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ABSTRACT. The intention of this paper is to describe a const,’uction method for a new sequence

of linear positive operators, which enables us to get a pointwise order of approximation regarding
the polynomial sun’tmator operators which have "best" properties of approximation.
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erators, (C, 1) means of Chebyshev series.

1. The aim of this paper can be described in the following way" Starting wih a sequence A (A,)
of approximation operators, we construct by means of the so called 0 transformation a new

sequence of operators B (B=) O(A).
With the known properties of A we get the corresponding properties of the sequence B O(A).
We also prove, that if A is the sequence of (C, 1) means of Chebyshev series, the polynomials

(Bf), f C(I), furnish a pointwise order of approximation similar to the best order of approxi-
mation.

Let H,, n 0, be the linear space of all algebraic polynomials with real coefficients of degree
5 n and T,(t) cos(, arccos t) the n th Chebyshev polynomial, n 0.
We denote by X the normed linear spaces C(I),I := [-1,1] or L(I), 5 p < , endowed with

norms llIllc(i fll := maxelf()l for f e C(I), respectively IIII1 If()1’()d

where f is an element of the Lebesgue space (I) with the weight ()=.
Further for f X and a polynomial 9 we use the inner product

<f, 9) / f(t)9(t)w(t)dt.
-1

The translation operator r" X X, z E I, defined by

1[
has the property

If we use the convolution product L(I) x L(I) (I)

-1
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then our aim is to construct some al)l)roximation operators A,, . H,,, n E IN, such that
lira II.f A,fllx O, .f X.

A sequence a (a,,),,er%. a,, II,,. with degree a,, n for all n INo, is called a polynomial
sequence. If 7"+ denotes the set of all l)olynomial sequences a (a,,),eNo with the properties

,.) a,(.r)_>0..rl ,,.) (1.a,,) 1, ,, lN0.
then for

2a,,(:r) wank,,T,.(:v), where ’o -, wa -, k 1, (1.1)
k=0

a.(.r,t) (r.a,.)())= o..T(x)T(t),
k=0

we consider the sequence A := A(a) (A,)eo, A., X H, of linear positive operators,
defined by A.[ f . a, a. f that is

(A,f)(:r) A,,(.f;x)= -w,ea,,,,<.f,T:>T:(x)= /.(x,t)f(t),,,(t)dt, I. (1.2)
k=0

-1

In this case a (a,),eo is called the generating sequence of A (A,).

If A(a)= (A.)is defined as in (1.1) and (1.2), then [a,. I(Z,a.)l <_ and let us define
the functionals r," + IR, n E IN,

r,(A) := 1-Otl, 1-(Tl,an) l IN.

An important polynomial sequence (T.).et0, T P+, was considered by L.Fejr, namely

w, 1- T,(x) (1.3)p(x)
7r(n+l)(1-x) =o n+f

The corresponding linear positive operators F (F.).0, F. f * . are the (C,1) means of
Chebyshev series, i.e. the Fejr operators F. X H., n fi 0,

=o n+ <f,T)T,(x), f e X. (1.4)

There exists a connection between the operators defined in (1.2) and those from (1.4). Indeed,
using the equalities A,T: a,,,,T, k INo, we get with

the identity

k=O

A,,f (n + 1)a, * F,f na, ,
2. Let b (b,),ero be an element fi’om 7 ’+ with

b,(x) -w,3,,,T,(x), (2.1)
k=0

and B B(b) (B,,)eN B, X 1-I, the operators with the "generating polynomial sequence
b", defined by

(B,.,f) (x) -w,,,,,(f,T,)T,(x), x I. (2.2)
k=O
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Suppose that

h(tlw(t)dt Z c(n)h(z),
--1 k=l

(2.3)

with ck(n) > O, zk C [-1,1], k 1,2,...,re(n), is a quadrature formula which is exact for all
polynomials h II,() with s(n) > n + 2, n q.

For b (b,) 79+ and B (B,) as in (2.1) (2.2) we consider the linear positive operators
B*,//n, n l10, where for f X

and

(Bf) (x) Z c(n) (rb,,) (z)f(z) (2.4)
k=l

k=l

The sequence B* (B*) is called "the discrete form" of B (Bn), with respect to (2.3). The
operator/} appears to be useful for the connection between Bn and B*.

