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ABSTRACT. A study is made of the axisymmetric problem of wave propagation under the influence of

gravity in a micropolar viscoelastic semi-infinite medium when a time varying axisymmetric loading is

applied on the surface of the medium Special attention is given to the effects of gravity which induces a

kind of initial stress of a hydrostatic nature on the wave propagation

KEY WORDS AND PHRASES: Axisymmetric Lamb’s Problem, micropolar viscoelastic medium, and

wave propagation
1991 AMS SUBJECT CLASSIFICATION CODES: 73D

1. INTRODUCTION
In classical problems of wave propagation in an elastic medium studied by several authors including

Love and De and Sengupta [2], it has been shown that the velocity of Rayleigh waves increases by a

significant amount when the wave-length is large due to the influence ofgravity Biot [3] investigated the

influence of gravity on Rayleigh waves under the assumption that the force of gravity generates an initial

stress of a hydrostatic nature so that the medium remains incompressible Nowacki and Nowacki [4]
discussed the axisymmetric Lamb’s problem in a semi-infinite micropolar elastic solid However, they did

not include the effects of gravity in a micropolar viscoelastic solid medium The main purpose of this

paper is to consider the axisymmetric Lamb’s problem in a semi-infinite micropolar viscoelastic medium

under the influence of gravity due to a harmonically oscillating loading acting on the surface of the

medium Special attention is given to the effects of gravity which generates an initial stress hydrostatic in

nature, on the wave propagation

2. FORMULATION OF TI-IE PROBLEM
We consider a viscoelastic homogeneous isotropic centrosymmetric body and assume that the initial

stress due to gravity is hydrostatic in nature Since the initial stress is hydrostatic, stress strain relations
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in this case will remain the same as in a medium initially stress free The stress and strain relations in the
micropolar viscoelastic medium are

( o} { o} (o)
.,.= (’o+o)+(.+.)N x,.+ (o-o)+(.-.) x.,+ Zo+. N (22)

uj, u,.a ekj wk, Xa w,.a (23ab)

where A0, o, a0, rio, vo, eo are elastic parameters, A, #l, Ctl, ]1, Vl, ’1 are the parameters associated
with viscosity

We use the cylindrical polar coordinates (r,O,z) Without body couples, external loading
distributions, body forces, the displacement vector u, rotation vector w depend only on r, z and because
of the axisymmetric configuration The equations of motion in a micropolar viscoelastic solid medium
under the influence of gravity are given by

(o + o) + (, +,) v , + (o +,o o) + ( + , ,) o
( o)o0 o-2 0+N +p=p (24)

(25)

+2 ao + al - Oz Or Jwo (26)

where

1 0 OUz(,-,, + V2 02 1 0 02
----r2+ -t-o

r r Oz2

On the free surface z 0, the axially symmetrical and time varying loadings normal and tangential to the

boundary surface and moment with a vector tangent to a circle of radius r are applied The displacement

components ur, u and rotation component wo are independent of 0

We introduce a scalar potential and a vector potential b and express the displacement components

u,., Uz in terms of these potentials

0 02p 0 (02 10)u r + OzO----’ Uz Oz + -r r " (2 7ab)

Introducing wo- -ox and putting (2 7ab) into (2.4)-(2 6), we obtain the following set of waveOr

equations

(c+cl2) Ot - c+cl2 r +-rr 0=0, (28)
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c2 + c a x+ =0,ot J V; +
(uo + o/+ (u, + ,) ( + 4 )

(29)

(uo +%) + (ul +1)
o ) 2(o + ,

c] +c’2 )X- V=’’ O, (2 10)

where

C 2/’t0 q’- /0
Ctl 2/d’l -[’- "1 C /’to q" "0

P P P

C Cl C
P P P

From equations (28)-(210) we obtain

(2 11)

METHOD OF SOLUTION AND BOUNDARY CONDITIONS
We apply the joint Fourier and Hankel transform (Debnath [5]) of zero order

( ) (3 1)

to (2 11) and solve the transformed system subject to boundedness condition at infinity Thus it turns out

that

=EA3exp(-A:z)’ =EBjexp(-x;z) (32ab)
3=1 3=1

and

E G’ exp(- A3z),
3=1

(3 2c)

3

where 3 3 Pq’
3--1

(1,,2) -+-(,2,3) -[--(,3,1) (klk2) q-(k2k3) -[-(k3kl) koq3132 (c21 i,3c] 2) -1

pq(l + )
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2(ao ia) 2(ao ia)
2q./9----- (/A0_[_0)- 8(I -[-I)

q
(/0-[-0)- i8(/]I -[-I)

