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ABSTRACT. In this paper the classical theorem "a conservative holonomic

dynamic system is invariantly connected with a certain differential form"

is generalized to group variables. This general theorem is then used to

reduce the order of a Hamiltonian system by the use of the integral of energy.

Equations of motion of the reduced system so obtained are derived which are

the so-called generalized Whittaker’s equations. Finally an example is given

as an application of the theory.
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i. INTRODUCTION

It is known [4] that canonical equations for a conservative holonomic

system whose Hamiltonian is H are obtained by forming the first Pfaff’s system

of differential equations of the differential form,

Pidqi H dr, (i 1,2,---,n),
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are the generalized momenta corresponding to the generalizedwhere PI’ P2’ Pn
coordinates ql’ q2’ ---’ qn of the system and summation over a repeated suffix

is implied. This result leads to the theorem "A dynamical system is invarlantly

connected with the differential form Pidqi Hdt". Further this theorem has

been used to reduce the order of the system by means of the integral of energy.

Canonical equations of the reduced system so obtained are known as Whittaker’s

equations. In what follows in this section we state a few basic results from

the theory of group variables in order to generalize the above mentioned results.

Consider a conservative holonomlc system having n degrees of freedom and

whose position is specified by group variables xI, x2,---, Xn. Let nI, 2,---,nn
be the parameters of real displacement and XI, X2,---, Xn be the corresponding

displacement operators expressed by the relations

J

__
Xl" i 8xj (i,J 1,2, ---,n)

J
where i are functions of xI, x2, --, Xn, then for an arbitrary function

f(xI, x2,---, xn, t) the infinitesimal change df is expressed by

where

df [Xo(’f) + nixi(f)]dt
The X’s satisfy the relations

()

(2)

(Xo, Xi) O, (Xi, Xj) CiJk (k-,2,---,n). (3)

Putting f xj in (2), we get

Jdx. ,j -.n {i (4)
dt

Since the operators X
i
are independent therefore the matrix =o=-

singular and consequently (4) yields

ni Aij xj (5)
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Let L be the Lagranglan of the system then the canonical equations of the

system as obtained in i, 2 are

H
ri ---i’ d-- Cjlk rj Yk Xi (H), (6)

where (i,J,k 1,2,---,n),

L
Yl n--

and

H(Xl, x2, ,Xn; yl,---,yn) nlyi L (7)

is the Hamiltonlan of the system and is equal to the total energy of the system.

2. DERIVATION OF CANONCAL EQUATIONS FROM A CERTAIN DIFERE..LkL, FORM.
In order to establish the invarlant relation between the system (6) and

a certain differential form we prove the following theorem:

THEOREM. The system of equations (6) is equivalent to the first Pfaff’s

system of differential equations of the dlfferentlal form (nly2 H)dt.

PROOF. We put

or using (5), we obtain

8d (niYi H)dt

6
d yiAij d xj H dt (8)

therefore

O Yl AiJ x H 6t (9)

where d and denote two independent variations in each of the variables xI,

x2, ---, Xn, YI’ ---’ Yn’ t. The bilinear corearlant of (8) is given by

AiJ X_kt_dyi Aik. dxj]Od_dO= Yi[Aijdxj Hyldt]+xk[yl Xk dxj Aik-Yi xj
H+ t[dH - dt] (10)
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where we have used the relations

dx
i

d x
i
(i- 1,2,---,n)

dt dt.

Equating to zero the coefficients of ---’ I ’---’ n
we get the first Pfaff’s system of equation in the form

H
Aijdxj Yl dt- 0, (i- 1,2,---,n)

A BAlkdxj H dt dYl Aik Yi dxj 0Yl

H ,n)dH dt, (i i,2,---

By vrtue of (5), the equations (11) asse the fo

(Ii)

(12)

(13)

H (i 1,2,---,n).

With the help of (4), the equations (12) become

dyi Ynm Aj
. k

Ak J k k

mi Ym mi H
d-q-- xk 8xj

i x
k

(14)

which, by means of the relations (I) and (3), finally takes the form

dY__i rj Yk Cik XI(H)" (15)
dt

The relation (13) is a consequence of (14) and (15) and skew symmetric property

of Cjik with respect to the first two indices. Since the equations (14) and

(15) are identical with (6) the theorem is thus proved.

