Internat. J. Math. & Math. Sci. Vol. 1 (1978) 307-317

ON CERTAIN QUASI-COMPLEMENTED AND COMPLEMENTED BANACH ALGEBRAS

PAK-KEN WONG

Department of Mathematics Seton Hall University South Orange, New Jersey 07079 U.S.A.

(Received February 27, 1978)

<u>ABSTRACT</u>. In this paper, we continue the study of quasi-complemented algebras and complemented algebras. The former are generalizations of the latter and were introduced in [4] and studied in [4] and [11]. Some results are proved.

KEY WORDS AND PHRASES. Quasi-complemented and complemented Banach algebras.

AMS(MOS) SUBJECT CLASSIFICATION (1970) CODES.

1. INTRODUCTION.

Quasi-complemented algebras, which are generalizations of complemented algebras, were introduced in [4] and studied in [4] and [11]. In this paper, we continue the study of these two classes of algebras.

In Section 3, we introduce the concept of continuous quasi-complementor on a semi-simple annihilator Banach algebra. This is similar to the concept of continuous complementor given by Alexander in [1]. Let A be a simple annihilator Banach algebra such that $x \in cl_A(xA)$ for all x in A. If A is infinite dimensional, we show that every quasi-complementor on A is continuous. This result is not true if A is finite dimensional. In this case, we obtain that a quasi-complementor q on A is continuous if and only if the set E_q of all q-projections is closed and bounded in A. By using these results, we give a characterization of continuous quasi-complementors (Theorem 3.4).

Section 4 is devoted to the study of uniformly continuous quasi-complementors. Let A be a semi-simple annihilator Banach algebra in which $x \in cl_A(xA)$ for all x in A and q a quasi-complementor on A. Suppose that A has no minimal left ideals of dimension less than three. Then we show that A is a dense subalgebra of some dual B*-algebra B and $R^q = \ell(R) * \bigwedge A$ for all closed right ideals R of A. Also every continuous complementor on A is uniformly continuous.

2. NOTATION AND PRELIMINARIES.

For any subset S in an algebra A, let $\ell_A(S)$ and $r_A(S)$ denote the left and right annihilators of S in A, respectively. Let A be a Banach algebra. Then A is called an annihilator algebra, if for every closed left ideal J and for every closed right ideal R, we have $r_A(J) = (0)$ if and only if J = A and $\ell_A(R) = (0)$ if and only if R = A. If $\ell_A(r_A(J)) = J$ and $r_A(\ell_A(R)) = R$, then A is called a dual algebra.

Let A be a Banach algebra which is a subalgebra of a Banach algebra B. For each subset S of A, cl(S) (resp. $cl_A(S)$) will denote the closure of S in B (resp. A). Also l(S) and r(S) (resp. $l_A(S)$ and $r_A(S)$) denote the left and right annihilators of S in B (resp. A). We write $||\cdot||$ for the norm on A and $|\cdot|$ for the norm on B. Let A be a Banach algebra and let L_r be the set of all closed right ideals in A. Following [4], we shall say that A is a (right) quasi-complemented algebra if there exists a mapping $q : R \rightarrow R^q$ of L_r into itself having the following properties:

$$R \cap R^{q} = (0) \qquad (R \in L_{r});$$
 (2.1)

$$(R^{q})^{q} = R \qquad (R \in L_{r}); \qquad (2.2)$$

if
$$R_1 \supset R_2$$
, then $R_2^q \supset R_1^q$ $(R_1, R_2 \in L_r)$. (2.3)

The mapping q is called a (right) quasi-complementor on A. We know that $R + R^{q}$ is always dense in A, $A^{q} = (0)$ and $(0)^{q} = A$ (see [4]). Hence $R^{q} = (0)$ if and only if R = A.

A quasi-complemented algebra A is called a (right) complemented algebra if it satisfies:

$$R + R^{q} = A \qquad (R \in L_{r}). \tag{2.4}$$

In this case, the mapping q is called a (right) complementor on A (see [6, p. 651, Definition 1]).