The arbitrary constants A3, B3, and C are connected by the relations

B pA., C qA

where

+q3

The quantities A involved in the solutions are determined from the boundary conditions

zz fi(r,t), Tzr f2(r,t), #z0 f3(r,t) on z 0

where f, (r, t) > 0 for 1, 2, 3, and

O’zz’--2 #0--#I - Z q- 0 -1- I - r t--
r r z2--

(3 3)

and

O} 02)(.
(/20 -[- eO) -- (Pl -[- el)- OrOz"

The quantities A found from the boundary conditions (33) are as follows

A=(-1) A__A (34)

where

A1 fl (b2c3 b3c2) + f2(c2a3 c3a2) -+- f3(a2b3 a362)
/k2 fl (blc3 b3Cl) + f2 (El a3 c3al -[- f3 (al b3 a3bl
/k3 fl (blc2 b2c1) + f2(cla2 c2al) + f3(alb2 a2bl)
/k a (b2c3 b3c2) + a2(b3cl blc3) -+- a3(blc2 b2c)

aa 2 (#0 i8#1)2 q- (0 i81) (2 k2) 2(/Ao iS#l)pa,,.l]g
b 2(#0 i8#i)2 k [{(#o -- o) 8(I -[- I)} -1- ((#o o)

(,1 1)}] + :(o il)q

and
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In vew of the inverse Fourier and Hankel transformations combined with relations (2 4)-(2 6) and
(2 7ab) we get

u,
V/

e "’ds (1 A,p,)% exp(- a,z)k"J(kr)dk (3 5)

coo e E {%A3exp(- A3z)}kJ’(kr)dk
3=

(3 6)

and

1 -stu V e as (A k2p3)A3exp(- 3z)kJo(kr)dk, (3 7)
3=

where A are given by (3 4) Hence, utilizing results (2 1)-(2 2) we can find the state of strain and the
state of stress in the semi infinite space

When the viscosity and gravity are not taken into account, that is, when A1, #l, al,/1,71, are

,equal to zero and g 0, relations (3 5)-(3 7) for displacement components and rotation component

reduce to

1 e-’ds k A1 exp(- AlZ) A3exp(- A3z Jl(kr)dk (3 8)r
./=2

foe /0oee d E zA3A3 exp( sz)k Sl (kr)dk
3-2

(3 9)

and

1 e-**ds k AIA exp(- Az)- k2E A3exp(- A./z) Jo(kr)ak (3 10)V/ 3_:2

where

(3 11)

Relations (3 8)-(3 10) are in agreement with those obtained by Nowacki and Nowacki [4]

4. PARTICULAR CASE
We now consider a particular case of loading on the semi-infinite space boundary, that is, the loading

oscillating harmonically in time, the medium being stationary for < 0

The boundary conditions on the surface z 0 are

crzz=Qe-"’tf(r), az=O, Uzo=O. (41)

Now the constants A in the equations (3 4) reduce to
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As- (-1) kxa

where

/h (blc b3cl), -) (b,c,,_ b,,_c,

and

f (s, k) X’ e’tdt f(r)e-*trJo(kr)dr X6(s w) (k).

Putting f(r) Fo sin(r, we have

Thus it turns out that

ur--e-Zt d
k - (1 ,V3p’j)A’ (k ()-exp(-

j-!

(4 2)

(4 3)

(44)

(4 5)

k p; A;. (k 2) -exp( ;;z)Jo(kr)dk
3=1

(46)

wo e -’t k qjA’ (k 2)-}exp(- A;Z)Jl(kr)dk (4 7)
3=1

where dashed quantities represent the value of the function at s a;

Results (3 8)-(3 10) show the striking difference between the displacement and rotation due to the

influences of gravity when the effects of viscosity and gravity are neglected In the absence of gravity,

AI, ,, , are given in (3 11), and these quantities are given in Section 3 where the effects of gravity and

viscosity are included

In conclusion, we state that A3 for the present case also depend on gravity and the corresponding

results are changed from those where the effects of gravity and viscosity are neglected Further, the

displacement field and rotation are correspondingly modified with increasing depth The modification is

due to the pressure of viscosity and gravity Finally, in the absence of gravity with very small viscosity,

the results reduce to those ofthe classical theory of elasticity due to Ghosh [6,7]
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