Lemma 2.1 /f/} is defined as in (2.5), then for j {1,2}

/n(1 ’ x) (2.6)

Proof: Let us observe that

Therefore

(1 t’)b,(t)Tk(t)w(t)dt B,,((1 t’)Tk(t); 1).
-1

n+
r((1 t)b(t))(z) ZwB,,((1 t)Tk(t); 1)T(z)T(z)

k=0

and using (2.3) for j { 1, 2} we have

/=(I t’;x) Z ck(n)r((l
k=l

-I

r((l t’)bn(t))(z)w(z)dz B,,(I t’; I).

Finally

B,,(1 t; 1) fla.,,, B,,(1 t; 1) (1 -/,,,), (2.7)
which completes the proof, t::l

Theorem 2.2 Suppose that B is defined by means of (.) with b 79+. Let B, be the

discrete operator from (2.) and

6,(x) one of the functions B.(Ix- tl;x) or B:(Ix- tl;x).

Then for x I

Il.(S) _< .(x)_< x/1- x211-22": @ Ix[rn(B). (e.8)
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Proof: With ek(t) k, k E lNo, it is known that for convex functions " E C(I) we have

,,/( Le <_ L on I, (2.9)

where L is a linear positive operator C(I) C(I) with Leo e0 (see [8]).
If we select "),(t) [x t[, L B,, we have by using the inequality (2.9)

Ix z11,.] < B.(Iz tl; z);

or on the other hand for L B,

I (B:e,) (x)l < B:(Ix tl;x).

For h II2 it is B,h B,,h and so we obtain the lower bound in (2.8).
Further let us denote

,Then for x, q I, j 5 { 1, 2}

I- ,(,t)l < ,A : Zvq- t + I1( t) (2.10)

and

Ix -tl < 1 -xZji 2(x, t)+ Ixl(1

Define the linear positive functionals J, C(I) IR, n q. l’qo, by J,(f) (f, b,).
We have

more precisely (see (2.7))

Because

and (2.10) enables us to write

J.(1 P) B.(1 P; 1)

J,(1 t) -/l,n

J.(x/’l tz) -< V/J"(1 tz) V/1-2Dz’"

(B.f) (z) / b.(t) (rxf) (t)w(t)dt
-1

X < V/1 xv/1 + [z[(1 t)

one finds

(2.11)

B.(lx-tl;x) < V’l-x2J.(Ji-t2)+lxlJ.(1-t)

< V"i

i.e. the upper bound in (2.8). Regarding the discrete operators (B.*), we have from (2.4) and
(2.11)
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re(n) t,,,(,,(.r, z))+ b.((.., z))

k=l

x/1 .rV/1 /,(x, zk))4- I.rl(1 ffl(.r, zk))

+ Ixl ct,(n)r.((1 t)b.(t))(z)
k=l

V1 z2Bn( v/1 t2; x) 4- Ixl/.(1 t;

From (2.6) using Schwarz inequality we complete the proof.

Other upper bounds for 6, were obtained by J.D.Cao and H.H.Gonska [5].

Theorem 2.3 Let b (b,) be an arbitrary polynomial sequence from 79+. Suppose that

B (B,), B* (B,) ave defined as in (e.2) respectively (2.,). Then for f E C(I), z E I,

If(x) (B.f)(x)l < 2w(f;V(z)) _< 4w(f;A.B(:r))

If(x)- (B:f)(x) < 2w(f;

where w(f; ) sup{If(t 4- h) f(t)l Ihl <_ , t,t + h I} and

(2.12)

(2.13)

/

V/(1 x2)(1 fl,,.) + Izl(1 B,,.),

with

/a,. (.,)(t).

Proof: It is known that an arbitrary linear positive operator L,, C(I) C(I) with L,,eo eo
satisfies the inequality

If(x) (L.f)(x)l <_ 2w(f; L.(Ix tl; x)).