Let A be a semi-simple Banach algebra with a quasi-complementor q. A minimal idempotent f in A is called a q-projection if $(fA)^q = (1 - f)A$. The set of all q-projection in A is denoted by E_q . By Lemma 3.1 in [11], every non-zero right ideal of A contains a q-projection.

In this paper, all algebras and linear spaces under consideration are over the complex field. Definitions not explicitly given are taken from Rickart's book [5].

We end the section with two new examples of complemented and quasi-complemented algebras.

EXAMPLE 1. Let A be a dual B*-algebra and Φ a symmetric norming function. Then the algebra $A_{\Phi}^{(0)}$ given in [10, p. 293] is a complemented algebra with the complementor q : R + $\ell_{A_{\Phi}^{(0)}}(R)$ *. (Theorem 3.4 in [11]). EXAMPLE 2. Let G be an infinite compact group with the Haar measure and A the algebra of all continuous functions on G, normed by the maximum of the absolute value and $L_1(G)$ the group algebra. It is well known that A and $L_1(G)$ are dual A*-algebras which are not two-sided ideals of their completions in an auxiliary norm. It is easy to see that the mapping $q : R \rightarrow \ell_A(R)^*$ (resp. $R \rightarrow \ell_{L_1(G)}(R)^*$) is a quasi-complementor on A (resp. $L_1(G)$). However, by Theorem 3.4 in [11], q is not a complementor.

3. CONTINUOUS QUASI-COMPLEMENTORS.

Let A be a semi-simple annihilator Banach algebra with a quasi-complementor q and M_A the set of all minimal right ideals of A. For each R $\in M_A$, by Lemma 3.1 in [11], R = fA for some q-projection f in A. Therefore, R + R^q = fA + (1 - f)A. Let P_R be the projection on R along R^q. Then P_R is continuous.

DEFINITION. Suppose $a_n \in A$ with $a_n A \in M_A$ (n = 0, 1, 2, ...). A quasicomplementor q on A is said to be continuous if whenever a_n converges to a_0 , then $P_{a_n A}$ converges to $P_{a_n A}$ uniformly on any minimal left ideal of A.

REMARK. This is similar to the definition of continuous complementor introduced by Alexander (see [1, p. 387, Definition]).

Let A be a semi-simple annihilator quasi-complemented Banach algebra such that $x \in cl_A(xA)$ for all x in A and $\{I_{\lambda} : \lambda \in \Lambda\}$ the family of all minimal closed two-sided ideals of A. Define q_{λ} by $R^{q_{\lambda}} = R^{q} \bigcap I_{\lambda}$ for all closed right ideals R of I_{λ} . Then by [4, p. 144, Theorem 3.6] A is the direct topological sum of $\{I_{\lambda} : \lambda \in \Lambda\}$ and q_{λ} is a quasi-complementor on I_{λ} . Let H_{λ} be a minimal left ideal of I_{λ} . Then H_{λ} is a Hilbert space under some equivalent inner product norm by [4, p. 145, Lemma 4.2]. Let B_{λ} be the algebra of all completely continuous linear operators on H_{λ} . Then by the proof of [4, p. 146, Theorem 4.3], I_{λ} is a dense subalgebra of B such that $||\cdot||$ majorizes $|\cdot|$ on I_{λ} . By the proof of [8, p. 442, Lemma 5.1], B_{λ} and I_{λ} have the same socle.

LEMMA 3.1. A quasi-complementor q on A is continuous if and only if each q_λ is continuous.

PROOF. Let $R \in M_A$ with $R \subset I_{\lambda_0}$ for some $\lambda_0 \in \Lambda$. Then R = fA, where f is a q-projection in I_{λ_0} . Hence, for all x in A, $P_R(x) = fx$. If $\lambda \neq \lambda_0$, then $I_{\lambda_0}I_{\lambda} = (0)$ and so $P_R(x) = 0$ for all x in I_{λ} . Using this fact and the proof of [1, p. 387, Theorem 2.2], we can show that q is continuous if and only if each q_{λ} is continuous.

