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ABSTRACT. The intention of this paper is to describe a construction method for a new sequence
of linear positive operators, which enables us to get a pointwise order of approximation regarding
the polynomial summator operators which have "best” properties of approximation.
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1. The aim of this paper can be described in the following way: Starting with a sequence A = (A,)
of approximation operators, we construct — by means of the so called © - transformation - a new
sequence of operators B = (B,) = O(A).
With the known properties of A we get the corresponding properties of the sequence B = ©(A).
We also prove, that if A is the sequence of (C,1) - means of Chebyshev series, the polynomials
(Bnf), f € C(I), furnish a pointwise order of approximation similar to the best order of approxi-
mation.

Let II,,, n € INo, be the linear space of all algebraic polynomials with real coefficients of degree
< n and T,(t) = cos(n arccost) the n - th Chebyshev polynomial, n € INo.
We denote by X the normed linear spaces C(I),1 :=[-1,1] or L?(I), 1 < p < oo, endowed witlh

1 »

norms |fllcuy = If 1= maxies [£(8)] for f € C(I), respectively [fll, = [fl lf(t)l”w(t)dt] :

where f is an element of the Lebesgue space LP(I) with the weight w(t) = ﬁl:p-

Further for f € X and a polynomial g we use the inner product

1
() = [ F0 g0l
2
The translation operator 7, : X — X, z € I, defined by

(r=f) (t) = % [f(zt+ VI—a2V1-12) + f(at = V1 — 22 V1 —t’)] , (tLx)elxl,
has the property
(Ti) (t) = T(t) Te(x), k€N

(see [3]).
If we use the convolution product  : LL(I) x LL(I) — LL(I)

(f * g)(z) = / F(1) (20) (1) wit)dt
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then our aim is to construct some approximation operators A, : X — II,, n € N, such that
lim, e If = Aufllx =0, f € X.

A sequence a = (@, )nen,. @n € 11, with degree a,, = n for all n € Ny, is called a polynomial
sequence. If P+ denotes the set of all polynomial sequences ¢ = (ay)nen, wWith the properties

1) an()>0, rel n.) (Ley) =1, ne Ny,
then for

n 1 p
ay(r) = Zwkok,nTk(r), where wo = —, Wi = E, k>1, (1.1)

T s

an(2,1) = (@) (1) = Y wkapaTi(2)Ti(t) .
k=0

we consider the sequence A := A(a) = (An)neNgs An : X — II,, of linear positive operators,

defined by A, f = f*a, = a, * f that is
n 1
Anf)(2) = An(fi2) = Zwkak_,,(f, Ti)Ti(z) = /a,,(a:,t)f(t)w(t)dt, rel. (1.2)
k=0 -1

"In this case @ = (a,)nen, is called the generating sequence of A = (A4,).

If A(a) = (A,) is defined as in (1.1) and (1.2), then |akn| = |[(Tk,a.)| < 1 and let us define
the functionals r, : P* - R, n € N,

r(A) i=1-a1,, = 1 - (Th,a,), nelN.

An important polynomial sequence v = (¢ )nen,, ¥ € P*, was considered by L.Fejér, namely

oula) = ol = S (1= L) ), (19

m(n+1)(1 — ) —

The corresponding linear positive operators F = (Fy)neng, Fr = f * ¢n are the (C,1) - means of
Chebyshev series, i.e. the Fejér operators F, : X — II,,, n € N,

(Fuf)e) = Zwk (1- ) 0B Fex. (L4)

There exists a connection between the operators defined in (1.2) and those from (1.4). Indeed,
using the equalities A,Tx = agnTk, k € Ny, we get with

= z wrar Tk = (n+ 1) Appn — n Anony

=0

the identity
Anf = (Tl + I)Cln* F,,f - na,.*Fn_lf.

2. Let b= (b,)nen, be an element from P+ with
=Y wBiaTi(a), (2.1)
k=0

and B = B(b) = (Bn)neN, Bn : X — Il,,, the operators with the "generating polynomial sequence
b”, defined by

(Bnf) () = Zwkﬂk,n<f~Tk>Tk(l‘), zel. (2-2)

k=0
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Suppose that

M(n)

/h@w =3 a(n)h(a), (2.3)

k=1

with ci(n) > 0, zx € [-1,1], k = 1,2,---,m(n), is a quadrature formula which is exact for all
polynomials & € II,(n) with s(n) > n+2,n € N.

