Internat. J. Math. & Math. Sci. Vol. 1 (1978) 133-136

RESEARCH NOTES

ON VON NEUMANN'S INEQUALITY

ARTHUR LUBIN

Department of Mathematics Illinois Institute of Technology Chicago, Illinois 60616

(Received October 31, 1977)

Von Neumann's inequality states that for a contraction T acting on a Hilbert space H

(v)
$$||p(T)|| \le \sup \{|p(z)|: |z| < 1\}$$

holds for all polynomials p. The analog for a set of commuting contractions $\{T_1, \ldots, T_n\}$,

$$(v_n) ||p(T_1,...,T_n)|| \le \sup \{|p(z_1,...,z_n)|:|z_i| < 1\}$$

is known to be false for n > 2. In fact, for any c > o, there exist $\{T_1, \ldots, T_n\}$, where n is sufficiently large, and a polynomial p such that

$$||(p(T_1,...,T_n)|| > c \sup\{|p(z_1,...,z_n)|:|z_i| < 1\},$$
 (2)

In this note we establish the following weakened version of (v_n) : <u>PROPOSITION 1</u>. Let $\{T_1, \ldots, T_n\}$ be commuting contractions on a Hilbert space H. Then for any polynomial p,

$$||p(T_1,...,T_n)|| \le \sup \{|p(z_1,...,z_n)|:|z_1| < n^{\frac{1}{2}}\},\$$

i.e., $D_n = \{(z_1, ..., z_n): |z_i| < n^{\frac{1}{2}}\}$ is a spectral set for $(T_1, ..., T_n)$.

Our proof is an easy consequence of the following proposition. <u>PROPOSITION 2 (3, I.9.2)</u>. Let $\{S_1, \ldots, S_n\}$ be commuting contractions with $\sum_{i=1}^{n} ||S_i||^2 \leq 1$. Then $\{S_1, \ldots, S_n\}$ has a commuting unitary dilation (in fact a regular one) and it therefore follows immediately that $\{S_1, \ldots, S_n\}$ satisfies (v_n) .

<u>PROOF OF PROPOSITION 1</u>. Given $\{T_1, \dots, T_n\}$, let $S_i = n^{-\frac{1}{2}} T_i$, $i = 1, \dots, n$. Then $\sum_{i=1}^{n} ||S_i||^2 = n^{-1} \sum_{i=1}^{n} ||T_i||^2 \le 1$ so (v_n) holds for $\{S_1, \dots, S_n\}$.

Given any polynomial $p(z_1, \ldots, z_n)$, let $q(z_1, \ldots, z_n) = p(n^{\frac{1}{2}}z_1, \ldots, n^{\frac{1}{2}}z_n)$.

Then

$$|p(T_{1},...,T_{n})|| = ||p(n^{\frac{1}{2}}S_{1},...,n^{\frac{1}{2}}S_{n})||$$

$$= ||q(S_{1},...,S_{n})||$$

$$\leq \sup \{|q(w_{1},...,w_{n})|:|w_{1}| < 1\}$$

$$= \sup \{|p(n^{\frac{1}{2}}w_{1},...,n^{\frac{1}{2}}w_{n})|:|w_{1}| < 1\}$$

$$= \sup \{|p(z_{1},...,z_{n})|:|z_{1}| < n^{\frac{1}{2}}\}$$

<u>COROLLARY 3</u>. (see (1) p. 279). Any set $\{T_1, \ldots, T_n\}$ of commuting contractions on H has the polydisc $D_n = \{(z_1, \ldots, z_n): |z_i| < n^{\frac{1}{2}}\}$ as a complete spectral set. <u>PROOF</u>. By proposition 2, there exist commuting unitary operators U_1, \ldots, U_n on a Hilbert space K containing H such that $q(S_1, \ldots, S_n) = P q(U_1, \ldots, U_n)$ for all polynomials q, where $S_i = n^{-\frac{1}{2}} T_i$ and P projects K onto H. Setting $N_i = n^{\frac{1}{2}} U_i$, we have that $\{N_1, \ldots, N_n\}$ is a normal dilation of $\{T_1, \ldots, T_n\}$ with joint spectrum sp(N) contained in the boundary of D_n and the corollary follows as in (1).

Similarly, it follows that $D_a = \{(z_1, \dots, z_n) : |z_i| < a_i\}$ is a complete spectral set for all commuting contractions $\{T_1, \dots, T_n\}$ if $\Sigma a_i^{-2} < 1$.

Since the common intersection of such D_a is the unit polydisc D, which is not in general a complete spectral set since (v_n) can fail if $n \ge 3$, we have <u>COROLLARY 4</u>. If $\{T_1, \ldots, T_n\}$ is a set of commuting contractions such that the intersection of any two complete spectral sets is also a complete spectral set, then the unit polydisc D is also a complete spectral set.

We note that von Neumann's original paper (4) showed that for a single contraction the intersection of two spectral sets need not be a spectral set.

Since (v_n) holds for n = 2, we see that proposition 1 is not the best possible result. This prompts the following

PROBLEM. Find

$$V(n) = \inf\{r: ||p(T_1,...,T_n)|| \le \sup\{|p(z_1,...,z_n)|: |z_i| < r\}\}$$

We note that Theorem 1.2(b) of (2) yields information concerning the growth of V(n) as n increases. Since

 $\sup \{ |p(z_1, \dots, z_n)| : |z_i| < r \} = r^{s} \sup \{ |p(z)| : |z_i| < 1 \} \text{ for homogeneous polynomials of degree } s, we have for any <math>\varepsilon > o$, $V(n) \ge n^{(\frac{1}{2} - \varepsilon)}$ for n sufficiently

large.

ACKNOWLEDGMENT. This research was partially supported by NSF Grant MCS 76-06516 A01.

REFERENCES

- 1. Arveson, W. Subalgebras of C*-algebras II, Acta. Math. 128 (1972) 271-308.
- Dixon, P. G. The von Neumann Inequality for Polynomials of Degree Greater Than 2, <u>J. London Math. Soc.</u> <u>14</u> (1976) 369-375.
- Sz.-Nagy, B. and C. Foias. <u>Harmonic Analysis of Operators on Hilbert Space</u>, North-Holland, 1970.
- von Neumann, J. Eine Spektraltheorie fur Allgemeine Operatoren Eines Unitaren Raumes, <u>Math. Nachr.</u> <u>4</u> (1951) 258-281.

KEY WORDS AND PHRASES. Commuting contraction on a Hilbert Space, spectral set, Inequality.

AMS(MOS) SUBJECT CLASSIFICATIONS(1970). 47A25.