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ABSTRACT. It is well known that if G is a compact group and a faithful

(unitary) representation, then each irreducible representation of G occurs in the

tensor product of some number of copies of and its contragredlent. We gener-

allze this result to a separable type I locally compact group G as follows: let

be a faithful unitary representation whose matrix coefficient functions vanish

at infinity and satisfy an appropriate integrabillty condition. Then, up to

isomorphism, the regular representation of G is contained in the direct sum of

all tensor products of finitely many copies of and its contragredlent.

We apply this result to a symplectlc group and the Well representation assocl-

ated to a quadratic form. As the tensor products of such a representation are

also Well representations (associated to different forms), we see that any discrete

series representation can be realized as a subrepresentatlon of a Well represen-

tatlon.
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i. INTRODUCTION.

Let G be a separable locally compact group, and n a representation of G

("representation" will always mean a strongly continuous unitary representation

on a separable Hilbert space). For every pair of non-negative integers m, n,

not both zero, let

( ) ( )
m,n

where n occurs m times, and its contragredient n occurs n times.

Our starting point is the following easy fact.

THEOREM i. Let G be a compact group and n a faithful representation.

Then every irreducible representation of G occurs in

m,n>0 m,n

where the prime means we omit (m, n) (0, 0) from the sum.

PROOF. Consider the set of linear combinations of the matrix coefficient

functions of the representation (. These functions form an algebra, are

closed under complex conjugation, separate points of G, and do not all

vanish at any point of G. By the Stone-Weierstrass Theorem, they are sup-

norm dense in the continuous functions on G, and hence dense in L2(G)
But, by the Peter-Weyl Theorem, a representation whose coefficient functions

are dense in L2(G) must contain every irreducible representation.

REMARK. Since, as is well known, 8 z contains the trivial represent-

tation, it is easy to see that every irreducible representation occurs not

Just once, but countably infinitely many times in

This theorem, in a slightly different form, is originally due to Burnside,

in the case of a finite group G (see, e.g., Curtis and Reiner [2], Theorem
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32.9 namely:

THEOREM 2. (Burnside). Let G be a finite group, a faithful represen-

tation. Then every irreducible representation of G occurs in the tensor

product of some number of copies of

Rather than prove Burnside’s theorem directly, we obtain it as an obvious

special case of the following.

THEOREM 3. Let n be a positive integer. Let G be a compact group, all

of whose elements have order dividing n. If is a faithful representation

of G, then every irreducible representation of G occurs in the tensor

product of some number of copies of

PROOF. The argument is the same as that for Theorem I; the only thing

that is not obvious is that the algebra spanned by coefficient functions is

closed under complex conjugation. But the complex conjugates of the matrix

coefficients of (g) are Just the matrix coefficients of (g)-I rearranged

(since w is unitary), and the matrix coefficients of ?(g)-I )n-I(g are

Just sums of products of matrix coefficients of (g) so we are done.

We generalize Theorem 1 to a non-compact group.

2. PRELIMINARIES.

In this section we establish two results needed for the proof of the main

theorem. As above, G is a separable locally compact group.

Let be a continuous square-integrable function on G. Let U be the

open set where is not zero. We may restrict Haar measure to U and

_1",
2speak of the closed subspace L2(U) c (G) consisting of functions which

vanish off U
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LEMMA . Let A be an algebra of continuous functions on G which vanish

at infinity and separate points, and suppose A is closed under complex con-

Jugation. Let U be as above.

Then " A {" f f A} is dense in L2(U)

PROOF Let $ C (U) and fix e > 0 Then $/ C (U) and byc c

<the Stone-Weierstrass Theorem there exists $’ A such that II$’ $/II=
< IIII "e and we have approximatedConsequently, I12  I ’)I12 2

by a function in " A Since C (U) is dense in L2(U) the proof is
C

complete. I

Now let be a representation of G on a Hilbert space H

LEMMA 5. Suppose the intersection of L2(G) with the set of coefficient

functions of G spans a dense subspace of L2(G) Then (up to isomorphism)

the regular representation of G is quasi-contained in G (i.e. contained

in a direct sum of copies of ().

PROOF. If U e H are such that the coefficient function SU,v(g)
<G(g),V> is in L2(G) we define a linear map Iv from some subspace

of H to L2(G) by Iv(w) SW,V
The domain of T

V
will be all vectors W H such that SW,V is square-

integrable; it is a G-invariant subspace, containing U It is easy to check

that Tv is a closed G-map; hence we may apply Schur’s Lemma to conclude that

__L
2

there are closed G-subspaces Vv
c H Wv

c (G) and a surJective unitary

G-isomorphism U
V

V
V
/ W

V
Moreover, Wv contains the function SU,V

By hypothesis we may choose (countably many) coefficient functions

whose span is dense in L2(G) The corresponding subspaces Wv thus span a

dense subspace of L2(G) and, sticking together the maps U1
and
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applying Schur’s Lemma again, we get a unitary G-isomorphism of L2(G) into

@ V
V c_C @ H a countable direct sum of copies of H

V V

3. THE MAIN RESULT.

We shall prove two weaker versions of our main result as a preliminary step.

PROPOSITION 6. Let G be a separable locally compact group, and a

faithful representation of G. Suppose that a non-trivial coefficient function

of n is in LP(G) for some finite p, and that all the coefficient

functions vanish at infinity.

