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ABSTRACT. In this paper we obtain the general solution of scalar, first-order
differential equations. The method is variation of parameters with asymptotic
series and the theory of partial differential equations.

The result gives us a form like a differential quotient requiring only
that a limit be taken. Like the familiar expression for the solution of linear,
first order, ordinary equations, it is the same in all cases.
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1. INTRODUCTION.
We present a unified treatment for the general scalar, first-order, ordinary

differential equation

y' = 6(x,y), G ¢ ct.
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Particular examples are linear equations, Riccati equations and Abel
equations.
2. PRELIMINARIES.

We begin with the differential system

| - = -
(Vl = £(V],V,) AN

V1 - V2 (2.1)

'
V2 h(vl’VZ)
V#0

with general solution V1 = Vl(x,cl,cz), V2 = V2(x,cl,c2). Here ¢ sc, are
arbitrary constants.

Now let x = x(t). Then we get

Vo= -

Vp =g = 3t

V, = Uk

2 2 2.2)
U, = £(V,V,), U, = h(V},V,)

Vl #0

We are now ready to present the algebraic system referred to in the title.

3. THE CAUCHY-KOWALEWSKI SYSTEM.

Let v, = wl(t,e), w, = wz(t,e) be two functions of t and € (at present
unknown) .

The functions V.,V_, have been given by (2.1). Finally two more unknown

1’72
functions K(wl,wz,t,e) and LCwl,wz,t,e) will be defined by partial differ-
ential equations later. They will contain another variable, A. It will be

possible to substitute an arbitrary G(wl,t) for A to solve specific equatioms.
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DEFINITION. The system of algebraic equations
(a) v - K(wl,wz,t,e)vl =0
2_ -— =
(b) v L(wl,wz,t,e) V2 0

(3.1)

(¢) x= vy + th.

Wy #0 J

is called the Cauchy-Kowalewski system, for a specific G(wl,t). Using )\ we

will get a universal system.

Under suitable conditions on the functions K and L, we can solve it for
w, o= wl(t,e) and W, = wz(t,s). We proceed by defining these functions as
solutions of appropriate partial differential equations. We will derive
these functions L(wl,wz,t,e,k) and K(wl,wz,t,e,x) and regard them as fixed

like universal constants.

4. THE FIRST FUNCTION K IN THE CAUCHY-KOWALEWSKI SYSTEM.

We differentiate 3(a-b) with respect to t to get expressions for &1’&2'

Denoting the expression for &l by R we get

W = R (4.1)

To simplify notation, let K = a in (4.1) and get

Ale + A2L3 + A

3
1 —A2L1 + A4L2 + A5

(4.1a)

Some of the Ai, i=1,...,5 are given explicitly later. These are not partial

derivatives. By contrast,

_ oL
L1 = 3;; etc.
w
Now let z = L - w% and note that from (2.1), 3(a-b) we have f = 7%—z,

w
h = 7%—+ z in the new notation.
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The following equation is of fundamental importance. We arbitrarily set

= - 2 _
A, = 2wwya; - wytha, + way + tfa € (4.2)

Ja
where K = a = a(L,wl,wz,t,e) and a; =<7 »etc., for real ¢ > 0.
By the Cauchy-Kowalewski theorem [See e.g. (2.1)] let a, = ao(L,wl,wz,t,e)

be an analytic solution of (4.2). Further, we will write

Ai = Ai(ao), i=1,2,3,4,5.

-]

n
Let a = n‘EO c.€ where c, = cn(L,wl,wz,t) are analytic. Before imposing

conditions on c, we give the following definitions.

w
1
DEFINITION. sI-;O[(_a + z) (wla°4 ERALLI! + wzuo)] = Sl(L,wl,wz,t).

Two more of the A, will now be given explicitly.

i
Al = (g + z)(w1a°4 - W W, + wzao)
A = + o’ - a - wh
4~ Y1%2 T % % T V1%
DEFINITION. L Kl = A.
e>0

DEFINITION. e-]:o () - G ,t)A)) = 8, (L ,u,,t).

The conditions on ¢, can be stated now as follows:

@) ¢ %o, () 8, (L,wy,w,,t) $o0, (3) a4%o.