For b = (b,) € P* and B = (B,) as in (2.1) - (2.2) we consider the linear positive operators
By, B,, n € Ny, where for fex

m(n)

(Bif) (z) = Y c(n) (rzbn) (2k) f(24) (24)

k=1

and
m(n)

(Baf) (2) = 3 () (7 fba) (24 (2.5)

k=1

The sequence B* = (Bj) is called ”the discrete form” of B = (B,), with respect to (2.3). The
operator B, appears to be useful for the connection between B, and Br.

Lemma 2.1 If B, is defined as in (2.5), then for j € {1,2}
1
B W(1-t2) = 2= ,( = Byn) - (2:6)

Proof: Let us observe that

/(1 — )b () Tk(t)w(t)dt = B,((1 ~ t)Tu();1).

Therefore
n+y
7o((1 = )ba(t))(2) = Y wrBa((1 — ) Ti(t); 1)Te(2)Ti(2)
k=0
and using (2.3) for j € {1,2} we have
m(n)
Bu(1-t52) = 3 c(n)ma((1 — #)ba(t))(24)
k=1
1
= /rz((l — t7)bn(t))(2)w(2)dz = B,n(1 —t%;1).
-1
Finally
B,(1-t1) =1- B, B.(1-1t%1) = %(1 = Ban), (2.7
which completes the proof. a

Theorem 2.2 Suppose that B, is defined by means of (2.2) with b € P*. Let By be the
discrete operator from (2.4) and

6n(z) ome of the functions Bu(|lz —t|;z) or Bj(lz—t|;z).

Then forz € I
|z|ra(B) < bn(z) £ V1 —1x? 1——-2£2—"-+ |z|ra(B). (2.8)
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Proof: With ex(t) = t*, k € Ny, it is known that for convex functions v € C(I) we have

v(Ley) £ Ly on I,

where L is a linear positive operator C(I) — C(I) with Leo = eo (see [8]).
If we select y(t) = |z — t|, L = Bn, we have by using the inequality (2.9)

|z = 2B1s| < Ballz —tli2);
or on the other hand for L = B
|z = (Brea) (z)| < Bi(lz - tf;2).

For h € II; it is Byh = Bph and so we obtain the lower bound in (2.8).
Further let us denote

’(/)1(3:,t) zt+ V1 - Izm
Yo(z,t) = at—V1-z3V1-12.

Then for z,t € I, j € {1,2}
|z —¢,(z,t)] < V1I-aV1-t2+|z|(1-1)

and

|z —t] < V1 -2 /1 —92(z,t) + |z]|(1 — ¢,(z,1)).

Define the linear positive functionals J, : C(I) = R, n € No, by J.(f) = (f, ba)-
We have
Jo(1=t) = B.(1-t;1)

more precisely (see (2.7))
Jn(l=t) =1-Pia

J.(V1I=22) < VI, (1-1) = /1 —252.n '

(Buf) (z) = ] ba(t) (72 ) (t)(t)dt

Because

and (2.10) enables us to write
=(lz = .|;¢) = Ix—-zpl—(z-’—t)—-giz-(—&—tl‘ < V1—-zV1-t2+(z|(1-1t)

one finds

Bu(lz—tl;z) < V1—z2Jo(V1—1t2)+|z|Ja(1 1)

1- n
V1-z? —% +1z|(1 = Bin),

IA

(2.9)

(2.10)

(2.11)

i.e. the upper bound in (2.8). Regarding the discrete operators (B}), we have from (2.4) and

(2.11)
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w bu(wr(2, 24)) + ba(¥a(z, 24))
ZCk(n)I.r—:d -

)

4

Bi(lx - t|;2)

k=1

m(n) - STy T . _ .
L AR (R R U WA

k=1

IA

Yol 1))

m(n) y
/I = 22/1 = g3(x, z)) + |o)(1 = 2(, 2x))
" gck(n) - ol 2;)) L a2 bn(

m(n)

VI=2? ) aln)re( VI = t2b,(1))(21)

k=1

m(n)

+12] Y en(m)re((1 = £)ba(t))(24)

k=1

V1= 22B, (V1 = %) + |z|Ba(1 - t;2).

From (2.6) using Schwarz inequality we complete the proof. a

Other upper bounds for 6, were obtained by J.D.Cao and H.H.Gonska [5].

Theorem 2.3 Let b = (b,) be an arbitrary polynomial sequence from P*. Suppose that
B = (B,), B* = (B¥) are defined as in (2.2) respectively (2.4). Then for f € C(I), z € I,

| f(z) = (Baf)(2)| < 2w(f;VE(z)) < 4w(f;A2(z)) (2.12)

(@) = (Bif)(@)| < 2w(f;V7(2)) < 4w(f;A2(x)) (2.13)

where w(f;8) :=sup{|f(t + k) — f(¥)|; |h| < & t,t + h € I} and

VEE) = VITE T el - )

V(@ =21 = Bra) +[2l(1 = i),

ﬂl,n = (Bnel)(l) .