The upper estimate from theorem 2.2 enables us to write

If(x) (L,f)(x)l < 2oa(f;

where L, is one of the operators Bn or/.
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Let q.,(t) (1 t)"’. m E IN. a!1 ob.scrv(’ tidal q3.q,,, are monotone Oll I in the same sense. By

means of Chelyshev inequality w,. lax’,’ (B,,q)(x)(B,,q,,,)(x) 5 (B,q+,,,)(x), j,m o, where

we find with j m and a’=

Therefore
0 _< 1-,’4.,, _< 2(1 +/t,.,,),.,,(B) < 4,’,,(B).

.(f;7(.r)) _< ..,(.f: v/2_k.S(x))_< 2o.’(.f; s,x,, (.,.)),

which proves this theorem.

xE I,

Remark: One knows that, for (b,,) E T’+ the Fejr inequality [6] holds

/3. < cos nEINn+2’
__1 for an arbitrary n a similar extremalIn the case of Jacobi polynomials R(.’’), a, > /3 _> ,

problem is solved in [8]. For an even n the problem is considered in ([1], p.68).
However, for all linear positive operators B (B.) generated by polynomial sequences b (b.)
P+ one has

r,(B) >_ 2sin
r

(2.15)
2(n + 2)

Let us present a short proof of Fejr’s inequality (2.15). If h E II.+x, then it is easy to observe
that

<l,h) --c,h(xa,,,), s= [] +1,
k=0

2k-17r ]g ) 1, co 2 1-( !F C
2Zo,n -1, k,n COS

n+2 n+2 C1 n+2"

If ho(t) (1 t)b.(t) then

r.(B) (1,h0)= c(1- Xk,,)b,(Xk,.)>_ C,(1- Xl,n)bn(Xl,n) _> x,,,, 2sin
k=O

( +z)’

Therefore the equality holds if and only if

bn(x) b*n(x %n(x + 1) H(x- Xk,n):,

where A. is selected such that bn(xl,n) n2--r2. It may be shown that [91

+ T+:(x) r
b*(x) x,

(x cos -g)’
x,

r(n + 2)
sin

n+2

3. A polynomial sequence a (a.) belongs to the class Pa if and only if

i) a E P+ and

ii) for each n E ]N there exists at least a root zo(n) of a,, in I.

We denote Zo zo(n + 1) and remind that a(x,t) (r.a.)(t), an+l(Z0) an+,(1,Zo) 0. Define
b (b,) to be the sequence of polynomials

ha(x) _1 an+l(x, zo)
(3.1)e-.n 1-- x
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where

C"

-!

..,(t)dt

It is clear that the positivity of the tran.lation operator certifies the fact that b (b,,) E g’+. If

l" T’ T’+ is the mapping (an) (b,,). b,, I)eing as in (3.1), we write b l(a).

Definition If o (a,,) P’.b (b,,) l(a), the, the sequence B (B,,) defined i,, (2.2)
,s called the 0 transformation of the sequence A (A,) from (1.) ang we w,’ite B O(A).

Lemma 3.1 Suppose that

a.(x) ’o,.T(.,’). a.+,(Zo) O, z0 Zo(. + 1) I,
k=O

is the 9eneratin9 polynomial sequence for the operators A (A.).

If b (b,) l(a), then

b,(x) ___2
c.

(" + 1)+,.+T+(zo)(z), nE IN,

where o is defined in (1.3).

Proof: Let d(t,x) be the Dirichlet kernel

k

d(t,.r) .,T,(t)T,(z)
3=0

and S, X I1,, be the partial sum of Chebyshev series, i.e.

2=0
-1

(3.2)

From (3.1) we get

,.()
1 a,.,+, (x, Zo) a,.,+, (1, Zo)
Cm X

Tk(x)
z._, .,,,,,,+, T(zo)
k= 1--x

2 , ], "JF 1) OZk+ ,n+ Tk+ ZO (tOkCn k=O

Further, we may write

with

b,.,(x) _2__c,., E(k:=o + 1)a+,,,.,+,T+,(zo) %(1 k-)Ts(x) k,,.T.(x)
3=0 k=O

2

,k(j + -k)o.l+l,n+lT3+l(zO)