Substituting @ = 20 cnen in (4.2) we get

n=
Y1
2wlw2c°1 - wlt(? + z)col + wi1C03 + t:wlzco =0 (4.3)

o
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of which some solutions are given
1
H[B(co,z,wl),w2 +-E P(co,wl,B(co,z,wl))] = constant (4.3a)

where
(1) H is arbitrary

(2) B satisfies the partial differential equation
Y1
COZBl + (C—' + 2)82 =0
o
(w183 + c081 * 0

(3) P is defined as follows: first solve B(CO,wl,z) = a

for z = Q(co,wl,a). Then set

dc
P = J__.__.O___ .
coQ(co,wl,a)

THEOREM 1. The function H can be chosen analytic in (4.3a) so that
conditions (2.1), (2.2), (3.1) hold for e

PROOF. Let y = v, + %-P and then (4.3a) becomes H(B,y) = constant. The
partial derivatives of c, are computed from (4.3a) and from them we see that

ac _

H * 0 implies that ——2-# 0, so condition (2.1) holds. Further, A = L A =0
Y ot e>0 1
tmplies & + wpH = 0. SoH 40 implies A 4 0. Thus (2.1), (2.2) hold if
merely H_ $ 0. Now §) = 0 implies that tw,(w By + c B,)H, + B = 0. Since
w183 + cosl + 0, we can choose H so that S1 + 0. This completes the proof.

Summarizing the results of this section, K = a = a, can be defined as the
solution of (4.2) where H is analytic, c_ $o, S, $ 0, and 4 § 0. To solve
(3.1) however, we must define L.

5. SOLUTION OF THE CAUCHY-KOWALEWSKI SYSTEM.

To solve the system (3.1), we must now define the function L(wl,wz,t,e).
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Setting w = G, a = o and KZ = ¢, (4.2) in (4.1a) suggests defining L

o
by

SGLl + (A1 - GA4)L2 + eL3 = GA5 - A3.
Ll = 33% , etc. This does not seem to be feasible. Instead, letting ¢ tend

1
to zero leads to

Ly =2k -2 3 (5.1)
2 Al - GA4

This will be used to define L.
Let A be a new variable and consider
M. - A

L, =—3 (5.2)

Note that the right side of (5.2) is analytic where vy # 0 and
Kl - ).K4 # 0. So letlL = f(wl,wz,t,e,x) = Pl(wz) + Pz(wl,wz,t,e,k) be an
analytic solution on (5.2) and assume that none of the expressions A, Sl’ <,
vanish when L = Pl (wz).

Now since the value of —B%;(f(wl,wz,t,e,)\) for A = G(wl,t) is the same as
T;z-(f(wl,wz,t,e,c(wl,t)) we see that f(wl,wz,t,e) = f(wl,wz,t,e,G(wl,t)) is a
solution of (5.1) for any G. Moreover I € CI since G is continuous and L

is analytic. Let K, = a (f,w ,wz,t) and L = f

G 1
We now prove the solvability near suitable points of the Cauchy-Kowalewski
system. The variable A gives our functions the universal character referred
to previously.

LEMMA I. Let (a,b,c) be such that Sl(Pl(b)a,b,c) # 0. Then, for small t,

the Jacobian of (3.1) is nonzero at (a,b,c,e).
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PROOF. If the Jacobian of (3.1) = 0, then

-A2Ll + A4L2 + As =0 (5.3)

The subsidiary equations of (5.3) are:

dw dw -
—+-2-L | 5o tha ;TL=—_—5
-A2 A4 --A5 2 A4
GA, - A
But from (5.1), -&de-= = E] _3 .
2 A1 - GA4
Thus AlA5 - A3A4 = 0.
_—— _—— wl
But A1A5 - A3A4 = (w1a04 - W Woa o + wzao)(zg + z)e. So
. v
L (wlaola = WWoa o + wzao) (a_ + z) = 0. However
e>0
Y1
e-I:O (w1a04 - wv,a .t wzao) (q +2z) = Sl(Pl(wz),wl,wz,t) # 0 and the

proof is complete.
We next consider continuity in order to apply the implicit function

theorem to (3.1). We first observe that L A, # 0. If L K4 = 0, then
0 1 e*0

e-I;O (Al - GA4) # 0.

L (A, -GA) =0.

g M1 T %

LEMMA II. There is at most one function G such that L (Xl - GA,) = 0.
>0 4

Now consider the case where L Klo # 0, but
€0

PROOF. i’(wl,wz,t,e) = I(wl,wz,t,c(wl,t)) = P (W) + €P) (W), W,,t,€,G(w;,t)).

So it and its partials with respect to w

l,wz,t do not contain G as e20. Since

Go = nio cn(L’w]_QWZ’t) = co(anlngyt) + cl(L,wl,wz,t) + CZ(L’wl’wz’t)ez + ey



264

L. K. WILLIAMS

the same holds for it.

Thus L Ki and L A, are independent of G.
>0 4 -

e>0

é’»l

So G = . This completes the proof.

e+0 4

In the sequel, we ignore this possible exception and assume that

L di - GA ) 0 for any G.
e0 1 4 *

LEMMA III. If (a,b,c) is such that Sz(Pl(b),a,b,c) # 0, there is an

e > 0 such that the left sides of (3.1) are cl at (a,b,c,€).