AZ(z)

with

Proof: It is known that an arbitrary linear positive operator L, : C(I) — C(I) with Ln,eo = €o
satisfies the inequality

[f(z) = (Laf)(@)| < 2w(f; La(lz - t]; )

The upper - estimate from theorem 2.2 enables us to write

[f(z) = (Laf)=)| < 2w(f;VE(z), <€,

where L, is one of the operators B, or B}.
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Let ¢m(t) = (1 = t)™. m € IN, and obscrve that g;. g, are monotone on I in the same sense. By
means of Chebyshev inequality we have (B.q,) () (Bugm) (2) < (Bugy4m) (2), j,m € INp, where

we find with j=m=1and r =1

0< 1 =9, < 2(1 + Aia)ra(B) £ 4y (B). (2‘14)
Therefore
W(f;VE(2)) < w(f:V22P(2)) € 2(fiAB(0). 2 €.
which proves this theorem. 0

Remark: One knows that for (b,) € P+ the Fejér inequality [6] holds

Pin < cos :2, neN.

- n
In the case of Jacobi polynomials R o >0 > —%, for an arbitrary n a similar extremal
problem is solved in [8]. For an even n the problem is considered in ([1], p.68).

However, for all linear positive operators B = (B,) generated by polynomial sequences b = (b,) €
P+ one has

a(B) > 2sin? —— (2.15)
2(n

+2)°

Let us present a short proof of Fejér’s inequality (2.15). If A € 41, then it is easy to observe
that

s

(Lh) = ) ch(aen), s= [%J +1,

k=0

_ — 2k-1 _ 2z 1-(-1)" — — . = 27
Ton = —1, Ty n = cos n+27r,k21,co_m—%—)—,cl—-n—c,-———.

If ho(t) = (1 — t)ba(t) then

ro(B) = (1,ho) = ch(l = Tk )bn(Thn) 2 a(l = T10)0n(210) = 1 — 210 = 2sin?

T
k=0 2(n +2)

Therefore the equality holds if and only if

= bi(z) = M(z } — Zin) =n+l _E,
ba(z) = b (2) A<+1)“kf=12(w kn)s 4 [2] 3]

where A, is selected such that b,(z1,) = %t2. It may be shown that [9]

1+Tn+2(r) 1 . m
B (z) = Kyt L= 2 ,
n(@) = x (x = cos Z5)¥ ~ m(n+2) )

3. A polynomial sequence a = (an) belongs to the class P! if and only if

i) a € Pt and
ii) for each n € IN there exists at least a root zo(n) of a, in I.

We denote 2o = zo(n + 1) and remind that a,(z,t) = (7280 )(t), ny1(20) = @ny1(1, 20) = 0. Define
b = (ba) to be the sequence of polynomials

bn(z) - ianu(l',zo)

PR gl (3.1)
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where .

a1 (=
¢, = /GT-—(~tt)2w(t)(lt
e

It is clear that the positivity of the translation operator certifies the fact that b = (b,) € P*. If
1: P! — P* is the mapping (a,) — (b,). b, being as in (3.1), we write b = [(a).

Definition If ¢ = (a,) € P'.b = (b,) = l(a), then the sequence B = (B,) defined in (2.2)
1s called the © - transformation of the sequence A = (A,) from (1.2) and we write B = O(A).

Lemma 3.1 Suppose that a = (a,) € P!,

() = Y wragaTi(x), tnt1(20) =0, 20 = zo(n + 1) € 1,

k=0
is the generating polynomial sequence for the operators A = (A,).
Ifb=(b,) = l(a), then
bu(z) = —czi(’\‘ + DarsineiTiri(z0)pr(z), neN,
" k=0
" where @k s defined in (1.3).

Proof: Let di(t,x) be the Dirichlet kernel

k
di(t,7) = Y w,T,(1)T(z)

=0

and S, : X — II, be the partial - sum of Chebyshev series, i.e.

1
($:1)(e) = DS T)Te) = [t 2)f@terar, (3:2)
=0 1
From (3.1) we get
n+l
ba(z) = éan+l(fl«',201)::n+l(l,20) - __1_ wkak,n“l—IMTk(zo)

2 n
- Dk + Dokgr s Torr (20)0(z)

k=0
a
Further, we may write
9 n k ] n
ba(z) = == "k + DewstniTirs(z0) Y w,(1 — )h) = > wiBinTi(z)
k= =0 +1 k=0
with
2 &, .

