EQUIVALENCE CLASSES OF THE 3RD GRASSMAN SPACE OVER A 5-DIMENSIONAL VECTOR SPACE

KULDIP SINGH

Department of Mathematics The University of New Brunswick Fredericton, N.B., Canada E3B 5A3

(Received June 10, 1977)

ABSTRACT. An equivalence relation is defined on $\Lambda^r V$, the r^{th} Grassman space over V and the problem of the determination of the equivalence classes defined by this relation is considered. For any r and V, the decomposable elements form an equivalence class. For r=2, the length of the element determines the equivalence class that it is in. Elements of the same length are equivalent, those of unequal lengths are inequivalent. When $r \ge 3$, the length is no longer a sufficient indicator, except when the length is one. Besides these general questions, the equivalence classes of $\Lambda^3 V$, when dim V=5 are determined.

KEY WORDS AND PHRASES. Grassman space, equivalent classes, representation of equivalent classes.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. 14M15.

Suppose V is a finite dimensional vector space over an arbitrary field F and r is a positive integer. Consider $\Lambda^r V$, the rth Grassman space over V. We define an equivalence relation on $\Lambda^r V$ as follows: If X and Y are in $\Lambda^r V$, we write X ~ Y iff \exists a non-singular linear transformation T:V \longrightarrow V such that $C_r(T)X = Y$, where $C_r(T)$ is the rth exterior product of T. Using the facts, that if T and S are two linear transformations of V, then $C_r(T)C_r(S) = C_r(TS)$ and if T is non-singular, then $C_r(T^{-1}) = C_r(T)^{-1}$, it follows that the above relation is an equivalence relation.

We consider the problem of determining the number of equivalence classes, into which the set $\Lambda^{r}V$ is decomposed, along with a system of distinct representatives of these equivalence classes.

DEFINITIONS. 1. If $X \in \Lambda^r V$ and $X = x_1 \wedge ... \wedge x_r$, we say X is decomposable.

- 2. If $X \in \Lambda^{\mathbf{r}}V$, we define its <u>length</u>, to be denoted by $\ell(X)$ as $\ell(X) = \min\{m \mid X \text{ is a sum of } m \text{ decomposable elements of } \Lambda^{\mathbf{r}}V\}$.
- 3. If $X \in \Lambda^r V$, we define a subspace [X] of V as $[X] = \bigcap \{U \mid U \text{ is a subspace of V and } X \in \Lambda^r U\}.$
- 4. If $X \in \Lambda^{r}V$, we define the rank of X to be denoted by $\rho(X)$ as $\rho(X) = \dim[X]$.

PROPOSITION 1. If X,Y ϵ Λ^r V and X \sim Y, then (i) ℓ (X) = ℓ (Y), (ii) P(X) = P(Y).

PROOF. (i) Let $T:V \to V$ be a n.s.l.t. such that $C_r(T)X = Y$. If $\ell(X) = s$ $X = \sum_{i=1}^{S} X_i$, where $X_i \in \Lambda^r V$ and $\ell(X_i) = 1$.

Then $Y = C_r(T)X = \sum_{i=1}^{S} C_r(T)X_i$. This implies $\ell(Y) \le s = \ell(X)$. Similarly $Y \sim X$ implies $\ell(Y) \le \ell(X)$ and this proves (i).

(ii) We first remark that if U and W are subspaces of V, then X $\in \Lambda^r U$ implies Y $\in \Lambda^r T(U)$ and Y $\in \Lambda^r W$ implies X $\in \Lambda^r T^{-1}(W)$, where T:V \to V is a n.s.l.t. such that Y = C_r(T)X. From this remark, it follows easily that [Y] = T[X] and hence P(X) = P(Y).

