A REPRESENTATION OF BOUNDED COMMUTATIVE BCK-ALGEBRAS

H.A.S. ABUJABAL

Department of Mathematics, Faculty of Science King Abdul Azız University, P O Box 31464 Jeddah - 21497, SAUDI ARABIA

M. ASLAM

Department of Mathematics Quaid-i-Azam University Islamabad, PAKISTAN

A.B. THAHEEM

Department of Mathematical Sciences King Fahd University of Petroleum and Minerals P O Box 469, Dhahran 31261, SAUDI ARABIA

(Received April 26, 1993 and in revised form November 13, 1995)

ABSTRACT. In this note, we prove a representation theorem for bounded commutative BCK-algebras

KEY WORDS AND PHRASES: Bounded commutative BCK-algebra, ideal, prime ideal, quotient BCK-algebras, spectral space

1991 AMS SUBJECT CLASSIFICATION CODES: Primary 06D99, Secondary 54A

1. INTRODUCTION

The representation theory of various algebraic structures has been extensively studied The corresponding representation theory for BCK-algebras remains to be developed. Rousseau and Thaheem [1] proved a representation theorem for a positive implicative BCK-algebra as BCK-algebra of self-mappings which apparently does not possess many algebraic properties. Cornish [2] constructed a bounded implicative BCK-algebra of multipliers corresponding to a bounded implicative BCK-algebra, but no representation of these algebras has been studied there. The purpose of this note is to prove a representation theorem for a bounded commutative BCK-algebra We essentially prove that a bounded commutative BCK-algebra X is isomorphic to the bounded commutative BCK-algebra \hat{X} of mappings acting on the associated spectral space of X Our approach depends on the theory of quotient BCKalgebras as developed by Iséki and Tanaka [3] and the theory of prime deals of commutative BCK-Before we develop our results, we recall some technical preliminaries for the sake of algebras completeness A BCK-algebra is a system $(X, *, 0, \leq)$ (denoted simply by X), satisfying (i) $(x * y) * (x * z) \le z * y$ (ii) $x * (x * y) \le y$ (iii) $x \le x$ (iv) $0 \le x$ (v) $x \le y, y \le x$ imply $x = y, y \le x$ where $x \le y$ if and only if x * y = 0 for all $x, y, z \in X$ If X contains an element 1 such that $x \le 1$ for all $x \in X$, then X is said to be bounded X is said to be commutative if $x \wedge y = y \wedge x$ for all $x, y \in X$, where $x \wedge y = y * (y * x)$ A non-empty set A of a BCK-algebra X is said to be an ideal of X if $0 \in A$ and $x, y * x \in A$ imply $y \in A$ A proper ideal A of a commutative BCK-algebra X is said to be prime if $x \wedge y \in A$ implies $x \in A$ or $y \in A$. It is well-known that every maximal ideal in a commutative BCK-

algebra is prime (see e g [4]) The theory of prime ideals plays an important role in the study of commutative BCK-algebras For some information about prime ideals, we refer to [5] which contains further references about the theory of prime ideals A subset S of a commutative BCK-algebra is said to be \wedge -closed if $x \wedge y \in S$ whenever $x, y \in S$

We now state the following theorem known as the prime ideal theorem (see [6, Theorem 2 4] and [5, Corollary 3])

THEOREM A. Let I be an ideal and S be a \land -closed set of a commutative BCK-algebra X such that $S \cap I = \emptyset$. Then there exists a prime ideal P such that $I \subseteq P$ and $P \cap S = \emptyset$.

COROLLARY B. Let I be an ideal of a commutative BCK-algebra X and $a \in X$ such that $a \notin I$. Then there exists a prime ideal P such that $a \notin P$ and $I \subseteq P$.

The above corollary follows from Theorem A by choosing $s = \{a\}$ If a non-trivial commutative BCK-algebra and $I = \{0\}$, then Corollary B ensures the existence of a prime ideal in X We now recall the definition of a quotient BCK-algebra If X is a BCK-algebra and A is an ideal of X, then we define an equivalence relation \sim on X by $x \sim y$ if and only if $x * y, y * x \in A$ Let $C_x = \{y \in X : x * y, y * x \in A\}$ Let $C_x = \{y \in X : x * y, y * x \in A\}$ Let $C_x = \{y \in X : x * y, y * x \in A\}$ Let $C_x = \{y \in X : x * y, y * x \in A\}$ Let $C_x = \{y \in X : x * y, y * x \in A\}$ denote the equivalence class containing $x \in X$ Then one can see that $C_0 = A$ and $C_x = C_y$ if and only if $x \sim y$ Let X/A denote the set of all equivalence classes $C_x, x \in X$. Then X/A is a BCK-algebra (known as quotient BCK-algebra) with $C_x * C_y = C_{x*y}$, and $C_x \leq C_y$ if and only if $x * y \in A$, and $C_0 = A$ is the zero of X/A (see for instance [3-7]). If X is bounded commutative, then X/A is also bounded commutative with C_1 as the unit element For the general theory of BCK-algebras and other undefined terminology and notations used here, we refer to Iséki and Tanaka [3-7] and Cornish [8]