The following result is a generalization of [3, p. 471, Theorem 6.8]. LEMMA 3.2. Let A be a simple annihilator Banach algebra in which $x \in cl_A(xA)$ for all x in A. If A is infinite dimensional, then every quasi-complementor q on A is continuous.

PROOF. Let H be a minimal left ideal of A. As observed before, H is a Hilbert space under some equivalent inner product and A is a dense dual subalgebra of B, the algebra of all completely continuous linear operators on H. Also $||\cdot||$ majorizes $|\cdot|$ on A and H is a minimal left ideal of B. Then by [4, p. 148, Theorem 5.4], q can be extended to a quasi-complementor p on B; $M^{P} = cl([M \land A]^{q})$ for all closed right ideals M of B. We show that $M^{P} = l(M)^{\star}$. In fact, let S(M) be the smallest closed subspace of H that contains the range x(H) for all x in M. Since $||\cdot||$ and $|\cdot|$ are equivalent on H, it follows from [4, p. 145, Lemma 4.1] that

 $S(M) = M \cap H = MH = (M \cap A) \cap H = (M \cap A)H.$ (3.1)

Therefore, we have

$$S(M^{P}) = M^{P}H = c1([M \land A]^{q}) \land H = [M \land A]^{q} \land H.$$
(3.2)

(see [4, p. 148] for the last equality). By the proof of [4, p. 145, Lemma 4.2], $M \land A = cl_A((M \land A)HA)$. Since A is infinite dimensional, by [4, p. 145, Theorem 4.2 (iii)] and (3.1)

$$S(M) = [c1_{A}(S(M)A)]^{q} \wedge H = [c1_{A}((M \wedge A)HA))]^{q} \wedge H$$
$$= [M \wedge A]^{q} \wedge H.$$

Therefore, by (3.2), $S(M)^{\perp} = S(M^{P})$. Hence it follows from [3, p. 464, Lemma 4.1] and [3, p. 465, Theorem 4.2] that $M^{P} = \ell(M)^{*}$. In particular, p is continuous by [1, p. 388, Theorem 2.4].

Suppose $a_n A \in M_A$ (n = 0, 1, 2, ...) with $a_n \rightarrow a_0$ in $|| \cdot ||$. Hence $a_n \rightarrow a_0$ in $| \cdot |$. Let L be a minimal left ideal of A. Then L is a minimal left ideal of B and $|| \cdot ||$ and $| \cdot |$ are equivalent on L; also $a_n A = a_n B$ for all n. Let f_n be a (unique) q-projection contained in $a_n A$. Then $P_{a_n A}(x) = f_n x$ for all x in A. Since p is continuous, $P_{a_n A}$ converges to $P_{a_0 A}$ uniformly on L in $| \cdot |$ and hence in $|| \cdot ||$. Therefore q is continuous and this completes the proof.

Let A be a semi-simple annihilator quasi-complemented Banach algebra such that $\mathbf{x} \in cl_A(\mathbf{x}A)$ for all \mathbf{x} in A which is a dense subalgebra of a B*-algebra B. Suppose $||\cdot||$ majorizes $|\cdot|$ on A. By [8, p. 442, Lemma 5.1], the set E of all hermitian minimal idempotents of B is contained in the socle of A and so E C A. Let \mathbf{E}_q be the set of all q-projections in A. For each $\mathbf{e} \in \mathbf{E}$, by [4, p. 149, Lemma 6.4], there exists a unique element Q(e) $\mathbf{e} \in \mathbf{E}_q$ such that Q(e)A = eA; the mapping Q : $\mathbf{e} + \mathbf{Q}(\mathbf{e})$ is a one - one mapping from E onto \mathbf{E}_q and is called the q-derived mapping (see [3] and [4]).

As shown in [3, p. 475], Lemma 3.2 is not true in general, if the algebra A is finite dimensional. In this case, we have the following result: LEMMA 3.3. Let A be a simple finite dimensional annihilator Banach algebra with a quasi-complementor q and E_q the set of all q-projections in A. Then q is continuous if and only if E_q is a closed and bounded subset of A.