PROPOSITION 2. If U and W are subspaces of V, then $\Lambda^r U \cap \Lambda^r W = \Lambda^r (U \cap W)$. PROOF. Clearly $\Lambda^r (U \cap W) \subseteq (\Lambda^r U) \cap (\Lambda^r W)$. To prove the inclusion in the other direction, let x_1, x_2, \ldots, x_k be a basis of U \cap W and extend it to a basis $x_1, \ldots, x_k, y_1, \ldots, y_s$ of U and a basis $x_1, \ldots, x_k, z_1, \ldots, z_t$ of W. Then $x_1, \ldots, x_k, y_1, \ldots, y_s, z_1, \ldots, z_t$ is a basis of U + W. If $A = \{x_i \wedge x_j | 1 \le i < j \le k\}, B = \{y_i \wedge y_j | 1 \le i < j \le s\}, C = \{z_i \wedge z_j | 1 \le i < j \le t\}, D = \{x_i \wedge y_j | 1 \le i \le k; 1 \le j \le s\}, E = \{x_i \wedge z_j | 1 \le i \le k; 1 \le j \le t\}, F = \{y_i \wedge z_j | 1 \le i \le s; 1 \le j \le t\}, then the sets A, A \cup B \cup D, A \cup C \cup E, and A \cup B \cup C \cup D \cup E \cup F form bases of <math>\Lambda^r (U \cap W), \Lambda^r U, \Lambda^r W$ and $\Lambda^r (U + W)$ respectively. If $X \in (\Lambda^r U) \cap (\Lambda^r W)$, then $X = \sum_{A} a_{ij} x_i \wedge x_j + \sum_{B} b_{ij} y_i \wedge y_j + \sum_{D} d_{ij} x_i \wedge y_j \quad \text{and also} X = \sum_{A} a_{ij} x_i \wedge x_j + \sum_{C} c_{ij} z_i \wedge z_j + \sum_{E} e_{ij} x_i \wedge z_j. \text{ Hence } a_{ij} = a_{ij} \text{ and } b_{ij} = d_{ij} = c_{ij} = 0 \text{ for all the appropriate values of the indices} i \text{ and } j. \text{ Thus } X \in \Lambda^r (U \cap W).$

REMARK 1. The result of Proposition 2 holds for any number of subspaces of V.

REMARK 2. If $X \in \Lambda^r V$ and $\mathcal{S} = \{U \mid U \text{ is a subspace of } V, X \in \Lambda^r U\}$, then $\Lambda^r[X] = \Lambda^r(\ \cap U) = \bigcap_{U \in \mathcal{S}} (\Lambda^r U).$ Thus $X \in \Lambda^r[X]$ and [X] is the smallest such subspace of V.

PROPOSITION 3. Let $X \in \Lambda^2 V$, $\ell(X) = k$ and $X = \sum_{i=1}^k x_i \wedge y_i$, then $x_1, \dots, x_k, y_1, \dots, y_k$ are linearly independent.

PROOF. If not, then one of them (say) y_k is a linear combination of the

remaining $x_1, \dots, x_k, y_1, \dots, y_{k-1}$. Let $y_k = \sum_{i=1}^k a_i x_i + \sum_{j=1}^{k-1} b_j y_j$. Then $x_k \wedge y_k = \sum_{i=1}^k a_i x_k \wedge x_i + \sum_{j=1}^{j} b_j x_k \wedge y_j$. Hence X can be written as $X = \sum_{i=1}^{k-1} (x_i \wedge y_i + x_k \wedge z_i), \text{ where } z_i = a_i x_i + b_i y_i, 1 \le i \le k-1. \text{ If } z_i = 0,$ then $\ell(x_i \wedge y_i + x_k \wedge z_i) = 1$. If $z_i \ne 0$, let $a_i \ne 0$, then $x_i \wedge y_i + x_k \wedge z_i = z_i \wedge (a_i^{-1} y_i - x_k), \text{ thus } \ell(x_i \wedge y_i + x_k \wedge z_i) \le 1.$ Hence $\ell(X) \le k-1$, a contradiction.

REMARK 3. If $X \in \Lambda^2 V$, $\ell(X) = k$ and $X = \sum_{i=1}^k x_i \wedge y_i$, then $[X] = \langle x_1, \dots, x_k, y_1, \dots, y_k \rangle$.

PROOF. Let $U=\langle x_1,\ldots,x_k,\ y_1,\ldots,y_k\rangle$; then $[X]\subseteq U$. By Proposition 3, dim U=2k. Also $X\in\Lambda^2[X]$; let

 $X = \sum_{i=1}^{k} x_i' \wedge y_i', x_i', y_i' \in [X], 1 \le i \le k. \text{ Again by Proposition 3,}$ $\dim [X] \ge 2k. \text{ Thus } [X] = U = \langle x_1, \dots, x_k, y_1, \dots, y_k \rangle.$

PROPOSITION 4. If X,Y $\epsilon \Lambda^2 V$, P(X) = P(Y), then X ~ Y.