)2 / an+ (t) (j + k)T.l+l(t)Ta+l(Zo w(t)dt.Cn
-1

(3.3)
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Now, it ,(t..r) (r)(t)

(j + i,’)T+a(t)Tj+(zo)

2
((n + 2 k)d,+l(t,:o) d(t :o) + (k+ 1),.(t, :o) (, + 2),,+l(t :o))

Using (1.4), (3.2) (3.3) we conclude with

a l-f:

wh re

Lemma 3.2 Under tht hypothesis of/emma 3.1 the coefficients/:h,,, in

k=O

&.,, L ((,, + 2)(F,,+,,.+,)(.-o)- (: + )(F,,,+,)(zo) + (&,,,+,)(o)),
Cn

,, ,-(,, + 2)(F.+,.,+,)(o).

(3.4)

(3.5)

By considering the family of linear operators Ik,,, k 0, 1,..., n, n E IN, defined on 79+ by

Ik,n := (n+2)Fn+l (k+ 1)Fk+S

one finds the operational formula

&’" (, + 2)(F,,+,,,+)(zo)

Let us note that if B O(A), then

k =O, 1,...,n. (3.6)

.(B) fl,,.
r(n + 2)(F.+la.+l)(zo)

Using the above results one can formulate the following

Theorem 3.3 Let a (a.) e 79a, b (b.) l(a) 79+ and S O(A). If
2

mk,n ---(k + 1)crt+l,.+lT+l(Zo), ca r(n + 2)(F,,+la,+a)(zo)

then B B.) is a summability method of Fej4r operators F (F.), more precisely

Bn mk,nFk.
k=0

Moreover, for all x I and f C(I)

f(x)-(B,f)(x) <_ 4 (f; ]x-l + lx) n IN.

4. In this section we will consider the case a (o,), with o, being as in (1.3) and
zo zo(n + 1) cos ---. At first we observe in our case

.+1(c, r(n + 2) (F,.+,,,+,) (zo) r(n + 2) Ewe, cos
,=o n+2
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that is

,’,,(B) sin (4.1)
c,, 7+2

If we select in (3.3) ak+l,.+l
2.

-n+2" :o cos - or in (3.6) an+l n+l, one finds the following

Lemma 4.1 If b (b,,) l(), (), then

k=O

with

fl,,,
n k + 2 krr cos .2 kr kr
cos + cos sin. (4.2)

n + 2 n + 2 (n + 2) sin g-g5 n + 2 n + 2

Moreover

where

b,(a’) n,,
(1 x cos) (1 T,,+(.r))

(4.3)
2r(1 x) (x cos -)

71", sin. (4.4)
r(n + 2) n + 2

Further, let

B=(B,)=O(F),

where F (F,) is the sequence of Fejr operators.
If f G X and fl,,, b, are as in (4.2) (4.4), then

k=O

(,+l). thenand also, if rh,. 27rx,,(k + 1)(k- n- 1)cos ,,+2

B,f rh,,,Fkf
k=O

We note that the coefficients ,. satisfy rb.,. ._,., k O, 1,..., n.

(4.5)

(4.6)

In order to obtain a discrete form of the operators B (B,) defined by (4.5) let us observe
that the translation of b, from (4.3) is

(.) (u) . v,,,(x; y)(1 T,.,+(x)T,.,+:(y)) w,.,(x; y)(1 x)(1 y)U,.,+x (x)U,.,+x (y)
" (1 y)sin "( ) (( cos .+, .--,

where

v.(x;9) (1-xg)(rp)(9)+(1-z)(1-y2)cos (z-9)-(2x -1-cos
on+2 n+2

)

(4.7)

wn(x; y) (x y)2 (2xy 1--cos
27) + cos (-p) (,)

n+2 n+2

with Un-t-1 (X) sin(nT2)lVt].W_x and p(x) (1 x)(x cos ,___ff)2
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If in quadrature fonula (’2.3) we choose the knots : :t.,, such that /.,,+(:.) O, then the

polynomials (rb,,)(:t.,,) lax’e a sinplior forlll. Therefore. we will consider the Bouzitat formula

of the second kind

with co(n) z.,, cos ,-7’ /,’E 7Z.