PROOF. By [4, p. 143, Corollary 3.2], q is a complementor on A. Let H be a minimal left ideal of A. Then H is a Hilbert space and A can be taken as the B*-algebra of all linear operators on H. Let Q be the q-derived mapping. By [1, p. 388, Theorem 2.4], Q is continuous if and only if q is continuous. Now Lemma 3.3 follows from Lemma 4.1 in [11].

We have the main result of this section.

THEOREM 3.4. Let A be a semi-simple annihilator quasi-complemented Banach algebra such that $x \in cl_A(xA)$ for all x in A and let $\Lambda_0 = \{\lambda \in \Lambda : I_\lambda \text{ is finite dimensional}\}$. Then a quasi-complementor q on A is continuous if and only if E_q^λ is closed and bounded for each $\lambda \in \Lambda_0$, where E_q^λ is the set of all q-projections in I_λ .

PROOF. This follows from Lemma 3.1, 3.2 and 3.3.

4. UNIFORMLY CONTINUOUS QUASI-COMPLEMENTORS.

In this section, we assume that A is a semi-simple annihilator Banach algebra with a quasi-complementor q such that $x \in cl_A(xA)$ for all x in A. Once again, M_A will be the set of all minimal right ideals of A and E_q the set of all q-projections in A. Also let I_{λ} , H_{λ} , q_{λ} and B_{λ} be as in §3. The norm on B_{λ} is denoted by $|\cdot|$.

DEFINITION. A quasi-complementor q on A is said to be uniformly continuous if $\{P_{fA} : f \in E_q\}$ is closed and bounded with respect to $||P_{fA}||$, the operator bound norm of P_{fA} .

REMARK. A uniformly continuous quasi-complementor q is continuous. In fact, by Theorem 3.4, we can assume that A is simple and finite dimensional.

P. WONG

Let H be a minimal left ideal of A. By the proof of Lemma 3.3, A can be taken as the B*-algebra of all linear operators on H. Then by [7, p. 259, Theorem 4], E_q is bounded. Since $||f|| = \sup\{||fh|| : h \in H \text{ and } ||h|| \le 1\}$, we have $||P_{fA}|| = ||f||$ for all $f \in E_q$. It follows now that E_q is closed. Hence by Theorem 3.4, q is continuous.

If u and v are elements of a Hilbert space H, u \bigotimes v will denote the operator on H defined by the relation (U \bigotimes v)(h) = (h, v)u for all h in H.

THEOREM 4.1. Let A be a semi-simple annihilator Banach algebra with a uniformly continuous quasi-complementor q in which $x \in cl_A(xA)$ for all x in A. Suppose that A has no minimal left ideals of dimension less than three. Then A is a dense subalgebra of some dual B*-algebra B and $R^q = \ell(R)* \bigwedge$ A for all closed right ideals R of A.

PROOF. We know that q is continuous and so is q_{λ} ($\lambda \in \Lambda$). By [4, p. 148, Theorem 5.4], q_{λ} induces a quasi-complementor p_{λ} on B_{λ} . If H_{λ} is finite dimensional, then by [4, p. 143, Corollary 3.2], q_{λ} is a complementor and so by the proof of Theorem 4.3 in [11], p_{λ} has the form $J_{\lambda}^{P_{\lambda}} = \ell(J_{\lambda})^*$ for all closed right ideals J_{λ} in B_{λ} . If H_{λ} is infinite dimensional, this is also true by the proof of Lemma 3.2.

We show that there exists a constant M such that

$$||\mathbf{h}|| \leq |\mathbf{h}| \leq \mathbf{M} ||\mathbf{h}|| \qquad (\mathbf{h} \in \mathbf{H}_{\lambda}, \lambda \in \Lambda).$$
(4.1)

We follow the argument in [1, p. 393, Lemma 4.3]. It can be assumed that

$$||\mathbf{h}|| \leq |\mathbf{h}| \not\leq \sqrt{2} ||\mathbf{h}|| \quad (\mathbf{h} \in \mathbf{H}_{\lambda}, \lambda \in \Lambda).$$
(4.2)