PROOF. Let $X = \sum_{i=1}^{k} x_i \wedge y_i$, $Y = \sum_{j=1}^{s} x_j' \wedge y_j'$; then by Remark 3,

PROPOSITION 5. If $X \in \Lambda^r V$, $\ell(X) = 2$, $X = x_1 \wedge \ldots \wedge x_r + y_1 \wedge \ldots \wedge y_r$, then $X = \langle x_1, \ldots, x_r, y_1, \ldots, y_r \rangle$.

PROOF. Let $U = \langle x_1, \dots, x_r, y_1, \dots, y_r \rangle$; then $[X] \subseteq U$. If $[X] \neq U$, then at least one element (say) x_1 is not in [X]. Let B be a basis of [X] and extend $\{x\} \cup B$ to a basis of U. Let W be a complement of $\langle x_1 \rangle$ in U, containing [X], i.e., $U = \langle x_1 \rangle \oplus W$, $[X] \subseteq W$. Let $x_1 = a_1x_1 + w_1$, $2 \le i \le r$ and $y_j = b_jx_1 + w_j'$, $1 \le j \le r$, where $w_i, w_j' \in W$. Then $X = X_1 + X_2$, where $X_1 \in x_1 \wedge (\Lambda^{r-1}W)$ and $X_2 \in \Lambda^rW$, and $\ell(X_1) = 1$, i = 1, 2. But $U = \langle x_1 \rangle \oplus W \Longrightarrow \Lambda^rU = x_1 \wedge (\Lambda^{r-1}W) \oplus \Lambda^rW$. Also $X \in \Lambda^r[X] \subseteq \Lambda^rW$, hence

 $X_1 = X - X_2 \in \Lambda^r W$. Thus $X_1 = 0$ and $X = X_2 => \ell(X) = 1$, a contradiction. Hence $[X] = U = \langle x_1, \dots, x_r, y_1, \dots, y_r \rangle$.

Note: The above proposition is true also for $\ell(X) = k$.

PROPOSITION 6. If X,Y ϵ Λ^r V, ℓ (X) = ℓ (Y) = 2, P(X) = P(Y), then X ~ Y.

PROOF. Let $X = x_1 \wedge ... \wedge x_r + y_1 \wedge ... \wedge y_r$, $U_1 = \langle x_1, ..., x_r \rangle$,

 $\overline{u}_1 = au_1$. Similarly $y_1 \wedge \ldots \wedge y_r = bz_1 \wedge \ldots \wedge z_k \wedge v_1 \wedge \ldots \wedge v_s = z_1 \wedge \ldots \wedge z_k \wedge \overline{v}_1 \wedge \ldots \wedge v_s$, where $\overline{v}_1 = bv_1$. Hence $X = z_1 \wedge \ldots \wedge z_k \wedge (\overline{u}_1 \wedge u_2 \wedge \ldots \wedge u_s + \overline{v}_1 \wedge v_2 \wedge \ldots \wedge v_s)$, where

 $z_1, \ldots, z_k, \overline{u}_1, u_2, \ldots, u_s, \overline{v}_1, v_2, \ldots, v_s$ is a basis of [X].

Similarly Y = $z_1' \wedge ... \wedge z_k' \wedge (\overline{u}_1' \wedge u_2' \wedge ... \wedge u_s' + \overline{v}_1' \wedge v_2' \wedge ... \wedge v_s)$, where $z_1', ..., z_k', \overline{u}_1', u_2', ..., u_s', \overline{v}_1', v_2', ..., v_s'$ is a basis of [Y].

Define T:V ----> V, a linear transformation

 $Tz_i = z_i'$, $T\overline{u}_1 = \overline{u}_1'$, $Tu_i = u_i'$, $T\overline{v}_1 = \overline{v}_1'$, $Tv_i = v_i'$, for i = 2, 3, ..., s. Then $C_r(T)X = Y$; hence $X \sim Y$.

