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ABSTRACT. An equivalence relation is defined on ArV, the rth Grassman space
over V and the problem of the determination of the equivalence classes de-
fined by this relation is considered. For any r and V, the decomposable
elements form an equivalence class. For r = 2, the length of the element
determines the equivalence class that it is in. Elements of the same length
are equivalent, those of unequal lengths are inequivalent. When r 2 3, the
length is no longer a sufficient indicator, except when the length is one.
Besides these general questions, the equivalence classes of A3V, when

dim V = 5 are determined.
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Suppose V is a finite dimensional vector space over an arbitrary field F
and r is a positive integer. Consider ArV, the rth Grassman space over V. We
define an equivalence relation on A"V as follows: If X and Y are in ArV, we
write X ~ Y iff 3 a non-singular linear transformation T:V — V such that
Cr(T)X = Y, where Cr(T) is the rth exterior product of T. Using the facts,
that if T and S are two linear transformations of V, then Cr(T)cr(S) = Cr(TS)
and if T is non-singular, then Cr(T-l) = Cr(T)_l, it follows that the above
relation is an equivalence relation.

We consider the problem of determining the number of equivalence classes,
into which the set A'V is decomposed, along with a system of distinct repre-
sentatives of these equivalence classes.

DEFINITIONS. 1. If X ¢ A"V and X = X A oA X, we say X is

decomposable.
2. If Xe ArV, we define its length, to be denoted

by £(X) as £(X) = min{m|X is a sum of m decom
posable elements of ATvy.
3. If Xe ArV, we define a subspace [X] of V as
[X] = n{U|U is a subspace of V and X € ATul.
4. If X e ArV, we define the rank of X to be denoted
by p(X) as p(X) = dim[X].
PROPOSITION 1. If X,Y ¢ A"V and X ~ Y, then (i) £(X) = £(Y),
(ii) P(X) = P(Y).
PROOF. (i) Let T:V > V be a n.s.l.t. such that Cr(T)X =Y.

]

If £(X) =s X = ;> where X, € ATV and £(x)) = 1.

L X
121
Then Y = C.(DX = £ € (DX;. This implies £(Y) < s = £(X). Similarly

Y ~ X implies £(Y) < £(X) and this proves (i).
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(ii) We first remark that if U and W are subspaces of V, then X € ATu
implies Y € A'T(U) and Y ¢ A"W implies X e A'T (W), where T:V » V is a n.s.l.t.
such that Y = Cr(T)X. From this remark, it follows easily that [Y] = T[X]
and hence P(X) = P(Y).
PROPOSITION 2. If U and W are subspaces of V, then AU n A™W = AT(U n W).
PROOF. Clearly Ar(U nwc (ATU) n (AIW). To prove the inclusion in

the other direction, let x XyseeosXy be a basis of U n W and extend it to

1’
a basis XpseeesXps YyseeesVg of U and a basis XpseeesXys ZyseeesZy of W.
Then XpseeosXps YyseoosVos ZysecesZy is a basis of U + W.

If A= {x; A lelsi<jsk}, B = {y; A yj|1£i<jss}, C={z; A zj|lsi<jst},

D

{x; A yj|1515k; 1<jss}, E = {x; A zj|lSisk; 1<j<t},

F

{y, A zjllsiSS; 1<j<t}, then the sets A, AuUBUD, AuCUuE, and
AUBUCUDUEUTF form bases of AY(U n W), ATU, A"W and AT (U + W)
respectively. If X ¢ (ATU) n (A™W), then

X=IZa,x, Ax,+2XIDb . A + I d A d al
a 213 M X T g 1Y MYy T g Gyg%a N Yy and aso

X = i aijxi A xj + é cijzi A zj + é eijxi A zj. Hence aij = aij and

P1y T 3 T Cay T Cug

i and j. Thus X € AT(U n W).