2. A REPRESENTATION THEOREM

Throughout X denotes a bounded commutative BCK-algebra. Let Spec(X) denote the set of all prime ideals of X, called the spectrum of X. It has been shown in [5] that Spec(X) is a compact topological space referred to as the spectral space associated with X. It is well-known that $\bigcap_{P \in Spec(X)} P = \{0\} \text{ (see e.g. [8])}.$

DEFINITION 2.1. For any $x \in X$, we define a mapping

$$\widehat{x}: Spec(X) \to \bigcup_{P \in Spec(X)} X/P$$

where $\hat{x}(P)$ denotes the image of x into X/P

It is easy to see that $\hat{x}(P) = C_0$ if and only if $x \in P$.

We denote by \hat{X} , the set of all mappings $\hat{x}, x \in X$. For any $\hat{x}, \hat{y} \in \hat{X}$, we define the following operations on \hat{X} .

$$\widehat{x} * \widehat{y} = (\widehat{x * y})$$
 and $\widehat{x} \le \widehat{y}$ if and only if $\widehat{x} * \widehat{y} = \widehat{0}$.

These operations are well-defined because of the properties of quotient algebras. Indeed, as $\hat{x}(P)$ is the canonical image of x in X/P, namely the class C_x relative to P, and the union $\bigcup_{P \in Spec(X)} X/P$ is disjoint

Routine verifications similar to ones for quotient BCK-algebras (see e g [3]) lead to the following **PROPOSITION 2.2.** $(\hat{X}, *, \hat{0})$ is a bounded commutative BCK-algebra.

We now prove the following representation result.

THEOREM 2.3. The mapping $\phi : x \in X \rightarrow \hat{x} \in \hat{X}$ is an isomorphism.

PROOF. That ϕ is surjective homomorphism follows from the definition (because the mapping $x \in X \to C_x \in X/P$ is the canonical homomorphism) To prove that ϕ is injective it is enough to show

that $\phi(x) = \widehat{0}$ if and only if x = 0 For any $P \in Spec(X)$, $\phi(x)(P) = \widehat{0}$ implies that $x \in P$ for all $P \in Spec(X)$ and hence $x \in \bigcap_{p \in Spec(X)} P = \{0\}$ Thus x = 0 This completes the proof

We provide an example to explain some essential ideas developed above

EXAMPLE 2.4 ([3, p 363]) Let $X = \{0, a, b, 1\}$ be a set Define a binary operation * on X as in Table 1

*	0	а	b	1
0	0	0	0	0
а	a	0	a	0
b	b	Ь	0	0
1	1	b	а	0

Table 1

The (X, *, 0) is a bounded commutative BCK-algebra with $P = \{0, a\}$ and $Q = \{a, b\}$ as prime ideals (cf Table 2)

\wedge	0	a	b	1
0	0	0	0	0
а	0	а	0	a
b	0	0	b	b
1	1	а	b	1
	Та	bla	r	
	10	UIC.	4	

Then $Spec(X) = \{P, Q\}, X/P = \{\{0, a\}, \{b, 1\}\}, X/Q = \{\{0, b\}, \{a, 1\}\}, X/P, X/Q$, are disjoint and $\bigcup_{P \in Spec(X)} X/P$ is the disjoint union as defined above The rest of the calculations can easily be mode to extra performance of X in this case.

be made to get the representation of X in this case.

ACKNOWLEDGMENT. The authors are grateful to the referee for his useful suggestions that led to an improvement of the paper One of the authors (A B Thaheem) thanks K F U P M for providing research facilities.

REFERENCES

- ROUSSEAU, R. and THAHEEM, AB, A representation of BCK-algebras as algebras of mappings, Math. Japonica, 34 (1989), 421-427
- [2] CORNISH, W H., A multiplier approach to implicative BCK-algebras, Math. Sem. Notes, 8 (1980), 157-169
- [3] ISÉKI, K and TANAKA, S., Ideal theory of BCK-algebras, Math. Japonica, 21 (1976), 351-366
- [4] PALASINNSKI, R, Ideals in BCK-algebras which are lower semilattices, Math. Japonica, 26 (1981), 245-250
- [5] ASLAM, M and THAHEEM, A.B., On spectral properties of BCK-algebras, Math. Japonica, 38 (1993), 1121-1128
- [6] ASLAM, M and THAHEEM, A.B., A new proof of the prime ideal theorem for BCK-algebras, Math. Japonica, 38 (1993), 969-972
- [7] ISÉKI, K and TANAKA, S., An introduction to the theory of BCK-algebras, Math. Japonica, 23 (1978), 1-26
- [8] CORNISH, W.H., Algebraic structures and applications, Proc. of the First Western Australian Conference on Algebra, Marcel-Dekker, Inc, New York (1982), 101-122