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ABSTRACT. The standard definition of a close-to-convex function involves a

complex numerical factor ei8 which is on occasion erroneously replaced by i.

While it is known to experts in the field that this replacement cannot be made

without essentially changing the class, explicit reasons for this fact seem

to be lacking in the literature. Our purpose is to fill this gap, and in so

doing we are lead to a new coefficient problem which is solved for n 2,

but is open fo n > 2.
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i. THE DEFINITION OF A CLOSE-TO-CONVEX FUNCTION.

The most common form for this definition is

DEFINITION i. The function

f(z) z + a z
n

n-- 2
(i.i)

regular in E Izl < i, is said to be close-to-convex in E, if there is a (z),

(z) blZ + [ bnzn, bI
e

n=2
(1.2)

that is convex in E and such that in E

f’ (z)
> 0.Re -, (z) (1.3)

We denote the set of all such functions by CL.

One can begin with more general expressions but any additive constants

disappear on differentiation and hence may be dropped at the beginning. Further

there is no loss of generality in assuming that f’ (0) 1 and ’ (0) e Here

it seems natural to set ’(0) i, but there are several places in the literature

(for example [3, p. 51]) where this second normalization is expressly forbidden.

As far as we are aware, the reason for maintaining bI ei is never explicitly

given.

In this note we prove that for each in the open interval (-/2,/2) there

is a corresponding function F(z) that should be regarded as close-to-convex, but

would not be in CL if that particular is forbidden in Definition i.

2. THE EXAMPLE FUNCTION.

It is well known and easy to prove that the function

2ie 2
z-e cosuzF(z)
1 e

iu 2
0 < e < , (2.1)

(- z)
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maps E onto the complex plane minus a vertical slit (see [i] where some inter-

esting properties of this function are obtained). Hence the boundary curve of

F(E) has no "hairpin" bend that exceeds 180. Consequently, on geometric

grounds (see Kaplan [2]) F(z) is close-to-convex. But we do not need these

geometric facts because we can prove that F(z) satisfies Definition I. Indeed

l-e zF’(z) 3 (2.2)
(l-eiSz)

If we select for our convex function

then

is z(z) -+/-e

l-e z

F’ (z) l-e
3is

Re , (z) Re
z -i 2

(l_eiSz) 3
ie (l-elz)

(2.3)

-isF’ (z) e -e z
Re ,.z, Re i > 0 (2.4)

l_eiSz

in E, because this last function carries E onto Re w > 0. Thus by Definition 1

with ei8 -ie F(z) is close-to-convex. Here

8 arg(-ieIs) s- /2, (2.5)

and since 0 < s < , we have -/2 < 8 < /2.

We now prove that if (z) is any convex function different from the one

given by equation (2.6) then the condition

Re F’(z) Re
l-e z 1 > 0 (2 6)’ (z) (l_eiSz)3 4’ (z)
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fails to be satisfied. Indeed, if (2.6) holds in E then we can write

3iel-e z’(z) P(z) 3 (2.7)
(l-eiz)

where P(z) has positive real part in E. When P(0) i it is well-known that

l-rIP(z) > for z re 0 < r < i,
l+r

18
and hence for arbitrary P(0) we have [P(z)[ >_ c(l-r), for z re 0 __< r < i,

where c is a positive constant that depends only on P(0). This last inequality,

together with (2.7), and the condition s # 0, , imply that

I’ (re-+/-=) > 2 as r / i (2.8)
(-r)

where > 0 is some constant.

Now suppose that #(E) is not a half-plane. Since (E) is a convex region,

(E) must have two distinct lines of support and hence (E) is contained in a

sector with vertex angle < . Consequently, by subordination (see Rogoslnski

[8]) it follows that for some T, 0 < T < i,

l(reiO) O( I. ). (2.9)
(l-r) T

But then, using Cauchy estimates it is easy to see that (2.9) implies that

l’(reiS){ 0(’ 1

(l-r)
+I)’

and this contradicts (2.8) since T + I < 2. Hence (E) is a half-plane, and

(z) has the form nz/(l-eiSz), lql i. But then q must be the factor selected

in (2.3), otherwise the inequality (2.4) is false. Consequently, if the associated

value of 8 is not permitted in the definition of a close-to-convex function, then

the function (2.1) would not be classified as close-to-convex. This completes

the justification of the factor ei8 in Definition i, if -/2 < 8 < /2.
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The remaining cases, /2 _< 8 _< 3/2, are trivial. If 8 lies in this interval,

then Re{f’(0)/$’(0)} =< 0 and the condition (3) is not satisfied.