Suppose (4.1) does not hold. Then there exists x_n in H_n such that $||x_n|| = 1$ and $|x_n| = k_n > n$. By (4.2), we can find z_n in H_n such that $||z_n|| = 1$, $|z_n| \le \sqrt{2}$. Write $z_n = \alpha_n x_n + x'_n$ with $\alpha_n \in C$, $x'_n \in H_n$ and $(x_n, x'_n) = 0$. Put $y_n = k_n^{-1} x_n + x'_n$ and $f_n = (y_n \bigotimes y_n)/(y_n, y_n)$. Then $f_n \in E_q$ and QUASI-COMPLEMENTED AND COMPLEMENTED BANACH ALGEBRAS

$$||\mathbf{P}_{f_n^A}(\mathbf{x}_n)|| = ||\frac{\mathbf{y}_n \bigotimes \mathbf{y}_n}{(\mathbf{y}_n, \mathbf{y}_n)^{\mathbf{x}_n}}|| = \frac{|(\mathbf{x}_n, \mathbf{y}_n)|}{(\mathbf{y}_n, \mathbf{y}_n)}||\mathbf{y}_n|| \to \infty.$$

Hence $\{||P_{f_nA}||\}$ is unbounded and this contradicts the uniform continuity of q. Therefore (4.1) holds. Now by using the argument in Theorem 4.3, in [11], we can complete the proof.

Theorem 4.1 shows that there is essentially one type of uniformly continuous quasi-complementors on A.

The following result generalizes [4, p. 153, Theorem 7.6].

COROLLARY 4.2. Let A and B be as in Theorem 4.1. Then q is a complementor on A if and only if A is a left ideal of B.

PROOF. This follows from Theorem 4.1 and Theorem 3.4 in [11].

On the other hand, if q is a complementor, then we have:

THEOREM 4.3. Let A be a semi-simple annihilator Banach algebra such that A has no minimal left ideal of dimension less than three. Then every continuous complementor q on A is uniformly continuous.

PROOF. By [6, p. 655, Theorem 4], A is the direct topological sum of its minimal closed two-sided ideals $\{I_{\lambda} : \lambda \in \Lambda\}$ each of which is a complemented and dual algebra. Let q_{λ} , H_{λ} and B_{λ} be as before and $|\cdot|$ the norm on B_{λ} . By [1, p. 390, Theorem 3.2], q_{λ} induces a complementor p_{λ} on B_{λ} and by [1, p. 391, Theorem 3.3], p_{λ} has the form $J_{\lambda}^{p_{\lambda}} = \ell(J_{\lambda})^{*}$ for all closed right ideals J_{λ} in B_{λ} . By [1, p. 393, Lemma 4.3], there exists a constant M such that

 $||\mathbf{h}|| \leq |\mathbf{h}| \leq \mathbf{M}||\mathbf{h}|| \qquad (\mathbf{h} \in \mathbf{H}_{\lambda}, \lambda \in \Lambda).$ (4.3)

Let B be the $B^*(\infty)$ -sum of $\{B_{\lambda} : \lambda \in \Lambda\}$. Then B is a dual B^* -algebra and E_q coincides with the set of all hermitian minimal idempotents in B. Since A is a left ideal of B, it is well-known that there exists a constant k such that $||b\mathbf{a}|| \leq k|\mathbf{b}|$ $||\mathbf{a}||$ for all b in B and a in A. Then