= 0 for all the appropriate values of the indices

REMARK 1. The result of Proposition 2 holds for any number of subspaces
of V.
r ‘8 r
REMARK 2. If X ¢ A’V and-) = {U|U is a subspace of V, X ¢ A U}, then

AT[X] = Ar( nU ) = n (ArU). Thus X € A'[X] and [X] is the smallest such
Ue Ue

subspace of V.
k
PROPOSITION 3. Let X ¢ A%V, £(X) = k and X = (L% A vy then
XpseeesXps Yyseeesy, are linearly independent.

PROOF. If not, then one of them (say) Y is a linear combination of the
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k-1

k
remaining XpseeesXys YyseeosVy g- Let Vi = 15131xi + jElbjyj.

3 k k-1
Then X Ny o= iElaixk A Xy + jElbjxk A yj. Hence X can be written as

k-1
X = iEl(xi Ay + x A zi), where z, = a;x; + biyi’ 1 <4i<k-1. If z; = 0,

then K(xi Ayt xR A zi) =1, If zg # 0, let a; # 0, then

-1
XAyt Azg=z A (ai vy - xk), thus Z(xi Ayt xoA zi) < 1.
Hence £(X) < k-1, a contradiction.

K
REMARK 3. 1If X ¢ A%V, £(X) = k and X = (L % A Yy then

[x]= SKpseeesXs YyseeesV e
PROOF. Let U = <x1,...,xk, SAEEERE) Mg then [X] < U. By Proposition

3, dim U = 2k. Also X e A2[X]; let

L 1)

k 1 |
X = iﬁlxi A Yis X45 ¥y € [X], 1 < i < k. Again by Proposition 3,
dim [X] =2 2k. Thus [X] =U = KpseeesXps Yyseres¥p>e

PROPOSITION 4. If X,Y e AZV, P(X) = P(Y), then X ~ Y.

k S '
PROOF. Let X = iglxi AYys Y= jﬁlxj A yj; then by Remark 3,

\J

[x]1 = <KpseeesKys YyseoesVy > and [Y] = <x1,...,x;, yi,...,y;>. Also by

Proposition 3, P(X) = 2k, P(Y) = 2s. Thus k = s. Let T be a linear trans-

formation of V Txi = xi, Tyi = yi, 1 £ i < k; then Cr(T)X =Y. Thus X ~ Y.
PROPOSITION 5. If X ¢ ArV, LX) =2, X = X A cod A X, + v1 Aeee AV

then X = <x1,...,xr, MAERERE) Ak

PROOF. Let U = KpseeesX s YyseeerY >3 then [X] c U.- If [X] # U, then
at least one element (say) Xy is not in [X]. Let B be a basis of [X] and
extend {x} u B to a basis of U. Let W be a complement of <x> in U, contain-

ing [X], i.e., U= <x.> ® W, [X] ¢ W. Let x, = a,x, + Wis 2 <i<r and

1 i i1

y. = b.x, + w', 1 <j < r, where w.,w' € W. Then X = X, + X,, where
h] et 3 i*7) 1 2

r-1
Xl € % A (A*”°W) and X2

U=<x;>0W=> ArU=xl

¢ AW, and 2(X) =1, 1=1,2. But

A (Ar-IW) ® A"W. Also X ¢ AF[XZ c Arw, hence
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X, =X -X. e A"W. Thus X, = 0 and X = X, => £(X) = 1, a contradiction.

1 2 1 2

Hence [X] = U = RSTEREFE P SPRRRP At

Note: The above proposition is true also for £(X) = k.

PROPOSITION 6. If X,Y € A"V, £(X) = £(Y) = 2, P(X) = P(Y), then X ~ Y.

