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ABSTRACT. Matrix convexity of the Moore-Penrose inverse was considered in the recent literature

Here we give some converse inequalities as well as further generalizations
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1. INTRODUCTION
Let A and B be two complex Hermitian positive definite matrices, and let 0 _< A _< 1 Then

[AA + (1 A)B] -1 <_ AA-1 + (1 A)B-1 (1 1)

where A _> B means that A B is a positive semi-definite matrix.

This result, e., matrix convexity of the inverse function is an old result that appears explicitly in the

papers 1,2,3,4,5] (see also the books [6, pp 554-555] and [7, pp. 469-471]).
The related matrix convexity of the Moore-Penrose (generalized) inverse, denoted by A/, was

considered in paper [8,9,10] The following was given in 10]"
Let A and B be two complex Hermitian positive semi-definite matrices of the same order. The

inequality
[AA + (1 A)B]+ _< AA+ + (1 A)B+ (1 2)

for every 0 < A < 1 holds if and only if

where R(A) is the range of A.
R(A) R(B) (1 3)

and

where

Two converses of (1.1) were obtained in 11 ]"
If A and B are complex Hermitian positive definite matrices and 0 < A < 1 is a real number, then

[AA + (1 A)B] -1 _> K(AA-1 + (1 A)B-1) (1 4)

[AA + (1 A)B]-’ (AA-1 -I- (1 A)B-1) _> RA-’

g min R=min v-
(1+#,)2’ _#,

(1.5)

(1 6a,b)

and the # are the solutions ofthe equation

det(B #A) 0.

In this note, we give analogous converses for (1 2), as well as some related results

2. CONVERSES OF TIlE MATRIX CONVEXITY INEQUALITY
OF THE MOORE-PENROSE INVERSE
Let A and B be two complex Hermitian positive semi-definite matrices of the same order such that

(1 3) holds Let P be a unitary matrix such that A P diag (A1,0)P* where A1 is a diagonal positive
definite matrix When (1 3) holds, we have B P diag (B1,0)P* where B1 is positive definite

(1 7)
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THEOREM 1. Let A and B be two complex Hermitian positive semi-definite matrices of the same

order such that (1 3) holds and let 0 _< A < 1 Then

[AA + (1 A)B] * >_ K(AA+ + (1 A)B+)

where K is defined by (1 6a) and the #, are the positive solutions of the equation

det(B AA) 0.

TItEOREM 2. Let A, B be defined as in Theorem Then

[AA+(1-A)B+]-(AA++(1-A)B+)_>RA+

where is defined by (1 6b) and the #, are positive solutions of the equation (2 2)
PROOF. By (1 4) and (l 5) we have

[AA, + (1 A)B1] -1 > K(AA- + (1 A)Bi-1)
and

[,A + (1- A)B1] -1- (AAi-’ + (1- ,)Bi-1) >_/fAi-1

where K is defined by (16a), by (16b) and the #, are solutions of (22)
PA+P" (PAP*)+ (2.1) follows from (24) and (23) from (2.5)

(2 l)

(22)

(2 3)

(24)

(25)

Since

so tha

PROOF. As in [9], we have that there exists an orthogonal matrix C such that

CTAC diag{Aw, A2y, A,w}, y E Y
where Aly, A2u, A,w are the eigenvalues of Ay Since Av is positive semi-definite, each A,y >_ 0. Let k

be the rank ofAv We can assume without loss of generality that

Alu, A2u, Aku # 0 for every y E Y, and Ak+l,y Ak+2,y ....Any 0 for every y Y.

Note that

A+ C diag
Aly A2y Aky

and

f A+u(dY)- Ill," Ay#(dy) <
Mm

I. (33)

3. SOME RELATED RESULTS
Let (Y, B, #) be a probability space and Au, y E Y a collection of positive semi-definite matrices of

the same order. Let Ay (a,m), 1 < i, j < n and y E Y Assume that a,ju as a function of y is

measurable for every 1 < i, j < n The following results were proved in [9,10]
Suppose there exists a set D B such that #(D) 1 and AulAyg. Au2Ayl for every yl, yg. E D

Let R(Ay) be the same for all y E D E B. Suppose Ay and Au+ as functions of y are integrable with

respect to # Then

Ay#(dy) < A+u #(dy). (3 l)

By fv Au#(dy) we mean the matrix whose (i, j)th element is fv a,z#(dY).
TIIEOREM 3. If also all positive eigenvalues of Ay for all y Y are in the interval Ira, M] where

0 < rn < M, then the following inequalities hold

A+u#(dy < (M + rn)
Ay#(dy) (3 2)

4Mm
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1 1 1
O,C A C diag

A A A

Thus, we have

where K (M + m)9/(4Mm) The inequality

is the well-known Kantorovich inequality Hence each diagonal element in the above diagonal matrix is

nonnegative This completes the proof of (3 2)
Similarly,

frA#(dY) [frA,z(dy)] -- RI Cdiag{fr, Ai-(dU)-(frAlu#(dY)) -1

ff, : Ak#(dy) Aku#(dy) CT

,I

where (v/-
M, The inequality

fyA-(yi#(dy) --/y A,y#(dy) -1 <_ R

is a simple consequence ofthe following Mond-Shisha inequality 12]

f f-(f f-l) -1-< (V/-_ V/-)
where re < f < M, 0 < re < M. Namely

1 1 1 1< < so that by substituting f ---, , we get
M-f-re

Thus each diagonal element in the above diagonal matrix is non-positive. This completes the proof
Moreover, we can consider the powers of A and A+. For simplicity of notation, if r < 0, we shall

use A(r) for (A+) -r. Note that (A+) (A-r)+

TIIEOREM 4. Let R(Au) be the same for all y E D E B. Suppose A and A(ur), (r < 0 < s) as

functions ofy are integrable with respect to Then

A(ur)#(dy) >_ Au#(dy) (3.4)

PROOF. As in the proof of (3.2) and (3 3), we have
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Each diagonal element n the above diagonal matrix is nonnegative This follows from the fact that if f
and ff are positive and integrable, the well-known inequality for means of orders s and r states that

which is the same as

(3 5)

where

/x
(s r)(’), 1) (r s)(7 1) 7 M/m. (3 7)

where

THEOREM 6. Let the conditions of Theorem 5 be satisfied Then

Au#(dy) < AI (3 8)

h max {[OM" + (1 O)m"] [OM + (1 O)rn]}.
0c[0,1]

Of course (3 2) and (3 3) are the special cases r 1, s 1 of(3 6) and (3 8)
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Similar consequences of converse inequalities for (3 5) (see [12] and [13], respectively) are the next

two theorems

TIIEOREM 5. Let the conditions of Theorem 4 be satisfied and let all positive eigenvalues of Au
for all y E Y belong to the interval Ira, M] (0 < rn < M) Then the following inequality holds

A#(dy) & A A")#(dy) (3 6)