Then the regular representation of G is quasi-contained in

m,nZ0 m,n

PROOF. By Lemma 5, it suffices to find coefficient functions of whose

span is dense in L2(G) Suppose is a coefficient function of which

is in Lp(G) Then some power cn of is in L2(G) Since n is a

coefficient function of w we see that the algebra A spanned by the
n,0

coefficient functions of contains n. A note ( contains w G
n,0

By Lemma h, A n L2(G) contains a dense set of L2(U) where

U {g E G: (g) O}

Since A n L2(G) is invariant under translations by G we see that it

contains a dense subset of L2(g.U) for any g E G But since U is

open, any element of L2(G) can be approximated by a finite sum of elements

L2belonging to spaces (g" U) for appropriate choices of g G Such a

L
2

sum can be approximated by something in A (G)

We have approximated an arbitrary element of L2(G) by a sum of elements

L
2

of A (G) as desired.



240 JOE EEPKA

In fact, we can strengthen this result slightly, as follows:

PROPOSITION 7. Let w c be as above, and let T be any representation

of G Then the regular representation of G is quasi-contained in T e c

PROOF. The proof is analogous to that of Proposition 6; we Just replace

n by 0" on where 0 is any coefficient function of "r and let

u= {G: *0"*() } |

We are now ready to prove the main result, which is essentially Proposition

7 with "quasi-contained" changed to "contained".

THEOREM 8. Let G be a separable type I locally compact group, a

faithful representation whose coefficient functions vanish at infinity and

one of whose non-trivial cfficient functions is in LP(G) for some finite

p Let T be any representation.

Then the regular representation of G is (up to unitary isomorphism)

contained countably infinitely many times in T e O T @’ )
m,nO m,n

PROOF. We shall show that every subrepresentation of the regular

representation occurs not Just once but infinitely many times in T @ c

It will suffice to consider multiplicity-free subrepresentations, i.e. those

of the form

d()

where G is the set of equivalence classes of unitary irreducible representa-

tions of G and is some finite Radon measure on G which is absolutely

continuous with respect to the Plancherel measure. Fix such a and fix

e > 0 By Proposition 7, we know that is contained in c so there
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is a positive integer M(1) such that @ 1 @ | @’

I’contains most of namely, @ (1 contains d() for some
X
1

measurable set X
1 c_ 8 such that (\XI) < /2

Now consider the representation @ M(1),M(1) ( (R)’
M(1)m,n m,n

[ the prime means omit (m,n) (M(1),M(1)) I" By Proposition 4, this

representation contains so we may find a measurable set X2 c_ G with

(\X2) < a/4 and a positive integer M(2) such that @ 2
(R)’ contains d()

M(1)m,n<M(2) m,n
X2

cGContinuing inductively, we find measurable sets X
1

X
2

XS

such that (\Xk) < 2-k. and integers M(1) < M(2) < M(3) < such

that T Gk T @ [ @’ 1 contains Xk dB()
M(k-l)m,n<M(k) m,n

But G contains U
l
@ u2 @ uS @ so T u contains countably

infinitely many copies of d() where X Xk
Now

(G \ X) < and since was arbitrary, the theorem is proved.

4. WElL REPRESENTATIONS AND THE DISCRETE SERIES.

The Weil representation has long been known as a fruitful place for

realizing various irreducible representations (see, e.g., Gelbart, [3] and

Howe, [5]). We shall apply Theorem 8 to show that any discrete series

representation of a symplectic group can be so realized.

In (Weil, [7]) there is constructed a representation of the symplectic

group associated to a quadratic form The tensor products of this

representation with itself and/or its contragredient are again Weil represen-

tations, those associated to forms constructed by taking direct sums of

copies of + Since the discrete series representations of G are sub-



4 JO PKA

representations of the regular representation, we have as an immediate conse-

quence of Theorem 8"

THEOREM 9. With G as above, any representation of the discrete series

of G is a subrepresentation of some Well representation of G (associated

to some quadratic form).

5. COMPLEMENTS.

In this section we make some remarks and give some examples.

The conditions on that its matrix coefficient functions must

vanish at infinity, and that at least one of them must be in some LP(G)

seem rather peculiar at first. We remark that they are necessary, for

example, to exclude finite dimensional representations of a non-compact group

(indeed, if were finite dimensional, then would be a direct sum of

finite dimensional representations, and could not possibly contain the

regular representation). On the other hand, though something of this sort

is needed, the conditions we have given can be altered or weakened in

various ways; we give two examples. Firstly, it is not necessary to know

that the coefficient functions all vanish at infinity. It would suffice to

know that the ones belonging to some dense set of vectors did so (e.g.

K-finite vectors), or even Just that one coefficient function achieves its

maximum absolute value on a compact set. Suitable modifications of Lemma

hold in these cases. Secondly, we note that in Theorem 8 the Lp condition

L
2

on could without difficulty be replaced with an condition on x

Finally, we observe that neither of the conditions is actually as

unnatural as it may first seem. They are both satisfied in a great many

cases, including all connected semi-simple Lie groups with finite centre

(see Cowling, [i] and Howe, []).
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ine
EXAMPLE i Let G be the circle group; let Xn be the character e

Then X1 X_1 are the only faithful irreducible representations (though of

course there are many other faithful representations), and if, for example,

we let X1 then X_1 and m,n Xm-n
(in fact infinitely many).

m,n

Every Xk equals some

EXAMPLE 2. Let G SL2(R) or PSL2(R) Then the results of Repka,

[61 show that if is any non-trivial irreducible unitary representation,

then the regular representation is contained in @’ This example
m,nm,n_<B

also shows that g (R)’ may contain subrepresentations which are not
m,n

contained in the regular representation (this happens if is some "comple-

mentary series" representations).
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