PROOF. Let X = xlA...Axr + ylA...Ayr, U1 = <XpseeeX >,
U, = <y.,...,y_>, then by Proposition 4, [X] =1U, +U,. Let z ,...,z,_ be a
2 1 r 1 2 1 k
basis of Ul n U2, and extend it to a basis ZiseresZyps Upseeesly, where

k + s =1 of Ul and to a basis ZyseeesZyps VisreresV of U2' Then

P(X) = k + 2s. Since XpseeesX, and ZyseeesZys Upseee,Ug are two bases of
Ul’ hence xlA...Axr = azlA...AzkAulA...Aus = zlA...AzkkﬁlA...AuS, where

T = auj. Similarly yjA...Ay = bzjA...AZg AVIALL AV = zlA...AzkAGlA...Avs,
where Vl = bvl. Hence X = ZyA. Az A (ﬁiAUZA"'Aus +'71AVZA...AVS), where

Z)seeesZys ﬁi,uz,...,u . Vi,vz,...,vs is a basis of [X].

-0

| \J ] —1 A
A (ﬁlAuzA. . -Aug + v szA...AvS), where

Similarly Y = ZI AL Az 1

1 %k
zi,...,z;, ﬁi,u;,...,u;, Vi,vé,...,v; is a basis of [Y].

Define T:V

> V, a linear transformation

;, ;= Gi, Tu; = ul, T;l = Vi, Tv, = v;, for i =2, 3,...,s.

i
Then Cr(T)X = Y; hence X ~ Y.

Tz, = z Tu
i

REMARK 4. Let X ¢ A"V, £(X) = 2, then r + 1 < p(X) < 2r.

PROOF. If X = KA AR + YA AY s then [X] = SKpseeesXps Yyseees¥ >

=U +U,

yiA- Ay, = ax

, where U1 = <Kp,eeesX U2 = <Ypseees¥ e Ul # U2, for otherwise

PR A, where a is a scalar and £(X) = 1.

PX) = 2r - dim U, n U,. Hence r+l < P(X) < 2r.

1 2
THEOREM 1. Let E(2, s) = {X|X ¢ A"V, £(X) = 2, P(X) = s}, then
E(2, s), s = r+1, r+2,...,2r are all the equivalence classes on the set of

all vectors of ArV, of length 2.

PROOF. Follows from Proposition 6 and Remark 4.
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PROPOSITION 7. Let O # X ¢ A"V and x € V such that x A X = 0, then
x e [X].

PROOF. Let X1s KgseeesXp be a basis of [X]. Then {ial aeQr,m} is a

2

basis of Ar[X], where Qr o is a set of all the strictly decreasing sequences
’

~

of length r on the integers 1, 2,...,m. det X = I a X ;

then x A X = gaa X A §u. If x ¢ [X], then {x A %alaeQr’m} is a part of a
basis of Ar+1<x,[X]>. Thus x A X = 0 => a, = 0¥ace Qr,m => X=0, a
contradiction.

PROPOSITION 8. If 0 # X ¢ A"V and x ¢ [X], then [x A X] = <x> & [X].

PROOF. By Proposition 7, x A X # 0. Again by Proposition 7, since
x A (xAX) = 0, hence x € [xAX]. Clearly [xAX] ¢ <x> ® [X]. Let x, XpseeesXy
be a basis of [xAX] and extend it to a basis x, xl,...,xk, X410 o Xp of
<x> ® [X]. If U = AESERRRPE then [xAX] = <x> & U, U ¢ [X]J.

Ar+1[xAX] =X A (ArU) @ Ar+1U. Let xAX = xAut+v, where u € AU and

vV E Ar+1U. Thus xAv = 0. If v # 0, then by Proposition 7, x ¢ [v] ¢ U,

a contradiction. Hence v = 0 and thus xAX = xAu. Then x A (X-u) = 0. If
X-u # 0, then by Proposition 7, x € [X-ul. Now X ¢ A[X] and u ¢ ATU < ATIXT,
thus X - u ¢ AT[X]. Hence [X-ul c [X]. Thus x € [X-u] => x ¢ [X], which is
a contradiction and therefore X-u = 0} i.e., X = u ¢ A'U. Hence [X] c U.