PROOF. Based on analytic properties of V

SZ’ we will not give details.

Choosing constant values for Vs

Y

G

L,K. and the nonvanishing

v, in (3.1), we can get cl(e),cz(e) 80

that left sides vanishes and apply the implicit function theorem to (3.1).

Then we solve for wl(t,e) and w2(t,e). Here €1sCy

of section 2.

6.

THE PRINCIPAL DIFFERENTIAL EQUATION.

We now consider the differential equation

gz= =
i =Y =8y

DEFINITION. Wl(t) = eEO wl(t,e).

It will be shown that Wl(t) satisfies (6.1).

to W,,t respectively.

and also L, 0 as € » 0.

1
We begin this process with

THEOREM II. Let S1 # 0 at (W. ,wz,_) Then —

T L)
PROOF. L = Pl(wz) + ePz(wl,w ,t,G(wl,t)) so that — > 0 as e » 0

ot 1°73

Thus L L + 0 as e > 0.

come from equation (2.1)

Of course we change y,x

(6.1)

l(t €) » G(_ ,t) as € + 0.

el

)
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Now (5.1) AL, +A_= G(A4L2 + AS)'

172 3
AA - AA S, e
Also AL, + A = -2 i4=_ .
Al - GAA Al - GA4
AL +AL +A eL, + AL +A
mus r=L2 23t % T3t hE YA
-A2L1 + A['L2 + A5 —eLl + A4L2 + A5
o o - eLy + GA,L, + A,) ) (&, - GA)L; + GS;
1 — — — — .
-eL, + (A,L, + A,) -(A) - GA)L, +5;
. Gs
Therefore vy >~ as e 0 and Sl # 0. This completes the proof.
1

d = = =
By the last theorem, eP*O Rwl(t,e) e}).()G(w:l_(t:,e),t) G(e_l;owl(t,e),t)

G(Wl(t),t).

But also it is true [2: P.461] that

4 -4 =W,
SI;O dt wl(t!e) dt (eEOwl(t’e)) wl (t)‘

So Wl'(t) = G(Wl(t),t) (6.2)

7. PARTICULAR AND GENERAL SOLUTIONS OF y' = G(x,y).

7(a) PARTICULAR SOLUTIONS. Let J(wl,t) € CI,

* - *

L (wl,wz,t) = L(wl,w ,t,e,J(wl,t)) and a*(wl,wz,t) = ao(L ,wl,wz,t).
Let Q be the set of points in (wl,wz,t)-space where

) vy #£0 (2) <, #0 (3) Sl #0 (4) S, # 0.
Let Q be the projection of Q on the (wl,t) plane.

The Universal Cauchy-Kowalewski System

DEFINITION. a(w JE,E,A) = ao(f,wl,wz,t).

1°¥2

DEFINITION. Fl = W - aVl(wl + th,cl,cz).
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2 —
DEFINITION. F2 2w, - L(wl,wz,t,e,l)-Vz(wl + th,cl,cz).
DEFINITION. F, = Xl - J(wl,c)K4 with A replaced by J(w,t).
Fl =0
DEFINITION. The system Fz =0 is also called the Universal
F3 #0

Cauchy-Kowalewski System.

We refer to it in the following

THEOREM III. Let P ¢ 6. There is a region in which the solution through
P of &l = J(wl,t) is determined as follows:

(1) 1In Fl,F2 replace A by J(wl,t) and €1sCy by suitable functions of e.

(2) Equate the results in (2.1) to zero.

(3) Solve the resulting system for wy(t,e) and wz(t,e).

(4) Take the limit of wl(t,e) as € »+ 0.

PROOF. Let P = (a,to), P e Q. Since co(Pl(b),a,b,to) # 0, there is an

€ such that q*(a,b,toe) # 0. Let (Vl,Vé) be a solution of (2.1) such that

37 _ a

Vl(a + tob) - a*(a,b,to,e)
V,(a+tb) =b2-L¥@a,b,t ,e)
2 o ’,o’ .

Solve the system:

a —
(@8] Vl(a + tob’cl’CZ) - m =0

*
2) Vz(a + tob,cl,cz) - b2+ 1L (a,b,to,e) =0

to get suitable ¢, = cl(e), c, = cz(e).
Since S1 # 0 our system has nonzero Jacobian. We solve for wl(t,e) and

get the result.
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7(b) GENERAL SOLUTIONS. Alternatively, eliminating v, from the Universal

Cauchy-Kowalewski System we get
X(wl,t,e,A,cl,cz) =0 (7.1)

where c are constants.

1°%2
The general solution of a specific equation is obtained as follows:
(1) Replace A by G(wl,t) in (7.1).
(2) Take the limit as € > 0 of the result.

X is derived from L and K and is like the familiar differential quotient in

generality.
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