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GENERALIZED WHITTAKER'S EQUATIONS FOR HOLONOMIC MECHANICAL SYSTEMS
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ABSTRACT. In this paper the classical theorem "a conservative holonomic
dynamic system is invariantly connected with a certain differential form"

is generalized to group variables. This general theorem is then used to
reduce the order of a Hamiltonian system by the use of the integral of energy.
Equations of motion of the reduced system so obtained are derived which are
the so-called generalized Whittaker's equations. Finally an example is given
as an application of the theory.
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1. INTRODUCTION

It is known [4] that canonical equations for a conservative holonomic
system whose Hamiltonian is H are obtained by forming the first Pfaff's system
of differential equations of the differential form,

pidqi - H dt, (i=1,2,---,n),
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where Py» Pys = P, are the generalized momenta corresponding to the generalized

coordinates 955 95 =77 Q4 of the system and summation over a repeated suffix

is implied. This result leads to the theorem "A dynamical system is invariantly

connecged with the differential form pidqi - Hdt". Further this theorem has

been used to reduce the order of the system by means of the integral of energy.

Canonical equations of the reduced system so obtained are known as Whittaker's

equations. In what follows in this section we state a few basic results from

the theory of group variables in order to generalize the above mentioned results.
Consider a conservative holonomic system having n degrees of freedom and

whose position is specified by group variables Xys Xpy==y X . Let Ny Ny ===y

be the parameters of real displacement and Xl, Xz,--—, Xn be the corresponding

displacement operators expressed by the relations

j 8
xi - 51 axj > (i)j - 1,2, ""-’n) (1)

where gi are functions of X1 Xps =7 X, then for an arbitrary function

f(xl, Xps=="s X 5 t) the infinitesimal change df is expressed by

df = [X_(5) + X, ()]t @
where xo = %E? The X's satisfy the rel;tions
(X, X)) =0, (X, xj) = Ciy K (k=1,2,---,n). A3)
Putting f = xj in (2), we get
g et %)
&® 4 17

Since the operators X, are independent therefore the matrix ||Ei|| is non-

i
singular and consequently (4) yields

(5)

ng T Ay
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Let L be the Lagrangian of the system then the canonical equations of the

system as obtained in [1,2] are
dy

dH i
ny by’ At cjik ny Vi - X, (1), (6)
where 4,3,k = 1,2,---,n),
I
i ani
and
H(Xl, xzi--—-’xn; Yl.---,yn) = ni}’i -L (D)

is the Hamiltonian of the system and is equal to the total energy of the system.

2. DERIVATION OF CANONICAL EQUATIONS FROM A CERTAIN DIFFERENTIAL FORM.

In order to establish the invariant relation between the system (6) and
a certain differential form we prove the following theorem:
THEOREM. The system of equations (6) is equivalent to the first Pfaff's
system of differential equations of the differential form ("1y2 - H)dt.
PROOF. We put
8y = (nyy, - H)de
or using (5), we obtain

0 - H dt (8)

a = Yihyy 4%
therefore

0 - H 6t 9)

s = Y1 By 8%y
where d and ¢ denote two independent variations in each of the variables Xy

Xy =7y X5 ¥y ~77y Vs to The bilinear coreariant of (8) is given by

2’
9A 9A
- _ 1 , _ oH %MK ax,]
66 ;-d6 ¢ Gyi[Aijdxj ayidt]+6xk[yi 5 %, dxj S;Edt-dyi A vy axj 3

+ 8t[dH - g—i‘ dt] (10)
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where we have used the relations

d6xi = &d x, (L =1,2,~~-,n)

dét = &dt.

Equating to zero the coefficients of &xl, ze, -— Gxn. Gyl,---, & , 6t in (10),
n

we get the first Pfaff's system of equation in the form
9H

Aijdxj - 5?& dt =0, (1 =1,2,---,n) (11)
A ) A

Yy oA dx, = 2H dt - dy Ay -y, Tk dx, = 0 (12)

dH = g—‘: dt, (4= 1,2,---,n). (13)

By virtue of (5), the equations (11) assume the form

ng, = 2}1 ’ (i = 1’2:---’3)' (14)
i Byi
With the help of (4), the equations (12) become
Jk jk k
dy, 3A _ dA _
L=y A 55y - Yy Rk L8, -8
dt 3xk 3xj axk

which, by means of the relations (1) and (3), finally takes the form

4y = g

- Xi(H). (15)
dt

3 Yk C3ax

The relation (13) is a consequence of (14) and (15) and skew symmetric property
of Cjik with respect to the first two indices. Since the equations (14) and
(15) are identical with (6) the theorem is thus proved.

3. GENERALIZED WHITTAKER'S EQUATIONS:

Assume that H does not involve the time explicitly and
H+ h=0, (16)
is the integral of energy of the system. Let the equation (16) be solved for
the variable y, so that it is algebraically equivalent to

K(xla""s xn’ y2s""9 Yn? t, h) + Y1 = 0. (17)
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The differential form associated with the system is

(ng y; + 1y ¥, + ===+ y, + hde,
where the variables Xys =77 X Yy 777y Yoo h are connected by (17);
the differential form can therefore be written as

