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ABSTRACT. In this paper, we continue the study of quasl-complemented

algebras and complemented algebras. The former are generalizations of the

latter and were introduced in [4] and studied in [4] and [ii]. Some re-

sults are proved.
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I. INTRODUCTION.

Quasi-complemented algebras, which are generalizations of complemented

algebras, were introduced in [4] and studied in [4] and [11]. In this paper,

we continue the study of these two classes of algebras.

In Section 3, we introduce the concept of continuous quasl-complementor

on a seml-simple annihilator Banach algebra. This is similar to the concept
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of continuous complementor given by Alexander in [i]. Let A be a simple

annihilator Banach algebra such that x ClA(XA) for all x in A. If A

is infinite dimensional, we show that every quasi-complementor on A is con-

tinuous. This result is not true if A is finite dimensional. In this case,

we obtain that a quasi-complementor q on A is continuous if and only if

the set E of all q-projections is closed and bounded in A. By using these
q

results, we give a characterization of continuous quasl-complementors (Theorem

Section 4 is devoted to the study of uniformly continuous quasi-complemen-

tors. Let A be a semi-simple annihilator Banach algebra in which x ClA(XA)
for all x in A and q a quasi-complementor on A. Suppose that A has no

minimal left ideals of dimension less than three. Then we show that A is a

dense subalgebra of some dual B*-algebra B and R
q (R)* A for all closed

right ideals R o.f A. Also every continuous complementor on A is uniformly

continuous.

2. NOTATION AND PRELIMINARIES.

For any subset S in an algebra A, let A(S) and rA(S) denote the

left and right annihilators of S in A, respectively. Let A be a Banach

algebra. Then A is called an annihilator algebra, if for every closed left

ideal J and for every closed right ideal R, we have rA(J) (O) if and

only if J A and A(R) (0) if and only if R A. If A(rA(J)) J

and rA(A(R)) R, then A is called a dual algebra.

Let A be a Banach algebra which is a subalgebra of a Banach algebra B.

For each subset S of A, cl(S) (resp. clA(s)) will denote the closure of

S in B (resp. A). Also (S) and r(S) (resp. EA(S) and rA(S)) de-

note the left and right annihilators of S in B (resp. A). We write

l-II for the norm on A and I’I for the norm on B.
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Let A be a Banach algebra and let L be the set of all closed right
r

ideals in A. Following [4], we shall say that A is a (right) quasi-comple-

mented algebra if there exists a mapping q R - Rq of L into itself
r

having the following properties:

R Rq (0)

(Rq)q R

(R e L (2.1)
r

(R e Lr) (2.2)

if RI R2, then R Rq (RI, R
2

e Lr)" (2.3)

The mapping q is called a (right) quasi-complementor on A. We know

that R + Rq is always dense in A, Aq (0) and (0) q A (see [4]).

Hence Rq (0) if and only if R-- A.

A quasi-complemented algebra A is called a (right) complemented algebra

if it satisfies:

R + Rq A (R e L ). (2.4)
r

In this case, the mapping q is called a (right) complementor on A

(see [6, p. 651, Definition i]).

Let A be a semi-slmple Banach algebra with a quasi-complementor q. A

minimal idempotent f in A is called a q-projection if (fA) q (i f)A.

The set of all q-projection in A is denoted by E By Lemma 3.1 in [Ii],
q

every non-zero right ideal of A contains a q-projection.

In this paper, all algebras and linear spaces under consideration are over

the complex field. Definitions not explicitly given are taken from Rickart’s

book [5].

We end the section with two new examples of complemented and quasi-comple-

mented algebras.

EXAMPLE I. Let A be a dual B*-algebra and # a symmetric norming function.

Then the algebra A0)
given in [I0, p. 293] is a complemented algebra with

the complementor q R + (R)* (Theorem 3 4 in [ii]).

A0)
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EXAMPLE 2. Let G be an infinite compact group with the Haar measure and A

the algebra of all continuous functions on G, normed by the maximum of the

absolute value and LI(G) the group algebra. It is well known that A and

LI(G) are dual A*-algebras which are not two-sided ideals of their completions

in an auxiliary norm. It is easy to see that the mapping q R + EA(R)*
(resp. R / ELl(G) (R)*) is a quasi-complementor on A (resp. LI(G)). However,

by Theorem 3.4 in [ii], q is not a complementor.

