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ABSTRACT. A well-known result of Boyd and Wong [i] on nonlinear contractions is

extended. Several other known results are obtained as special cases.

INTRODUCTION.

In this paper, we extend a well-known result of Boyd and Wong [i] and obtain

as consequences several other known results (see [2], [3], [4], [5]).

Throughout this paper, let (X,d) be a complete metric space, R+ the nonnegatlve

reals and (tl,t2,t3,t4,t5):(R+) S / R+ a function which is (a) continuous from

right in each coordinate variable (b) nondecreasing in t2, t3, t4, t5, and satis-

fies the inequality (c) (t,s,s,as,bs) < Max{t,s} if Max{t,s} 0 where

{a,b} c (0,i,2} with a + b 2. Note that (c) implies that (t,t,t,t,t) < t for

any t > 0.

2. MAIN RESULTS.

The following is the main result of this paper.

THEOREM i. Let f,g:X / X be two comutatlve mappings such that

(1) fX c X,

(ii) g is continuous,

(ill) d(fx,fy) <_ (d(gx,gy), d(fx, gx), d(fy,gy), d(fx,gy), d(fy,gx)),

for each x, y X. Then, there exists a unique u X with fu gu u.
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We first prove the following lemma which simplifies the proof of the above

theorem.

LEMMA. Under the conditions of Theorem i, if there exists a v X such that

fv gv, then there exists a unique u X with fu gu u.

PROOF. We show that for any w X

f(w) g(w) implies f(v) f (w) (2.1)

Suppose t d(fv,fw) > 0. Then it follows by (iii) that

t < (t,0,0,t,t) < (t,t,t,t,t) < t,

a contradiction. Thus fv fw. Now, since fw gw, therefore, f(fw) g(fw) and

consequently by (2.1)

f(w) f(fw) g(fw).

Thus, if we set u f(w), then fu gu u. The uniqueness of u now follows from

(2 .).

PROOF OF THEOREM i. Let x be an arbitrary point in X. Construct a sequence
O

{yn in X as follows. Let Yo fXo. By (i) there exists a xI X such that

Yo gxI. Set Yl fxl" Thus if Yo Yl "’Yn are obtained with Yn fx theren’

exists by (i) a Xn+I e X such that Yn gXn+l" Let Yn+l fXn+l" Thus, for

each n e I (nonnegative Integers),

Yn fXn gXn+l" (2.2)

We shall show that {yn } is a Cauchy sequence in X. For this, let for each

n I, dn d(Yn,Yn+l )" Then by (i) and (b),

dn+I d(fxn+l,fxn+2) _< @(dn,dn,dn+l,0,dn+ dn+l)" (2.3)

Now, if for some n e I, dn+I > dn, then by (b) and (c)

dn+I <_ (dn, dn+I, dn+l, 0,2dn+I) < dn+l,
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a contradiction. Thus for each n I, dn+I _< dn, that is {dn } is a nonincreasing

sequence of nonnegative reals and consequently there exists a d e R+ such that

{d / d. Clearly d 0, for otherwise by (2.3) and (c),n

d < (d,d,d,0,2d) < d,

a contradiction. Thus,

d / 0. (2.4)n

Suppose, now that {yn is not a Cauchy sequence. Then there exists a E > 0 such

that for each k e I, there exist integers n(k), re(k) with k < n(k) < m(k) satisylng-- d(Yn(k),Ym(k)) > E.

Let m(k) be the least integer greater than n(k) such (2.4) holds. This implies

that for each k e I, d(Yn(k),Ym(k)_l) _< E. Consequently, for each k e I,

E < E
k <_ d(Yn(k),Ym(k)_l) + d(Ym(k)_l,Ym(k)) <_ E + dk. (2.5)

Hence, it follows by (2.4) that as k / , / E.

However, for each k I,

E
k <_ dn(k) + d(fXn(k)+ffXm(k)+l) + dm(k),

<_ 2d
k + Ek, dk, dk, Ek+dk, Ek+dk),

Therefore, as k + ,
E < (E,0,0,E,E) < E,

contradicting the existence of E > 0. Thus, {yn} is a Cauchy sequence in X.

Consequently, there is a v e X such that {yn} / v, that is

fx / v. (2 6)n gxn+l

We show that for this v,

d(fv,gv) 0.
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Suppose > 0. Now by (ii) and (2.6) we have,

fgx
n gfxn

/ gv and g2x
n
+ gv.

Also, it follows by (b) and (iii) that,

d(f(gXn),fv) <_ (d(g2Xn,gV) d(fgXn,g2Xn) , d(fgXn,gV) a + d(gv,g2Xn)).

Therefore, as n + , the above inequality yields that

a d(gv, fv) <_ (0,0,a,0,a) < a,

a contradiction. Thus fv gv and hence by the above lemma, there is a unique

u s X satisfying fu gu u.

In the special case when g is taken to be the identity map of x in Theorem i,

we have

COROLLARY i. Let f:X / X satisfy either of the following conditions: for all

x,y e X,

(A). d(fx, fy) <_ (d(x,y), d(x,fx), d(y,fy), d(x,fy), d(y,fx)).

(B). d(fx, fy) <_ a(d(x,fx) + d(y,fy)) + B(d(x, fy) + d(y,fx)) + (d(x,y))

where a _> 0, 8 _> 0 and :R+ / R+ is a right continuous function satisfying

(t) < (l-2a-2)t if t > 0. Then f has a unique fixed point in X.

PROOF. The conclusion is an obvious consequence of Theorem i if (A) holds.

In case of condition (B), let ’(R+) 5 + R+ be defined by

(tl,t2,t3,t4,t5) (tl) + a(t2 + t3) + B(t4 + t5).

then satisfies conditions (a), (b) and (c). Thus the conclusion again follows

by Theorem I.

It may be remarked that if a B 0 in (B) then Corollary 1 yields a well-

known result of Boyd and Wong [i]. If (t) at, then Corollary I yields certain

results of Hardy and Rogers [2], Kannan [3], Reich [4], Sehgal [5]. All these

results are special cases of Theorem i.
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