Also U c [X], hence U = [X] and [xAX] = <x> @ [X].

PROPOSITION 9. Suppose X € AZV, LX) = 2, Xy X, are linearly independ-
ent vectors in [X]. Then 3 Y1» Yp € [X] and A € F 3 X has one and only one
of the following representations: (i) X = X A v1 + Xy A Yy
(ii) X = AXp A Xyt oy A,

PROOF. X ¢ A%V, £(X) = 2 => P(X)

to a basis x

4. Extend X5 X, 1°

Xy X35 X, of [X].

Then X = Z ai.x:.L A X,, a;. € F.
lsicgse M0 T3 A
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If ay, = 0, take Y1 = a10%, + a; 4%, + a1 .%, and Yy = 253%g + a5, %, then
X = X Ay + Xy Ay, If az, # 0, then

(-x» + a =0 ———— (1) has a solution in F.

120334 ~ 21384 * 21423
Set Y = (—)\+a12)x1/\x2 + al3x1Ax3 + al4xle4 + 83X, A%y + a,y,Xy0%, + a34x3Ax4.

1; also Y ¢ A%[X].

Then Y = -Ax,AX, + X. Because of (1), £(Y)

172
Thus  y;, y, € [X] Y =y, Ay,. Hence X

Axy A%y + 30y
If X = XAy, + X)AYy and also X = /\xle2 + zl/\z2 then X A X = X A Xy Ay,

and also X, A X =X, A z

1 1 A z,. Thus 0 # X AX)AY, = X Az Az, and hence

1 2

> = <x Let z, = a.x, + ax, + asy, and

“X15%Y) 17 241%

12212227

zy = blx1 + b2x2 + b3y2.

Then z\ Az, = (albz—azbl)xllxx2 + (alb3-a3bl)xl/\y2 + (a2b3—a3b2)x2Ay2.
Putting this expression for ) in X = )\xl/\x2 + 2y A z,, we get two
different representations of X in the basis of Az[X], determined by the basis

X15%9,¥75Y9 of [X]; thus X has precisely one of the two representations.

PROPOSITION 10. If X,Y e ATV are decomposable, then X+Y is decomposable
iff dim(X] n [Y] 2 r-1.
PROOF. (=>) Let X+Y be decomposable, and X+Y = Z, £(Z) < 1.

Let X = x;A..uAX , ¥ = yiALLlAy , 2 = A oAz L I [X] = [z], then for

any i, 1 <i<r, ziAX = ziAZ = 0; but then ziAY = 0, and thus z; € Y]
by Proposition 7, and [Z] = [Y]. Hence [X] = [Y], i.e., dim[X] n [Y] = r.
If [X] # (2], then for some i, zg ¢ [X]. But

z, A (X+Y) = 0 => z AX = -z AY => <z_,[X]> = <z_,[Y]>. Thus [X], [Y]
i i i i i

are r-dimensional subspaces in an (r+l) -~ dim space <zi,[X]>. Hence
dim{X]1 n (Y] 2 dim{X] + dim(Y] - (r+l) = r-1. (<=) If dim{X] n (Y] 2 r-1.

Let u,,...,u be 1.i. vectors in [X] n [Y] and extend these to a basis
1 r-1

X, Upseeesll and a basis y, Upseeest of [X] and [Y] respectively. Thus

r-1

X = axAu,A.

AL S Y=>byAu

lA...Aur__1 for some a and b.
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Hence X+Y = (ax+by)AulA... u_1» i.e., X+Y is decomposable.

THEOREM 2. 1If dim V =5, X ¢ ASV, then £(X) < 2.