3. CONTINUOUS QUASI-COMPLEMENTORS

Let A be a semi-simple annihilator Banach algebra with a quasi-comple-

mentor q and M
A

the set of all minimal right ideals of A. For each

R e MA, by Lemma 3.1 in [ii], R-- fA for some q-projection f in A. There-

fore, R + Rq fA + (i f)A. Let PR be the projection on R along Rq.

Then PR is continuous.

DEFINITION. Suppose a e A with a A e M
A

(n 0, i, 2, ...). A quasi-
n n

complementor q on A is’said to be continuous if whenever a converges to
n

ao, then PaAn converges to Pa0A uniformly on any minimal left ideal of A.

REMARK. This is similar to the definition of continuous complementor intro-

duced by Alexander (see [I, p. 387, Definition]).

Let A be a semi-simple annihilator quasi-complemented Banach algebra

such that x e ClA(XA) for all x in A and {1% % e A} the family of

all minimal closed two-sided ideals of A. Define q% by R Rq/ I%
for all closed right ideals R of I%. Then by [4, p. 144, Theorem 3.6] A

is the direct topological sum of {1% % e A} and q% is a quasi-comple-

mentor on 1%. Let H% be a minimal left ideal of 1%. Then H% is a

Hilbert space under some equivalent inner product norm by [4, p. 145, Lemma 4.2].

Let B% be the algebra of all completely continuous linear operators on
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Then by the proof of [4, p. 146, Theorem 4.3], I is a dense subalgebra of

B such that II" If majorlzes I on I. By the proof of [8, p. 442,

Lemma 5.1], BA and IA have the same socle.

LEMMA 3.1. A quasl-complementor q on A is continuous if and only if

each qA is continuous.

PROOF. Let R e MA with R I0 for some 0 e A. Then R fA, where

f is a q-projection in I0. Hence, for all x in A, PR(X) fx. If

A @ 0’ then I01 (0) and so PR(X) 0 for all x in I. Using

this fact and the proof of [I, p. 387, Theorem 2.2], we can show that q is

continuous if and only if each q% is continuous.

The following result is a generalization of [3, p. 471, Theorem 6.8].

LEMMA 3.2. Let A be a simple annihilator Banach algebra in which

x e ClA(XA) for all x in A. If A is infinite dimensional, then every

quasl-complementor q on A is continuous.

PROOF. Let H be a minimal left ideal of A. As observed before, H is

a Hilbert space under some equivalent inner product and A is a dense dual sub-

algebra of B, the algebra of all completely continuous linear operators on H.

Also I-ll majorizes I" on A and H is a minimal left ideal of B. Then

by [4, p. 148, Theorem 5.4], q can be extended to a quasi-complementor p on

B; Mp cl([M A] q) for all closed right ideals M of B. We show that

Mp (M)*. In fact, let S(M) be the smallest closed subspace of H that

contains the range x(H) for all x in M. Since II’II and "I are equiv-

alent on H, it follows from [4, p. 145, Lemma 4.1] that

S(M) M / H MH (M A)/ H-- (M/’ A)H. (3.1)

Therefore, we have

S(Mp) MPH cl([M / A] q) H [M /’ A]q/’ H. (3.2)
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(see [4, p. 148] for the last equality). By the proof of [4, p. 145, Lemma 4.2],

M A ClA((M ’ A)HA). Since A is infinite dimensional, by [4, p. 145,

Theorem 4.2 (iii)] and (3.1)

S(M) [ClA(S(M)A) ]q/ H [elA((M A)HA)) ]q/’ H

[MA]q/ H.

Therefore, by (3.2), S(M s(MP). Hence it follows from [3, p. 464, Lemma

4.1] and [3, p. 465, Theorem 4.2] that Mp (M)*. In particular, p is con-

tinuous by [i, p. 388, Theorem 2.4].