3. GENERALIZED WHITTAKER’ S EQUATIONS

Assume that H does not involve the time explicitly and

H / h O, (16)

is the integral of energy of the system. Let the equation (16) be solved for

the variable Yl so that it is algebraically equivalent to

K(Xl’---’ Xn’ Y2’---’ Yn’ t, h) + Yl 0. (17)



GENERALIZED WHITTAKER’ S EQUATIONS 249

The differential form associated with the system is

(nl Yl + n2 Y2 + + nn Yn + h)dt,

where the variables x1, ---, xn, Yl’ ---’ Yn’ h are connected by (17);

the differential form can therefore be written as

(2 Y2 + n3 Y3 + + rn Yn + h)dt nI K dt (18)

where we can regard (Xl,---, Xn, Y2’ ---’ Yn’ h, t) as the 2n+l variables

in the phase space. If we express (18) in the form

lh_K]Idt [ Y2 + + n Yn + --i (19)

and put

nldt dz
n2 nnthen we take T as the new time variable and I___ 1

i’ i 2 i’---’ n i

as the parameters of real displacement, the corresponding displacement operators

and new momenta are respectively Xo, XI, ---, Xn and h, YI’ --’ Yn" Using the

result of section (2), the differential equation corresponding to the form (19)

are
8K dyp

Cj -Xp(K) (p 2 3---,n)p %yp’ dT rl] Yk pk (20)

dt 8K dh Ood’r )h

The last pair of equations can be separated from the rest of the system since

the first (2n-2) equations do not involve t and h is a constant. The equations

(20) can be further simplified to take the form

K[Clpl + nr Crpl] + Yr Clpr+ nrYq Crpq Xp(K) (21)

(p,q,r 2,3,---,n).
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The original differential equations can therefore be replaced by the

reduced system (21) which has only n-I degrees of freedom. The equations (21)

are the desired Whittaker’s equations.

4. AN EXAMPLE

Consider a rigid body which is moving about one of its fixed points 0

under the action of gravity. We introduce a fixed frame of reference Oxyz

such that Oz is vertically upwards and a moving frame Ox’y’z’ which coincides

with the principal axes of inertia of the body at O. Let us choose the

Eulerian angles 8, , (8 is the angle of nutation, the angle of precession

and the angle of proper rotation) as the group variables which specify the

position of the body at time t. Obviously the dynamical system under con-

slderatlon is a conservative one and it has three degrees of freedom. Choosing

the parameters of real displacement as the components of angular velocity

along the moving axes, we have the relations

.- os + sin sin

n2 --Sln + Sin 8 Cos

+ $ co,

Consequently the displacement operators , X
2

X
3
are given by

X1 Cos + Cosec e sin - Cot e sin -X2 Sin + Cosec e Cos - Cot e Cos

x3

__
which satisfy the commutation relations

(X1, X2) XlX2-X2X1 X3

(X2, X3) X2X3 X3X2 X
1

(X3, X1) X3X1 XlX3 X2

(22)

(23)



GENERALIZED WHITTAKER’ S EQUATIONS 251

The non-vanlshlng C’s are therefore expressed by the relations

C123 C213 i,

C231 C321 1,

C312 C132 i.

(24)

Let T and U denote the kinetic and potential energies of the system respectively,

then

T (A n + Bn2 + Cn3),

U Mg(x Sln B Sin + y Sin B Cos + z Cos B

where A, B, C are te principal moments of inertia at O; x, y, z are the

(25)

coordinates of the centre of gravity of the body wth respect to the moving

axls and M Is the mass of the body. Using (25), we have the Lagranglan L and

momenta Yl’ Y2’ Y3 expressed by the relations:

L T U - (An + Bn + Cn ) + Mg ( Sin 0 Sin + y Sin O Cos +z Cos O),

Yl A 1’ Y2 B 2’ Y3 C n3. (26)

In view of (26) the Hamiltonlan H is given by

H = +__+ Mg(x Sin e sin + y Sin e Cos + z Cos e)
"A B

(27)

Using (6), (22), (24), (26), and (27), canonlcal equations of the system are

Y Y 73n1 1, n2 2, n3A B C

dYl B-C y2Y3 + Hg (" Cos e " Sin e Cos ),
dt BC

dY2 C-A y3yI + Mg (- Cos O + Sin e Sin )
dt CA

dY3 A-__B yly2 + Mg Sin e(x Cos --- y Sin ).

(28)
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Now the relation (16) gives

--+ ----+--- 2Ms( Sin 6 Sin + y Sin 6 Cos + z Cos 6) + 2h 0,

and consequently

Yl A[2HS( Sin 0 Sin , + Sin 0 Cos + Cos 0) -__2 -__Y 2hi,

Comparing this relation wth (17), we get

K A[2ME(" Sin e Sin + y Sin e Cos $ + z Cos e) ..___- 2h] ;.
B C

Therefore by the application of (21) the canonical equations of the system

reduce to

3K 3K
r3 ’3’2 Y2

----dY2 Y3 n3 Yl X2(K),
d’r

dY3 Y2 + n2 Yl X3(K).

(29)

Now

dY2 dY2 K A dY2
d dt h K dt

dY3 dY3 K A dY3
de dt 9h K dt

X2(K) =. Mg(-x Cos 0 + z Sin e sla ),

x3) " t s cos s ) s e.



GENERALIZED WHITTAKER’ S EUATIONS 253

Therefore equation (29) assume the form

r A A
BY2’ rl -y3

_._.dY2 KA_._y3 + Ms(-’Cos e + Sin e Sin ,),
dt CA

dY3 K(B-A) Y2 + HS; Sin e(" Cos -’" Sin ).
dt

These are the Whittaker’s equations for the system under consideration.
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