Bin = o Y G+ 1=Ky Ta(z0) (3.3)

=k

=k

-2 / Gt (1) (fju +1- k)T,H(t)T,H(zo)) w(t)dt



674 A. LUPAS AND D. H. MACHE

Now, if gr(t.7) = (Te1)(?)

3 G+ 1= kT4 (z0)

=k

T (0 +2 = k)dupr (1 20) — da(t. 20) + (k + Da(t, 20) = (0 + 2)pnaa (L, ) -

o)X

Using (1.4), (3.2) - (3.3) we conclude with

—

Lemma 3.2 Under the hypothesis of lemma 3.1 the coefficients By, in

bn = Zwk,dk‘nTk

dl‘e
ﬂk n = c ((" + 9)(Fn+larl+l)(:0) - (k + 1)(Fk0,.+1)(20) + (Skan+l)(20)) } (34)

where
en = m(n+ 2)(Fay1ans1)(20) - (3.5)

By considering the family of linear operators I;,, k = 0,1,---,n, n € N, defined on P* by
Ik,n = (TL + 2)Fn+1 - (k + I)Fk + Sk
one finds the operational formula

(Zk,n@n+1)(20) k=0,1,--,n. (3.6)

Bkn = (n + 2)(Fry16n41)(20)’

Let us note that if B = ©(A), then

1
7(n + 2)(Fa410n41)(20)

7‘n(-B) = l'—ﬂl,n =

Using the above results one can formulate the following

Theorem 3.3 Let a = (a,) € P!, b= (b,) = l(a) € P* and B = O(A). If
2
Mip = "‘c:(k + 1)akt1,n41Tk41(20), = 7(n + 2)(Fat18n41)(20)

then B = (B,) is a summability method of Fejér operators F = (F,), more precisely

B, = i My Fl .

k=0

Moreover, for all z € I and f € C(I)

lf(w)—(an)(r)I<4w(f,M ,/I‘Tﬁ), neN.

4. In this section we will consider the case a = @ = (pn), with ¢, being as in (1.3) and

20 = 2o(n + 1) = cos ﬂ+—2 At first we observe in our case
& 2 2k~
en = m(n+2)( Fo19n41) (20) =r(n+2) Zwk (1———) cosm

k=0
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that is
L = r,(B) = sin® . (4.1)
Cn " n+2
If we select in (3.3) ag1,n41 = 1~%. 29 = cos "2% orin (3.6) nt1 = @ny1. one finds the following
Lemma 4.1 If b= (b,) = (). ¥ = (pr), then
b,,(.l') = Zwkﬂk,nTk(l')
k=0
with Lo ; o5 = & p
_n=k4+2 4, kT COs = T T 4.9
Brn = =g s nr2 s g Cnrz nr2 (4-2)
Moreover ( ) (1 = Toua(c)
— 2 08 2= (1 = Ty
ba(2) = i) L7 Tove (4.3)
(1-z)(r—cos m)
where
Kn = sin? —— . (4.4)
m(n+2) n+2
Further, let
B =(B,)=0(F),
where F' = (F,) is the sequence of Fejér operators.
If f € X and Bk, by are as in (4.2) - (4.4), then
B.f = Zwkﬂk,n(f,Tk)Tk = fxby = byxf (4.5)
k=0
and also, if g, = 27k, (k + 1)(k —n — 1) cos %"f— then
Bf =) twnFif. (4.6)

k=0

We note that the coefficients iy, satisfy Mg, = Mmp—kn, £ =0,1,---,n.

In order to obtain a discrete form of the operators B = (B,) defined by (4.5) let us observe
that the translation of b, from (4.3) is

"vn(z; y) (1 = Topa(2)Tns2(y)) — wa(2;9)(1 = 2*)(1 = 4*)Uns1(2)Unsa (y)

Trby =K 2
( )(y) (m_y)z ((I—yCOS 2_"')2_(1 —yz)sinz 2—”)

n+2 n+2

where

wn(ziy) = (1= 2y) (7ap) (¥) + (1= 22)(1 — ¥?) cos —o— | (& — )? = (22y — 1 — cos —)?
on+2 n+2

(4.7)
2r 2w
. _ _ 2 _ _ _ 2 2
wa(z;y) = (z—y)* —(2zy — 1 cosn+2) + cos n+2(rzp)(y)

with Unyi(z) = ﬂ%?_%‘ﬂ and p(z) = (1 — z)(z — cos ;2%)%.
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If in quadrature formula (2.3) we choose the knots =, =z, such that Uy,41(zx) = 0, then the
polynomials (1.b,) (z4.,) have a simplicr form. Therefore, we will consider the Bouzitat formula

of the second kind

! n+2

/g(!)w(t)dt = Z(’k(n)g(:m) - m{%ﬁmﬂ“"*“(fnL ge Iy g el

e k=0

7 . N A . ’
with co(n) = cng2(n) = z(Tﬂfz‘)* an) = = cupr(n) = #, Tk = COS 7RG kel.