Suppose a A e nM (n 0 1 2 ...) with a + a
0

in II" IIn n

Hence a / a^ in "I Let L be a minimal left ideal of A. Then L is
n

a minimal left ideal of B and II’II and I’I are equivalent on L; also

a A a B for all n. Let f be a (unique) q-projection contained in a A.
n n n n

Then P (x) f x for all x in A. Since p is continuous, P
aA n aA
n n

converges to P uniformly on L in I" and hence in I1" II There-
a0A

fore q is continuous and this completes the proof.

Let A be a seml-slmple annihilator quasi-complemented Banach algebra

such that x e ClA(XA) for all x in A which is a dense subalgebra of a

B*-algebra B. Suppose II’II majorizes I’I on A. By [8, p. 442, Lemma

5.1], the set E of all hermitian minimal idempotents of B is contained

in the socle of A and so E A. Let E be the set of all q-projections
q

in A. For each e e E, by [4, p. 149, Lemma 6.4], there exists a unique

element Q(e) e E such that Q(e)A eA; the mapping Q e - Q(e) is a
q

one one mapping from E onto E and is called the q-derlved mapping
q

(see [3] and [4]).

As shown in [3, p. 475], Lemma 3.2 is not true in general, if the algebra

A is finite dimensional. In this case, we have the following result:
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LEMMA 3.3. Let A be a simple finite dimensional annihilator Banach

algebra with a quasi-complementor q and E the set of all q-projections
q

in A. Then q is continuous if and only if E is a closed and bounded
q

subset of A.

PROOF. By [4, p. 143, Corollay 3.2], q is a complementor on A. Let H

be a minimal left ideal of A. Then H is a Hilbert space and A can be

taken as the B*-algebra of all linear operators on H. Let Q be the

q-derived mapping. By [1, p. 388, Theorem 2.4], Q is continuous if and only

if q is continuous. Now Lemma 3.3 follows from Lemma 4.1 in [ii].

We have the main result of this section.

THEOREM 3.4. Let A be a semi-simple annihilator quasi-complemented

Banach algebra such that x ClA(XA) for all x in A and let

A
0

{% E A I% is finite dimensional}. Then a quasi-complementor q on A

is continuous if and only if E
%

is closed and bounded for each % A0, where
q

E
%

is the set of all q-projections in I%.q

PROOF. This follows from Lemma 3.1, 3.2 and 3.3.

4. UNIFORMLY CONTINUOUS QUASI-COMPLEMENTORS.

In this section, we assume that A is a semi-simple annihilator Banach

algebra with a quasi-complementor q such that x ClA(XA) for all x in

A. Once again, MA will be the set of all minimal right ideals of A and

E the set of all q-projections in A. Also let I%, HA, q% and B% be
q

as in 3. The norm on B% is denoted by I’I
DEFINITION. A quasi-complementor q on A is said to be uniformly con-

tinuous if {efA f E E } is closed and bounded with respect to IIPfAIIq

the operator bound norm of PfA"
REMARK. A uniformly continuous quasi-complementor q is continuous. In

fact, by Theorem 3.4, we can assume that A is simple and finite dimensional.
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Let H be a minimal left ideal of A. By the proof of Lemma 3.3, A can be

taken as the B*-algebra of all linear operators on H. Then by [7, p. 259,

Theorem 4], E is bounded. Since [lfll sup{l [fhl[ h e H and
q

we have ,,,.llPfAll lfll for all f e E It follows now that E is closed.
q q

Hence by Theorem 3.4, q is continuous.

If u and v are elements of a Hilbert space H, u v will denote the

operator on H defined by the relation (U v)(h) (h, v)u for all h in H.

THEOREM 4.1. Let A be a semi-simple annihilator Banach algebra with a

uniformly continuous quasi-complementor q in which x g ClA(XA) for all x

in A. Suppose that A has no minimal left ideals of dimension less than

three. Then A is a dense subalgebra of some dual B*-algebra B and

R
q (R)* A for all closed right ideals R of A.

PROOF. We know that q is continuous and so is q% (% e A). By [4, p. 148,

Theorem 5.4], q% induces a quasi-complementor p% on BE. If H% is

finite dimensional, then by [4, p. 143, Corollary 3.2], q% is a complementor

and so by the proof of Theorem 4.3 in [ii], p% has the form

for all closed right ideals J% in BE. If H% is infinite dimensional, this

is also true by the proof of Lemma 3.2.

