
Internat. J. Math. & Math. Sci.
VOL. 19 NO. 4 (1996) 733-736

733

A REPRESENTATION OF BOUNDED COMMUTATIVE BCK-ALGEBRAS

H.A.S. ABUJABAL

Department of Mathematics, Faculty of Science
King Abdul Azlz University, P O Box 31464

Jeddah- 21497, SAUDI ARABIA

M. ASLAM

Department of Mathematics
Quaid-i-Azam University
Islamabad, PAKISTAN

A.B. THAHEEM

Department ofMathematical Sciences
King Fahd University of Petroleum and Minerals
P O Box 469, Dhahran 31261, SAUDI ARABIA

(Received April 26, 1993 and in revised form November 13, 1995)

ABSTRACT. In this note, we prove a representation theorem for bounded commutative BCK-algebras

KEY WORDS AND PHRASES: Bounded commutative BCK-algebra, ideal, prime ideal, quotient

BCK-algebras, spectral space

1991 AMS SUBJECT CLASSIFICATION CODES: Primary 06D99, Secondary 54A

1. INTRODUCTION
The representation theory of various algebraic structures has been extensively studied The

corresponding representation theory for BCK-algebras remains to be developed. Rousseau and

Thaheem proved a representation theorem for a positive implicative BCK-algebra as BCK-algebra of

self-mappings which apparently does not possess many algebraic properties. Cornish [2] constructed a

bounded implicative BCK-algebra of multipliers corresponding to a bounded implicative BCK-algebra,

but no representation of these algebras has been studied there. The purpose of this note is to prove a

representation theorem for a bounded commutative BCK-algebra We essentially prove that a bounded

commutative BCK-algebra X is isomorphic to the bounded commutative BCK-algebra X of mappings

acting on the associated spectral space of X Our approach depends on the theory of quotient BCK-

algebras as developed by Is6ki and Tanaka [3] and the theory of prime deals of commutative BCK-

algebras Before we develop our results, we recall some technical preliminaries for the sake of

completeness A BCK-algebra is a system (X, ,,0, _<) (denoted simply by X), satisfying (i)
(z,y),(z,z)_<z,y (ii):r,(z,y)_</ (iii):r_<z (iv) 0_<:r (v) a:_<y,y_<z implyz-y,

where a: _< /if and only if :r /- 0 for all z, /, z E X IfX contains an element such that a: _< 1 for

all z E X, then X is said to be bounded X is said to be commutative if :r A /-- y A z for all z,/ X,
where z A / (/ :r) A non-empty set A of a BCK-algebra X is said to be an ideal of X if 0 A

and z, :r A imply / A A proper ideal A of a commutative BCK-algebra X is said to be prime if

z A 1 E A implies x A or t A It is well-known that every maximal ideal in a commutative BCK-
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algebra is prime (see e g [4]) The theory of prime ideals plays an important role n the study of

commutative BCK-algebras For some information about prime ideals, we refer to [5] which contains

further references about the theory of prime ideals A subset S of a commutative BCK-algebra is said to

be A-closed ifx A y E S whenever x, y E S
We now state the following theorem known as the prime ideal theorem (see [6, Theorem 2 4] and

[5, Corollary 3 ])
THEOREM A. Let I be an ideal and S be a A-closed set ofa commutative BCK-algebra X such

that S N I . 7hen there exists aprime ideal P such that I C_ P and P S .
COROLLARY B. Let I be an ideal of a commutative BCK-algebra X and a X such that

a I. Then there exists a prime deal P such that a P and I c_ P.
The above corollary follows from Theorem A by choosing s {a} If a non-trivial commutative

BCK-algebra and I {0}, then Corollary B ensures the existence of a prime ideal in X We now

recall the definition of a quotient BCK-algebra If X is a BCK-algebra and A is an ideal of X,
then we define an equivalence relation ,-on X by xy if and only if x,y, y,xA Let
C={yX’x.y,y.xA} Let C’={yEX’x.,y.xA} denote the equivalence class

containing z X Then one can see that Co A and C Cy if and only if x y Let X/A denote

the set of all equivalence classes C, x E X. Then X/A is a BCK-algebra (known as quotient BCK-

algebra) with C C C,, and C < C if and only if x y A, and Co A is the zero of X/A
(see for instance [3-7]). If X is bounded commutative, then X/A is also bounded commutative with C
as the unit element For the general theory of BCK-algebras and other undefined terminology and

notations used here, we refer to Is6ki and Tanaka [3-7] and Cornish [8]

2. A REPRESENTATION THEOREM
Throughout X denotes a bounded commutative BCK-algebra. Let Spec(X) denote the set of

all prime ideals of X, called the spectrum of X It has been shown in [5] that Spec(X) is a

compact topological space referred to as the spectral space associated with X. It is well-known that

f"l P {0} (see e.g [81).
PSpec(X)

DEFINITION 2.1. For an x E X, we define a mapping

.s(x) [.j x/P
PSpec(X)

where (P) denotes the image ofx into X/P
It is easy to see that (P) Co if and only ifx P.
We denote by X, the set of all mappings , x E X. For any , y E X, we define the following

operations on X

(x y) and _< if and only if .
These operations are well-defined because of the properties of quotient algebras. Indeed, as (P) is

the canonical image of x in X/P, namely the class C relative to P, and the union X/P is
PSpec(X)

disjoint

Routine verifications similar to ones for quotient BCK-algebras (see e g [3]) lead to the following
PROPOSmO .z. (2, ,,) ,o,,,,da omm,,t,ave BC-geb,.

We now prove the following representation result.

THEOREM 2.3. The mapping x X ---, X ts an isomorphtsm.

PROOF. That is surjective homomorphism follows from the definition (because the mapping

x X C X/P is the canonical homomorphism) To prove that is injective it is enough to show
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that (x) if and only if x 0 For any P E Spec(X), (x)(P) implies that x E P for all

P Spec(X) and hence x ["1 P {0} Thus x 0 This completes the proof

We provide an example t explain some essential ideas developed above
EXAMPI,E Z.4 ([3, p 363]) Let X {0, a, b, 1} be a set Define a binary operation on X as

in Table

0 a b 1
0 0 0 0
a 0 a 0
b b 0 0
1 b a 0

Table

The (X, ,, 0) is a bounded commutative BCK-algebra with P {0, a} and Q {a, b} as prime

ideals (cf Table 2)

0 a b 1
0 0 0 0
0 a 0 a

0 0 b b
1 a b 1

Table 2

Then Spec(X)= {P,Q},X/P= {{O, aI,{b, 1}},X/Q= {{O,b},{a, 1}},X/P,X/Q, are

disjoint and U x/P is the disjoint union as defined above The rest ofthe calculations can easily
PSpec(X)

be made to get the representation ofX in this case.
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