We have proved that Definition i is proper for the class we wish to describe,

if we add the condition-/2 < 8 < /2. Further no single point of this interval

can be dropped without losing at least one function from the class CL.

3. A REMARK ON THE COEFFICIENTS.

The class CL is naturally divided into subclasses CL(8) in accordance with the

value of 8 that may be uaed in

Re f’ (z)
> 0, z in E, (3.1)

e ’(-.)

where now (z) z + .... The subclasses CL(8) are exhaustive, but they are

certainly not mutually exclusive. Thus if f(z) is itself convex then we may take

#(z) f(z) in (3.1). Hence a convex function is in CL(8) for every 8 in

(-/2, /2). In fact, it is easy to show using a normal families argument that the

intersection

CL()

is precisely the collection of all normalized convex functions.

We can ask for extreme properties of functions in the subclasses CL(8). Here

we pause only to discuss the magnitude of the coefficients.

THEOREM i. If f(z) given by (i.I) is in CL(S), then for n=2,3,...

lanl _< I + (n-l)cos 6- (3.2)

If n=2, the result la21 _< i + cos 6 is sharp.

n
PROOF. If p(z) i +

=i Pnz is a normalized function with positive real

n z
n

is the associated convex function, then (3 i) yieldspart and (z) z + =2 bn
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or

coSI isf’ (z,) + i sln8] 1 + [ pnz
e @ (z) n=l

n-i zn-l) z
n

i + na z (i + nb (i + eiScosS Pn )"
n=2 n nn=2 n=l

(3.3)

Hence
n-I

nan nbn + eiScsS(Pn-i + [ kbkPn-k)"
k=2

(3.4)

The known bounds, [bk[ __< i (Loewner), and [pk[ _< 2 (Caratheodory) yield the

inequality (3.2).

If we define G(z) to be the solution of

G’(z) l+eiSz i

l-e-iSz (l-z)
=i+ nAz

n--2 n
(3.5)

then for n > i

2 cos SA =I+
n n

n-i
-i(n-k-l)ke

k--1
(3.6)

If G(0) 0 and cos8 # I, then

iS .l-e-iSz) ze {cosS n i-z i sins }. (3.7)G(z) I-cosS
2

If cosS i, then G(z) z/(l-z) In either case, for n 2, equation (3.6)

gives A2 1 + cos 8, the sharp upper bound. To see that G(z) is in CL(S) we put

(3.5) in the form

G’ (z) (l-z)
2

1 l+eiSz
(3.8)

iS iS iSe e l-e- z

=-i sins + cosS
l+e-iSz

-iSl-e z

2
Since the convex function @(z) z/(l-z) yields i/@’ (z) (l-z) the function
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G(z) satisfies the condition (3.1).

The problem of finding the maximum for la in the class CL(8# seems to be
n

difficult for n __> 3. Although G(z), given by (3.7) furnishes the maximum when

n 2, there is no reason to believe that it continues to play this role when

n > 2. Indeed if we use equation (3.7), we can obtain an alternate form for the

coefficient A (the sum indicated in (3.6)):
n

A
(l-e-inS)cos 8 isin (3.9)

n l-cos8 n

Thus with 8 fixed, A / a constant as n + .
n

In contrast, if F(z), given by equation (2.1), has the expansion I BnZ then

B i + (n-l)cos28 + i(n-l)slnScos8
n

(3.10)

where 8 /2, and B /n approaches a nonzero constant as n + .
n

We observe that for 8 # 0, the extremal function (for la21) G(z) maps E onto

a slit half-plane. Both the boundary and the slit make an angle 8 with the real

axis. Thus the complement of G(E) contains a half-plane. It is very unusual for

the extremal solution of a coefficient problem to omit an open set when there are

competing functions (such as F(z)) in the same class that do not omit any open set.

As 8 - 0, the function G(z) / z/(l-z) 2
the Koebe function

We return to the bound la < i + (n-l)cos8 given in Theorem i. Since every
n

convex function belongs to CL(8) for every 8 in (-n/2,z/2) this inequality includes

the Loewner bound lanl < 1 for convex functions as a special case. It also

includes the inequality lanl =< n for all close-to-convex functions; a result that

was obtained much earlier by M. Reade [5].

Work on the coefficients of subclasses of CL has been done by Renyi [7],

Pommerenke [4], and Reade [6], but their subclasses are different from the ones
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considered here. Reade [6] proves that if the condition (3) is replaced by

then

f’(z) <larg "(z) ’ 0 < __< i,

lanl =< i + (n-l)s

(3.11)

(3.12)

and the result is sharp when n 2.
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