REMARK 4. Let $X \in \Lambda^r V$, $\ell(X) = 2$, then $r + 1 \le \rho(X) \le 2r$.

PROOF. If $X = x_1 \land \dots \land x_r + y_1 \land \dots \land y_r$, then $[X] = \langle x_1, \dots, x_r, y_1, \dots, y_r \rangle$ $= U_1 + U_2, \text{ where } U_1 = \langle x_1, \dots, x_r \rangle, \ U_2 = \langle y_1, \dots, y_r \rangle. \quad U_1 \neq U_2, \text{ for otherwise}$ $y_1 \land \dots \land y_r = ax_1 \land \dots \land x_r, \text{ where a is a scalar and } \ell(X) = 1.$

 $P(X) = 2r - dim U_1 \cap U_2$. Hence $r+1 \le P(X) \le 2r$.

THEOREM 1. Let E(2, s) = $\{X \mid X \in \Lambda^r V, \ell(X) = 2, P(X) = s\}$, then E(2, s), s = r+1, r+2,...,2r are all the equivalence classes on the set of all vectors of $\Lambda^r V$, of length 2.

PROOF. Follows from Proposition 6 and Remark 4.

PROPOSITION 7. Let $0 \neq X \in \Lambda^r V$ and $x \in V$ such that $x \wedge X = 0$; then $x \in [X]$.

PROOF. Let x_1, x_2, \ldots, x_m be a basis of [X]. Then $\{\hat{x}_{\alpha} \mid \alpha \epsilon Q_{r,m}\}$ is a basis of $\Lambda^r[X]$, where $Q_{r,m}$ is a set of all the strictly decreasing sequences of length r on the integers 1, 2,...,m. det $X = \sum a_{\alpha}\hat{x}_{\alpha}$; then $x \wedge X = \sum a_{\alpha} \times \hat{x}_{\alpha}$. If $x \notin [X]$, then $\{x \wedge \hat{x}_{\alpha} \mid \alpha \epsilon Q_{r,m}\}$ is a part of a basis of $\Lambda^{r+1} < x$, [X] >. Thus $x \wedge X = 0 \Rightarrow a_{\alpha} = 0 \ \forall \alpha \in Q_{r,m} \Rightarrow X = 0$, a contradiction.

PROPOSITION 8. If $0 \neq X \in \Lambda^r V$ and $x \notin [X]$, then $[x \wedge X] = \langle x \rangle \oplus [X]$.

PROOF. By Proposition 7, $x \wedge X \neq 0$. Again by Proposition 7, since $x \wedge (x \wedge X) = 0$, hence $x \in [x \wedge X]$. Clearly $[x \wedge X] \subseteq \langle x \rangle \oplus [X]$. Let x, x_1, \ldots, x_k be a basis of $[x \wedge X]$ and extend it to a basis $x, x_1, \ldots, x_k, x_{k+1}, \ldots, x_m$ of $\langle x \rangle \oplus [X]$. If $U = \langle x_1, \ldots, x_k \rangle$, then $[x \wedge X] = \langle x \rangle \oplus U$, $U \subseteq [X]$. $\Lambda^{r+1}[x \wedge X] = x \wedge (\Lambda^r U) \oplus \Lambda^{r+1} U$. Let $x \wedge X = x \wedge u + v$, where $u \in \Lambda^r U$ and $v \in \Lambda^{r+1} U$. Thus $x \wedge v = 0$. If $v \neq 0$, then by Proposition 7, $x \in [v] \subset U$, a contradiction. Hence v = 0 and thus $x \wedge X = x \wedge u$. Then $x \wedge (X - u) = 0$. If $X - u \neq 0$, then by Proposition 7, $x \in [X - u]$. Now $X \in \Lambda^r[X]$ and $u \in \Lambda^r U \subseteq \Lambda^r[X]$, thus $X - u \in \Lambda^r[X]$. Hence $[X - u] \subseteq [X]$. Thus $x \in [X - u] = \rangle$ $x \in [X]$, which is a contradiction and therefore X - u = 0; i.e., $X = u \in \Lambda^r U$. Hence $[X] \subseteq U$. Also $U \subseteq [X]$, hence U = [X] and $[x \wedge X] = \langle x \rangle \oplus [X]$.