PROOF. We shall first prove that £(X) < 3. Let X5 Xy Xy X4, Xg
be a basis of V. Then
X = a, . X AX,AX, = X Ax,A(a,,.x, +a,,,X, +a,,X.)

lei<jekss MK e T X172 8103%3 T 2194%4 T 3125%s

+ x Ax,A(a

17%3M (@) 34%, F ap35%s) + xAx3A (a4, %, + 8y 30%c)

+ (a145xl + 35,5%y + 3345X3)x4Ax5,

Let Y1 T 313,%, + a135%5s Yy T 354,%, + ay45%g: If Y1s¥, are 1.d., then
£(X) < 3. So we assume y1»¥, are 1.i.; then YpsYp> = <X,,Xg>, and thus
x4/\x5 = AylAyz, A e F. Let a194%, + aj5Xg = bly1 + b2y2. Then

X = xMxph(agpgxs + Byyy ¥ byyy) + X ARgAY) F xpAXgAY

+ Aay,5%) Foay, 5%y Foag,oX3)y) Y,

= 213X KMy () +oag, )y ))AY Ay - X3+ ) 0Y))
+(byxy = x5 = (ay,5 — ag,5b1)Ayy)Ax Ay,
Hence £(X) < 3.

Let X = X, + X2 + X3, where Xl, X2, X, are decomposable, Xl = xlezAx3,

1 3
X2 = ¥1MM 3, X3 = z)Az,A2,. Then 1 < dim[Xl] n [X2] < 3.
CASE 1. dim[Xl] n [Xz] = 3. Then X2 = AXl for some X and thus £(X) < 2.
CASE 2. dim[Xl] n [X2] = 2. Let up,u,,V and ug,uy,W be bases of [Xl]
and [XZJ respectively. Then X1 = AulAuzAv and X2 =2 u) AU AW Then £(X) < 2.

CASE 3. dlm[Xl] n [Xz] = 1. det up, Uy, ug and Ups Uy, Ug be bases of
[Xl] and [Xz] respectively. Then X1 = ujAu,Aug, X2 = u Ay Aug; we have
assumed the co-effs. to be absorbed with the vectors ui's and vi's. Then

X1+X2 =u; A Y, where Y = uyAug + u, Aug. Also [Xl] + [Xz] = V.
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Since dim<u2,u3,u4,u5> n [X3] > 2, we can take X3 = W AWy A, where
WisW, € <u2,u3,u4,u5>. By Proposition 9, Vs VY, and A Y = Awlsz + lev2
or Y = wlAv1 + szVZ' If Y = Awlsz + levz, then X = ulAY + wlszAw3 has

length < 2. If Y = wlAv1 + WZAVZ, then since UgsWy5W,,5 Ve,V is also a basis

of V, let w3 = a;u + awy + aw, + a,vy + agv,. Then

X=X + X2 + X3 = (ul - a4w2)AwlAv + u AW, AV, + (a5

1 1 1WAV, + a ul)/\wl/\w2 has

V2 1

length < 2, since Z = ulAWZAVZ + (asv2 + alul)Awlsz and

> n <a.v, + a.u > 2 implies £(Z) < 1.

2 5V T 81U15VWy”
REMARK. There exists X ¢ A3V with £(X) = 2; for if x

dim<ul,w2,v

1,xz,x3,x4,x5 is

a basis of V and X = xlezAx3 + X AX, AXg then £(X) = 2, by Proposition 10.
REMARK. If X ¢ AV,dim V = 5, £(X) = 2, then P(X) = 5; for let

X = X1 + X2, where K(Xl) = K(XZ) = 1. Since X is not decomposable, then by
Proposition 10, dim[Xl] n [Xz] < 2 and hence
dim[X] > dim[le + dim[Xz] - dim[Xl] n [X2] =4, i.e., P(X) = 5.

It follows from Proposition 6 that if X,Y ¢ 23 and £(X) = £(Y), then

X ~ Y. Hence all the equivalence classes of A3V are given by

5o = X|x e 4%, £(X) = 0} = {0}
5, = {X|x ¢ Ay, £x) = 1}
s, = (X[x e A%, £(X) = 2).
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