In conclusion let B X II., n E INol be the linear positive operators with the images

r (f(-1)b.(-.r) + f(1)b.(x) +(Bf)(x)
n+2 \ 2

’=+ (-1)T,+2(x)
)2f(:,.,))+ -. v.(.r; :,,,)(x- z,.)2(x z_2,.)2(x

k=l

the polynomials v, being explained in (4.7).

Another representation of the operator B,] may be obtained in the following way. Let us consider
the bilinear form for f, 9" I IR

n+l

(f,g). " f(-1)g(-1) + f(1)g(1) + Ef(cos kr kr
,, + 2 = + 2

)(cs ,+ )

It is easy to see that (f,g) (f,g),, for fg

Now

n+2 n+2

(B:f) (x) E c(n)f(z,,) (rb,) (z,,) E c(n)f(z,,,,)
k=O k=O 3=0

implies
(B,.f) (x) %t3,,, (.f, T,), T,(x),

2=0

which is the discrete version of (4.5). Similar discrete approximation operators were studied by
A.K. Varma and T.M. Mills [11]. They obtained such operators as a summability method of
Lagrange interpolation.
By using (4.1) in (2.12) (2.13) we obtain

Theorem 4.2 Suppose that B (B,) is the 0 transformation of the Fejdr operators F
(F,). Let B* (B) be defined as in (4.8). If f E C(I), x E I, and

e,(x) V’l x2sin
r 7r

/ Ixl sin
n+2 n+2

then for n E IN

f(x) (B.f) (x) < 4w(f;e,(x))

If(x) (B:.f) (x) <_ 4w(f; e,(x)).

Remarks:

If B (B,,) is the O transformation of F (F,), then
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(./l)si
,’,,(/:’) - + 2

which means thal le linear col)iatio of Fej6r operat ors (4.6) al)proximates the functions
fi’om C(I) better than F,.f.

Note that the ineqtmliy

e,(,r) < r, ( V’I n- "z’

furnishes an est.imation of Timan’s type

+,j, .r6I,

I.f(x) (B:.f)(x)l _< Oo(f;
vq a"

.r I, f C I), n fi IN, b-o (0,40].

By means of the second order nodulus of smoothness

w(f,h) := sup{lf(x-6)-2f(x)+f(x+6)l; x,x+,SeI, 0<_5<h}, f 6C(I),

one finds

Theorem 4.3 Let B= (B,) (R)(F) and B* (B,) as in (4.8). For f C(1), x I, we

have

If(x, (B,f,(x,I < co (w(f; 1) ’’w )-n + (/; )

f(x)-(B,f) (x) < co (w2(f; !)n + Ixlw(f;n ))
where co 3 + 2r and n IN.

Proof: Let f2.(t) (t x)b then we get with (4.1)

(B,12,) (x) (B,*I2,)(x)

r.(B)(1 n+l 2r )+ (1 2x) cos
+2 ,+2

271-2
< 2r,(B) < n--S-.

If L is a linear positive operator which preserves the constant functions, there is according to

n.H.Gonska ([7] theorem 2.4)- for h e (0, 2] and x e I,

[f(x)-(Lf)(x)[ < 3+ -(Lf2,)(x) (f;h)+ -le(x)-(Le)(x)l(f;h).
Therefore, with h 1/4 in our case we find the desired inequalities, rq

Finally let us suppose that 6 6 (0, 1] and f Lip(a, C), 0 < a _< 2. Then w:(f; 5) <_ C5’,
C := const, and

6) _<
21lfll e (0,1]

6 IIf’ll (1,2]
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We get

and so one finds a positive constant :l/ 5l(.f) such that

If we choose 6 , from Theorem 4.:1 we get

M
If(x)-(B,;f)(x)l <

In conclusion the linear summator operators (B) have the co-domain in I-In and satisfy

f Bf IIc1 O(,,-)

provided f E Lip2(o, C), 0 < a < 2, i.e. a an answer to a problem proposed by P.L.Butzer [2].
Other solutions for Butzer’s problem are presented in [5].
However, some summability methods for Lagrange interpolntion (see [11], [10]) furnish us nlso an

affirmative answer to the question raised in [2]..
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