PROPOSITION 9. Suppose X ϵ $\Lambda^2 V$, $\ell(X) = 2$, x_1 , x_2 are linearly independent vectors in [X]. Then $\exists y_1, y_2 \epsilon [X]$ and $\lambda \epsilon F \ni X$ has one and only one of the following representations: (i) $X = x_1 \wedge y_1 + x_2 \wedge y_2$,

(ii) $X = \lambda x_1 \wedge x_2 + y_1 \wedge y_2$.

PROOF. $X \in \Lambda^2 V$, $\ell(X) = 2 => P(X) = 4$. Extend x_1 , x_2 to a basis x_1 , x_2 , x_3 , x_4 of [X].

Then
$$X = \sum_{1 \le i < j \le 4} a_{ij} x_i \wedge x_j, a_{ij} \in F.$$

If $a_{34} = 0$, take $y_1 = a_{12}x_2 + a_{13}x_3 + a_{14}x_4$ and $y_2 = a_{23}x_3 + a_{24}x_4$, then $X = x_1 \wedge y_1 + x_2 \wedge y_2$. If $a_{34} \neq 0$, then $(-\lambda + a_{12})a_{34} - a_{13}a_{24} + a_{14}a_{23} = 0$ (1) has a solution in F. Set $Y = (-\lambda + a_{12})x_1 \wedge x_2 + a_{13}x_1 \wedge x_3 + a_{14}x_1 \wedge x_4 + a_{23}x_2 \wedge x_3 + a_{24}x_2 \wedge x_4 + a_{34}x_3 \wedge x_4$. Then $Y = -\lambda x_1 \wedge x_2 + X$. Because of (1), $\ell(Y) = 1$; also $Y \in \Lambda^2[X]$. Thus $y_1, y_2 \in [X]$ $Y = y_1 \wedge y_2$. Hence $X = \lambda x_1 \wedge x_2 + y_1 \wedge y_2$. If $X = x_1 \wedge y_1 + x_2 \wedge y_2$ and also $X = \lambda x_1 \wedge x_2 + z_1 \wedge z_2$ then $x_1 \wedge X = x_1 \wedge x_2 \wedge y_2$ and also $x_1 \wedge X = x_1 \wedge z_1 \wedge z_2$. Thus $0 \neq x_1 \wedge x_2 \wedge y_2 = x_1 \wedge z_1 \wedge z_2$ and hence $\langle x_1, x_2, y_2 \rangle = \langle x_1, z_1, z_2 \rangle$. Let $z_1 = a_1x_1 + a_2x_2 + a_3y_2$ and $z_2 = b_1x_1 + b_2x_2 + b_3y_2$. Then $z_1 \wedge z_2 = (a_1b_2 - a_2b_1)x_1 \wedge x_2 + (a_1b_3 - a_3b_1)x_1 \wedge y_2 + (a_2b_3 - a_3b_2)x_2 \wedge y_2$. Putting this expression for $z_1 \wedge z_2$ in $X = \lambda x_1 \wedge x_2 + z_1 \wedge z_2$, we get two different representations of X in the basis of $\Lambda^2[X]$, determined by the basis x_1, x_2, y_1, y_2 of [X]; thus X has precisely one of the two representations.

PROPOSITION 10. If X,Y ϵ $\Lambda^r V$ are decomposable, then X+Y is decomposable iff dim[X] \cap [Y] \geq r-1.

PROOF. (=>) Let X+Y be decomposable, and X+Y = Z, $\ell(z) \le 1$.

Let X = $x_1 \land \dots \land x_r$, Y = $y_1 \land \dots \land y_r$, Z = $z_1 \land \dots \land z_r$. If [X] = [Z], then for any i, 1 \le i \le r, $z_i \land X$ = $z_i \land Z$ = 0; but then $z_i \land Y$ = 0, and thus $z_i \in [Y]$ by Proposition 7, and [Z] = [Y]. Hence [X] = [Y], i.e., $\dim[X] \cap [Y] = r$.