We show that there exists a constant M such that

Ihll _< lhl _< M lhll (h e HE, % e A). (4.1)

We follow the argument in [i, p. 393, Lemma 4.3]. It can be assumed that

lhll_< lhl

_
/I lhll (h e HE, % e A). (4.2)

Suppose (4.1) does not hold. Then there exists x in H such that
n n

lXnl I and IXnl kn > n. By (4.2), we can find Zn in Hn such that

II z II I, IZnl < /. Write z x + x’ with e C, x’ e H
n n n n n n n n

x’) 0. Put Yn k-iXn’ n n Xn + Xn’ and fn (Yn Yn)/(yn’ Yn)" Thenand

f e E and
n q
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f A (x)II II
yn Yn II l(xn’

n x (Yn Yn lynl
n (Yn’ Yn n

Hence {[ Pf Al is unbounded and this contradicts the uniform continuity of
n

q. Therefore (4.1) holds. Now by using the argument in Theorem 4.3, in [ii],

we can complete the proof.

Theorem 4.1 shows that there is essentially one type of uniformly con-

tinuous quasi-complementors on A.

The following result generalizes [4, p. 153, Theorem 7.6].

COROLLARY 4.2. Let A and B be as in Theorem 4.1. Then q is a comple-

mentor on A if and only if A is a left ideal of B.

PROOF. This follows from Theorem 4.1 and Theorem 3.4 in [ii].

On the other hand, if q is a complementor, then we have:

THEOREM 4.3. Let A be a semi-simple annihilator Banach algebra such that

A has no minimal left ideal of dimension less than three. Then every con-

tinuous complementor q on A is uniformly continuous.

PROOF. By [6, p. 655, Theorem 4], A is the direct topological sum of its

minimal closed two-sided ideals {1% % e A} each of which is a complemented

and dual algebra. Let q%, H% and B% be as before and "I the norm on B%.
By [i, p. 390, Theorem 3.2], q% induces a complementor p% on B% and by

P%
[i, p. 391, Theorem 3.3], p% has the form J% (J%)* for all closed right

ideals J% in B%. By [i, p. 393, Lemma 4.3], there exists a constant M such

that

Ilhll ! Ihl ! MIIhll (h e HX, X A). (4.3)

Let B be the B*()-sum of {B% % e A}. Then B is a dual B*-algebra and

E coincides with the set of all hermitian minimal idempotents in B. Since
q

A is a left ideal of B, it is well-known that there exists a constant k

such that lba]] e k]bl []a]] for all b in B and a in A. Then
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llPfA(X) ll llfxll < klf llxll kllxll for all x in A and f in E
q

Hence {PfA f e E is bounded. It remains to show that it is closed. Let
q

{Pf A be a Cauchy sequence, where f e E We show that, for m and n
n q

n

large enough, f and f are contained in the same minimal closed two-
m n

sided ideal. Suppose this is not so. Then there exists some minimal closed

two-sided ideal 1% of A such that fn e 1% but fm I% Let H%
n n n n

be the minimal left ideal in 1% Since f i we can choose h e H%n n
n n

such that Ifnhnl > 1/2 with lhnl i. Since fml% (0), by (4.3) we have
n

1/2 < Ifnhnl If h -f hi< Mllf h -f h IInn mn nn mn

--< MI IPf A- Pf A II lhnl MI IPf A- Pf A I"
n m n m

But {Pf A is a Cauchy sequence; a contradiction. Therefore, we can assume
n

that f and f belong to the same I) Hence
n

If fml sup [l (f fm)hl h e H% and Ihl < }
n n

n

<_ MI lPf A- Pf A II
n m

and so {f is a Cauchy sequence in l" I. Since E is closed in by
n q

Theorem 4.2, in [ii], f / f in I’I for some f in E Since
n q

ll(Pf A- PfA)(x)ll llf x- fxll < klf fl llxl[
n n n

/

fA
and so {PfA f e Eq} is closed. Thisfor all x in A, P# A

P
n

completes the proof.
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