In conclusion let B} : X = I, n € INo. be the linear positive operators with the images

—1)ba (=) + f(1)bn(2
(B;f)(1)=11:_2(f( )ba( l; fDba(z)
n+1 N 1-—- (—l)an+2(‘t) ~ : 4.8
+ Kn Z; ol ~k'")(f = 2kn) (@ = 2k=2,0)2(T = Zk42,n)? f(%")) ‘ o

the polynomials v, being explained in (4.7).

Another representation of the operator B; may be obtained in the following way. Let us consider
‘the bilinear form for f,¢: 1 — R

[ f(=1g(=1) + f(1)g(1) K A kr kx
(f.9), = n+2( 5 +§f(cosn+2)y(cos m)) .

It is easy to see that (f,g) = (f,¢), for fg € Manya.

Now
n+2 n42 n
(Bif) (@) = Y en(m)f(zhn) (rebn) (2kn) = D ca(n)f(21n) 3 w0, By Ty (2)T (k)
=0 k=0 =0
implies

(BiN)(2) = Y w,Byu (£ T3), Ty(x),
1=0

which is the discrete version of (4.5). Similar discrete approximation operators were studied by
A K. Varma and T.M. Mills [11]. They obtained such operators as a summability method of
Lagrange interpolation.

By using (4.1) in (2.12) - (2.13) we obtain

Theorem 4.2 Suppose that B = (B,) is the © - transformation of the Fejér operators F =
(Fn). Let B* = (By) be defined as in (4.8). If f € C(I), z € I, and

€(z) = V1 - 22sin :2 + || sin?

n n+2

then forn € IN
[ f(z) = (Bnf) (2) ]

IN

4w(f;en(z))

[f(z) = (Bif) (x)] < 4w(fien()).

Remarks:

o If B = (B,) is the © — transformation of F = (F,), then
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ra(13) +1
——I F = (n ) sin? :—)

<

which means that the linear combination of Fejér operators (4.6) approximates the functions
from C(I) better than F, f.

e Note that the inequaliy

VI =22 e
en(r) < =° (————l— + LZI) ., rel,
n n
furnishes an estimation of Timan's type
VITE |
1) = (B ()] € el 4 B

rel, feC(I), neN, & € (0,40).
By means of the second order modulus of smoothness
wa(f k) = sup{|f(z —8)—2f(x) + fla +8)|; z,a+6€ I, 0< <R}, feC(),
one finds
Theorem 4.3 Let B = (B,) = O(F) and B* = (B}) as in (4.8). For f € C(I), z € I, we
have

D= BD @] < w (atib+ Hard) |

D= BN@I < (b Eogd))
where co = 3 + 272 and n € IN.

Proof: Let Q;.(t) = (t — 2)b* then we get with (4.1)

(Bnflz.2) (2) (Bafa.) (<)

ra(B) (1 4ntl

< 2r(B) < -2—Zr—

27
2
) cos n +2)

If L is a linear positive operator which preserves the constant functions, there is - according to
H.H.Gonska ([7] theorem 2.4) - for h € (0,2] and z € I,

1 2
1) = @N @] < (34 55 L0 @) ) ealfit) + Fher(a) = (Ler) @bl ).
Therefore, with h = - in our case we find the desired inequalities. (=]

Finally let us suppose that § € (0,1] and f € Lips(a,C), 0 < a < 2. Then wy(f;8) < Cé,

C := const. and
20Ifll 5 «€(0,1]
w(f;8) <
SIFN . e (1,2
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We get
2| fll6° . a€(0,1]
bu(f:8) < )
116 . aef(l,2)

and so one finds a positive constant M = M(f) such that

wolf:6) + |elbw(f:0) < M&°. a€(0,2,6€ (0.1, x€l.

If we choose 6 = 1, from Theorem 4.3 we get

M
|f2) = (Bif) (@) € =, a el

In conclusion the linear summator operators (B;) have the co-domain in IT, and satisfy
I f=Bifllewy = O(n™)

provided f € Lipy(a,C),0 < a < 2, i.e. a an answer to a problem proposed by P.L.Butzer 2]
Other solutions for Butzer’s problem are presented in [5].
However, some summability methods for Lagrange interpolation (see [11], [10]) furnish us also an

affirmative answer to the question raised in [2]. .
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