaza"'»ar-f—l)n" 13
r+lFr b b = E R ( . )
bl1 2,1 Or n=0

(bly by, »br)n n!

(@) =T(a+n)/T(a), (a1,a2, " a7)n = [[(@j)n-
=1

The following formulas will be needed.

20 -1,28,a+p-1 \ a,f . a-1,8 .
3F’(2a+2f1-2,a+ﬂ—1/2“’) - 2F‘(omuﬂ-uz’“) ’F‘(a+/3_1/2'“)’ (14)

‘3F2< 20,28, + 8 3 ) = 2F1( B ‘2) zFl( d ), (1‘5)

2a+28—La+B+1/2'" at+p-1/2° a+p-1/2'"
a,b —a a,c—-b =
ZFI( c 72) —(1—’3) ZFl( c ’Z—].)’ (16)
—a,c—b
m(";b;z) =(1—z)°'“-"zF1(c o ;z), (L7)

(e—1)(z —1)2F (C“Lbl;z) tefe—1—(2c—a—b—1)z],F (“;b; z) (1.8)

+z(c—a)(c—b)3F]( ab )=0,

c+ l;z
IO 12i) = ’F‘(afz’fbl/z‘ 5 31-9"), (19)
2Py (a + Z’_b 1/2;2) =(1-2)"12,R (22;;,—2111/—21; % 3 %(1 B 2)1/2), (1.10)
a (1 A ‘1) e re Ty (L11)

These formulas are in (1}, (9) and (8) p. 186, (3) and (2) p. 105, (30) p. 103, (10) and (13) p.
111, and (47) p. 104 respectively.

2. THE PROOF.
To prove Theorem 1 we first establish four lemmas.
LEMMA 2.1. Let
Up 1= /orlzcosz"tdt,n=0.l,-~-. (2.1)

Then
(1/2)n . (2.2)
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2n-—-1
2n

PROOF. This result is well known. An integration by parts yields u, = Up_1,n > 1.
Clearly ug = n/2. Iterating we get (2.2).
LEMMA 2.2. If |a| < 1 then

2 11 ; 33
I(a.b.c) = %[st(mlz.lz : —u) + -i 3F2(C'22:)2 : —a)]. (2.3)

PROOF. In (1.1) we expand (1 4+ acos? scos?t)™¢ using the binomial theorem and do the
integration. Using Lemma 2.1 we then obtain (2.3).
We now specialize to the value ¢ =3/2.

LEMMA 23. If |a| <1 or a=1 then

2 $1 11
Hav3/2) =[5 (¥ ~a) 253 (4% ~0) (24

[
b 33
+ ZZF1(414;"0) 2F1( 9
PROOF. We use (1.4) for the first 3F, on the right of (2.3) and (1.5) for the second 3F3
on the right of (2.3).
Having established (2.4) for |a| < 1 one may use the properties of 2F} s to obtain an
analytic continuation of (2.4) throughout the complex a -plane cut along (—o0,—1].
We now specialize to the values b = —4,c = 3/2.

LEMMA 2.4.

2 11 59
I(a,~4,3/2) = %m(*’l*;—a) 2F1(4;;;—a). (2.5)

PROOF. In (2.4) we put b = —4 and apply (1.7) to the first and third 2F; on the right
of (2.4). The result is

2 1 %
—_ 4’ 4.
o =43/2) = g2 (4140 [2

We now apply (1.6) to the ,F s in the brackets above and then use (1.8). This gives

157%a 11 15 a N
— = — - i — . 2.7
I(a,—4,3/2) 128(1 + a)° /4 2F1( 1 a) 2F1( 3 Tra (2.7

After another application of (1.6) to the second ,F; above we obtain (2.5).

PROOF OF THEOREM 1. We now specialize to the case a = 8.b = —4,¢ =3/2. In (2.5)
we put a =8. We use (1.9) and (1.11) to get

11 1/2,1/2 I'(1)T(1/2)
zFx(‘l‘:—S) = ZFI( ) :—1) = 91/2r2(3/4)° (28)

Using (1.10) and (1.11) we also get

59 1 21 '(3)I(1/2) :
4’4, . 22, _ = . 2Z.
ZF‘( 3 )’ 32F‘( 3 1) 3T(5/4)T(9/4)27/2 29)
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Thus
7202(1/2)
~4.3/2)= ——m/————————— 2.10
1(8.-4.3/2) 32I2(3/4)T'%(5/4) ( )
where we have used the above ,F) evaluations together with I'(1) = 1.I(3) = 2 and

I'(9/4) = 5I(5/4)/4. A final use of the duplication formula [1.(153). p. 3] yields [*(1/2) =

7. T2(3/4)T?(5/4) = 7%/8 and the theorem is established.
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