If [X] \ne [Z], then for some i, $z_i \notin [X]$. But $z_i \land (X+Y) = 0 \Rightarrow z_i \land X = -z_i \land Y \Rightarrow \langle z_i, [X] \rangle = \langle z_i, [Y] \rangle$. Thus [X], [Y] are r-dimensional subspaces in an (r+1) - dim space $\langle z_i, [X] \rangle$. Hence $\dim[X] \cap [Y] \ge \dim[X] + \dim[Y] - (r+1) = r-1$. (<=) If $\dim[X] \cap [Y] \ge r-1$.

Let u_1, \dots, u_{r-1} be 1.i. vectors in [X] $\cap [Y]$ and extend these to a basis x, u_1, \dots, u_{r-1} and a basis y, u_1, \dots, u_{r-1} of [X] and [Y] respectively. Thus $X = ax \land u_1 \land \dots \land u_{r-1}, Y = by \land u_1 \land \dots \land u_{r-1}$ for some a and b.

Hence X+Y = $(ax+by)\wedge u_1\wedge \dots u_{r-1}$, i.e., X+Y is decomposable.

THEOREM 2. If dim V = 5, X ϵ Λ^3 V, then $\ell(X) \leq 2$.

PROOF. We shall first prove that $\ell(X) \le 3$. Let x_1 , x_2 , x_3 , x_4 , x_5 be a basis of V. Then

$$X = \sum_{1 \le i < j < k \le 5} a_{ijk} x_i^{\lambda} x_j^{\lambda} x_k = x_1^{\lambda} x_2^{\lambda} (a_{123} x_3 + a_{124} x_4 + a_{125} x_5)$$

$$+ x_1^{\lambda} x_3^{\lambda} (a_{134} x_4 + a_{135} x_5) + x_2^{\lambda} x_3^{\lambda} (a_{234} x_4 + a_{235} x_5)$$

$$+ (a_{145} x_1 + a_{245} x_2 + a_{345} x_3) x_4^{\lambda} x_5.$$

Let $y_1 = a_{134}x_4 + a_{135}x_5$, $y_2 = a_{234}x_4 + a_{235}x_5$. If y_1, y_2 are 1.d., then $\ell(X) \le 3$. So we assume y_1, y_2 are 1.i.; then $\langle y_1, y_2 \rangle = \langle x_4, x_5 \rangle$, and thus $x_4 \wedge x_5 = \lambda y_1 \wedge y_2$, $\lambda \in F$. Let $a_{124}x_4 + a_{125}x_5 = b_1y_1 + b_2y_2$. Then $X = x_1 \wedge x_2 \wedge (a_{123}x_3 + b_1y_1 + b_2y_2) + x_1 \wedge x_3 \wedge y_1 + x_2 \wedge x_3 \wedge y_2$

$$= a_{123}x_1^{\wedge x_2^{\wedge x_3}} + (x_1 + a_{345}x_2)^{\wedge y_1^{\wedge (-b_1x_2 - x_3 + a_{145}x_2)}$$

$$+ (b_2x_1 - x_3 - (a_{245} - a_{345}b_1)^{\lambda y_1})^{\wedge x_2^{\wedge y_2}}.$$

 $+ \lambda (a_{145}x_1 + a_{245}x_2 + a_{345}x_3)y_1^{y_2}$

Hence $\ell(X) \leq 3$.

Let $X = X_1 + X_2 + X_3$, where X_1 , X_2 , X_3 are decomposable, $X_1 = x_1 \wedge x_2 \wedge x_3$, $X_2 = y_1 \wedge y_2 \wedge y_3$, $X_3 = z_1 \wedge z_2 \wedge z_3$. Then $1 \le \dim[X_1] \cap [X_2] \le 3$.

CASE 1. $\dim[X_1] \cap [X_2] = 3$. Then $X_2 = \lambda X_1$ for some λ and thus $\ell(X) \le 2$.

CASE 2. $dim[X_1] \cap [X_2] = 2$. Let u_1, u_2, v and u_1, u_2, w be bases of $[X_1]$

and $[X_2]$ respectively. Then $X_1 = \lambda u_1 \wedge u_2 \wedge v$ and $X_2 = \lambda u_1 \wedge u_2 \wedge w$. Then $\ell(X) \le 2$.