(ny yp +ny y3 +-—=+mn y +h)dt -n Kdt (18)

where we can regard (xl, == Xs Yoo T77s Yo h, t) as the 2n+l variables

in the phase space. If we express (18) in the form

1
1 —_— ' —h -
nldt [h2 v, + + oy, + 1,llh K] (19)
and put
nldt = dt
1 N2 "n
then we take T as the new time variable and —, ! = 1, n! = — | ——, n; - —
nl 1 2 nl n

as the parameters of real displacement, the corresponding displacement operators

and newv momenta are respectively xo, Xl, — Xn and h, 91, ——— yn. Using the

result of section (2), the differential equation corresponding to the form (19)

are 3K 2'2
P om = = n' - - ——
np aypv dt nj yk cjpk xp(K)’ (p 2,3, »n) (20)

dt _ 3K, dn
dt oh drt

-00
The last pair of equations can be separated from the rest of the system since
the first (2n-2) equations do not involve t and h is a constant. The equations

(20) can be further simplified to take the form

dy
v . 9K Tp_ _ ' ' _
np 3yp’ e K[C1p1 + n Crpll + Ve clpr+ nryq Crpq XP(K) (21)

(p,q,r = 2,3,---,n).
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The original differential equations can therefore be replaced by the
reduced system (21) which has only n-1 degrees of freedom. The equations (21)
are the desired Whittaker's equations,

4, AN EXAMPLE

Consider a rigid body which is moving about one of its fixed points 0
under the action of gravity. We introduce a fixed frame of reference Oxyz
such that 0z is vertically upwards and a moving frame Ox'y'z' which coincides
with the principal axes of inertia of the body at O. Let us choose the
Eulerian angles 6, ¢, y (6 is the angle of nutation, ¢ the angle of precession
and y the angle of proper rotation) as the group variables which specify the
position of the body at time t. Obviously the dynamical system under con-
sideration is a conservative one and it has three degrees of freedom. Choosing
the parameters of real displacement as the components of angular velocity
along the moving axes, we have the relations

n) = 8 €os ¥ + ¢ 8in 6 Sin Y,
n, =-6Sin § + ¢ Sin 6 Cos v,
n3 = @ + & Cos 6

Consequently the displacement operators xl, x2, x3 are given by

~

X1 = Cos V¥ %3-+ Cosec 6 Sin ¢ %;-- Cot 6 Sin ¢ %a
X, = -Siny %§-+ Cosec 6 Cos ¥ %;-- Cot 8 Cos ¥ %;- (22)
X, =3
3 %
which satisfy the commutation relations
(Xy» X)) = X1 %)Xk = Xy

= - = 2
(xz, x3) XX, - XX, = X (23)

(X35 X)) = X %) - XX, = X,
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The non-vanishing C's are therefore expressed by the relations

321~ b (24)

C312 = ~ %132 - I’J

Let T and U denote the kinetic and potential energies of the system respectively,
then

T=1a 02 + Bns + oo,

- _ _ (25)

U= - Mg(x Sin 6 Sin ¥ + y Sin 6 Cos ¢y + z Cos 6
where A, B, C are the principal moments of inertia at O; ;; ;} z are the
coordinates of the centre of gravity of the body with respect to the moving
axis and M is the mass of the body. Using (25), we have the Lagrangian L and
momenta Y10 Yo Y5 expressed by the relations:

L-T-U-%(An§+nn§+0n§)+ng(Ismesmzp+;s1neCosw+"z'Coa 8),
yl-Anl’ yZ-an’ Y3'Cn3- (26)
In view of (26) the Hamiltonian H is given by

2 — - _
H= %@Zl'+ Z§_+ 23) - Mg(x Sin 6 Sin y + y Sin 6 Cos ¢ + z Cos 8) (27)
A B C
Using (6), (22), (24), (26), and (27), canonical equations of the system are
y y y -
n, =1, n, =22, ng=23
1 372 573 ¢
971 = B=C y,y, + Mg (7 Cos 6 - Z Sin 0 Cos ¥,
dt BC
(28)
iy_z-c_-_A_ysyl+ug(-ICose+Esmes1nw)
dt CA

453 = a-B y,¥, + Mg Sin 8(x Cos y-- y Sin y).
dt AB ]
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Now the relation (16) gives

2 %
1 2,73 - - -
A_+ -B—+E:—-2Mg(xs:l.n0Sin1p+ySin6Cos¢+zCose)+2h-0,

and consequently

v, = A[2Mg(x Sin 6 Sin y + y Sin 6 Cos y + z Cos 8) - 7% 2h]k
B C

Comparing this relation with (17), we get

K= - A[zug(;smesm¢+'y7smeCos¢+'z'Cose)-ﬁ ;’3_-211]
B C
Therefore by the application of (21) the canonical equations of the system
reduce to
3K 3K ]
n, = n ==,
2 ay2 3 8y3
45 =y, = n! y, - X, (K) (29)
== 7371371 7T
dr
dy
3=y, +0,y - X,3(K).
rre 2 2 71 |
Now
3K _ _A 3K _ _A 3K A

@h K °’ ayz"ﬁyz’ F&';’&"a’

9 =99 k= -4 %2
dt dt  %h X dt

4y3 . 493 g = -2 3
de dt 2dh K dt

X, (R) -%. Mg(-x Cos 0 + z Sin © Sin V),

S -%. Mg(X Cos ¥ -y Sin ¥) Sin 6,



GENERALIZED WHITTAKER'S EQUATIONS

Therefore equation (29) assume the form

' 'm o e

A
M " " Y2 M3 ek 73

4y; - K(A=C)y, + Mg(~x Cos 6 + Z Sin 6 Sin V),
it caA

973 = g(8-a) v, + Mg Sin 6(x Cos ¥ - y Sin y).
dt AB

These are the Whittaker's equations for the system under consideration.

l.
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