P. WONG

$$\begin{split} ||P_{fA}(x)|| &= ||fx|| \leq k|f| \quad ||x|| = k||x|| \quad \text{for all } x \quad \text{in } A \quad \text{and } f \quad \text{in } E_q.\\ \text{Hence } \{P_{fA}: f \in E_q\} \quad \text{is bounded. It remains to show that it is closed. Let} \\ \{P_{f_n}A\} \quad \text{be a Cauchy sequence, where } f_n \in E_q. We show that, for m and n \\ \text{large enough, } f_m \quad \text{and } f_n \quad \text{are contained in the same minimal closed two-sided ideal. Suppose this is not so. Then there exists some minimal closed two-sided ideal I_{\lambda_n} \quad \text{of } A \quad \text{such that } f_n \in I_{\lambda_n}, \quad \text{but } f_m \notin I_{\lambda_n}. \quad \text{Let } H_{\lambda_n} \\ \text{be the minimal left ideal in } I_{\lambda_n}. \quad \text{Since } |f_n| = 1, \quad \text{we can choose } h_n \in H_{\lambda_n} \\ \text{such that } |f_nh_n| > 1/2 \quad \text{with } |h_n| = 1. \quad \text{Since } f_mI_{\lambda_n} = (0), \quad \text{by (4.3) we have} \\ 1/2 < |f_nh_n| = |f_nh_n - f_mh_n| \leq M ||f_nh_n - f_mh_n|| \\ \leq M ||P_{f_n}A - P_{f_m}A|| \quad |h_n| = M ||P_{f_n}A - P_{f_m}A||. \end{split}$$

But $\{P_{f_n}A\}$ is a Cauchy sequence; a contradiction. Therefore, we can assume that f_m and f_n belong to the same I_{λ_n} . Hence, $|f_n - f_m| = \sup \{|(f_n - f_m)h| : h \in H_{\lambda_n} \text{ and } |h| \le 1\}$ $\le M||P_{f_n}A - P_{f_m}A||$

and so $\{f_n\}$ is a Cauchy sequence in $|\cdot|$. Since E_q is closed in $|\cdot|$ by Theorem 4.2, in [11], $f_n \to f$ in $|\cdot|$ for some f in E_q . Since

$$\left|\left|\left(\mathsf{P}_{\mathbf{f}_{n}^{\mathbf{A}}} - \mathsf{P}_{\mathbf{f}^{\mathbf{A}}}\right)(\mathbf{x})\right|\right| = \left|\left|\mathbf{f}_{n}^{\mathbf{x}} - \mathbf{f}\mathbf{x}\right|\right| \leq \mathbf{k}\left|\mathbf{f}_{n} - \mathbf{f}\right| \quad \left|\left|\mathbf{x}\right|\right|$$

for all x in A, $P_{f_n}A \xrightarrow{\Rightarrow} P_{fA}$ and so $\{P_{fA} : f \in E_q\}$ is closed. This completes the proof.

REFERENCES

- Alexander, F. E. Representation Theorems for Complemented Algebras, <u>Trans</u>. <u>Amer. Math. Soc.</u> <u>148</u> (1970) 385-398.
- Alexander, F. E. On Complemented and Annihilator Algebras, <u>Glasgow J. Math</u>. 10 (1969) 38-45.
- Alexander, F. E. and B. J. Tomiuk Complemented B*-Algebras, <u>Trans. Amer. Math.</u> <u>Soc. 137</u> (1969) 459-480.
- Husain, T. and P. K. Wong Quasi-Complemented Algebras, <u>Trans. Amer. Math. Soc</u>. <u>174</u> (1972) 141-154.
- 5. Rickart, C. E. <u>General Theory of Banach Algebras</u>, The University Series in Higher Math., Van Nostrand, Princeton, New Jersey, 1960.
- Tomiuk, B. J. Structure Theory of Complemented Banach Algebras, <u>Canad. J.</u> <u>Math. 14</u> (1962) 651-659.
- Wong, P. K. Continuous Complementors on B*-Algebras, <u>Pacific J. Math.</u> 33 (1970) 255-260.
- Wong, P. K. On the Arens Products and Certain Banach Algebras, <u>Trans. Amer.</u> <u>Math. Soc. 180</u> (1973) 437-448.
- Wong, P. K. A Note on Annihilator and Complemented Banach Algebras, J. Australian Math. Soc. <u>18</u> (1974) 474-481.
- Wong, P. K. A Minimax Formula for Dual B*-Algebras, <u>Trans. Amer. Math. Soc</u>. 224 (1976) 281-298.
- Wong, P. K. Quasi-Complementors and Complementors on Certain Banach Algebras, Proc. Amer. Math. Soc. 65 (1977) 287-292.