CASE 3. $\dim[X_1] \cap [X_2] = 1$. $\det u_1$, u_2 , u_3 and u_1 , u_4 , u_5 be bases of $[X_1]$ and $[X_2]$ respectively. Then $X_1 = u_1 \wedge u_2 \wedge u_3$, $X_2 = u_1 \wedge u_4 \wedge u_5$; we have assumed the co-effs. to be absorbed with the vectors u_1 's and v_1 's. Then $X_1 + X_2 = u_1 \wedge Y$, where $Y = u_2 \wedge u_3 + u_4 \wedge u_5$. Also $[X_1] + [X_2] = V$.

Since $\dim(u_2, u_3, u_4, u_5) \cap [X_3] \ge 2$, we can take $X_3 = w_1 \wedge w_2 \wedge w_3$, where $w_1, w_2 \in \{u_2, u_3, u_4, u_5\}$. By Proposition 9, v_1, v_2 and $\lambda = Y = \lambda w_1 \wedge w_2 + v_1 \wedge v_2$ or $Y = w_1 \wedge v_1 + w_2 \wedge v_2$. If $Y = \lambda w_1 \wedge w_2 + v_1 \wedge v_2$, then $X = u_1 \wedge Y + w_1 \wedge w_2 \wedge w_3$ has length ≤ 2 . If $Y = w_1 \wedge v_1 + w_2 \wedge v_2$, then since u_1, w_1, w_2, v_1, v_2 is also a basis of V, let $w_3 = a_1 u_1 + a_2 w_1 + a_3 w_2 + a_4 v_1 + a_5 v_2$. Then $X = X_1 + X_2 + X_3 = (u_1 - a_4 w_2) \wedge w_1 \wedge v_1 + u_1 \wedge w_2 \wedge v_2 + (a_5 v_2 + a_1 u_1) \wedge w_1 \wedge w_2$ has length ≤ 2 , since $Z = u_1 \wedge w_2 \wedge v_2 + (a_5 v_2 + a_1 u_1) \wedge w_1 \wedge w_2$ and $\dim(u_1, w_2, v_2) = 0 + (a_5 v_2 + a_1 u_1, w_1, w_2) \ge 2$ implies $\ell(Z) \le 1$.

REMARK. There exists $X \in \Lambda^3 V$ with $\ell(X) = 2$; for if x_1, x_2, x_3, x_4, x_5 is a basis of V and $X = x_1 \wedge x_2 \wedge x_3 + x_1 \wedge x_4 \wedge x_5$, then $\ell(X) = 2$, by Proposition 10.

REMARK. If $X \in \Lambda^3 V$, dim V = 5, $\ell(X) = 2$, then P(X) = 5; for let $X = X_1 + X_2$, where $\ell(X_1) = \ell(X_2) = 1$. Since X is not decomposable, then by Proposition 10, $\dim[X_1] \cap [X_2] < 2$ and hence

 $dim[X] > dim[X_1] + dim[X_2] - dim[X_1] \cap [X_2] = 4$, i.e., P(X) = 5.

It follows from Proposition 6 that if X,Y ϵ $\Lambda^3 V$ and $\ell(X) = \ell(Y)$, then $X \sim Y$. Hence all the equivalence classes of $\Lambda^3 V$ are given by

$$s_0 = \{x \mid x \in \Lambda^3 v, \ell(x) = 0\} = \{0\}$$

 $s_1 = \{x \mid x \in \Lambda^3 v, \ell(x) = 1\}$
 $s_2 = \{x \mid x \in \Lambda^3 v, \ell(x) = 2\}.$

<u>ACKNOWLEDGMENT</u>. The author is grateful to Professor R. Westwick for his invaluable help in the preparation of this manuscript.

REFERENCES

- Hodge, W. V. D. and D. Pedoe. <u>Methods of Algebraic Geometry</u>, Vol. 1, University Press, Cambridge, 1953.
- Lim, M. J. S. L-2 Subspaces of Grassmann Product Spaces, <u>Pacific J. Math.</u> 33 (1970) 167-182.
- 3. Gurewich, G. B. Foundations of the Theory of Algebraic Invariants, P. Noordhoff Ltd., Groningen, The Netherlands, 1964.