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ABSTRACT. A theory is presented of the generation and propagation of the

two and the three dimensional tsunamis in a shallow running ocean due to the

action of an arbitrary ocean floor or ocean surface disturbance. Integral

solutions for both two and three dimensional problems are obtained by using

the generalized Fourier and Laplace transforms. An asymptotic analysis is

carried out for the investigation of the principal features of the free sur-

face elevation. It is found that the propagation of the tsunamis depends on

the relative magnitude of the given speed of the running ocean and the wave

speed of the shallow ocean. When the speed of the running ocean is less than

the speed of the shallow ocean wave, both the two and the three dimensional
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free surface elevation represent the generation and propagation of surface

-1/2
waves which decay asymptotically as t for the two dimensional case and as

-I
t for the three dimensional tsunamis. Several important features of the

solution are discussed in some detail. As an application of the general

theory, some physically realistic ocean floor disturbances are included in

this paper.

KEY WORDS AND PHRASES. Seismic waves, tsunami, srface waves in a running
ocean, dynami o f oceans.
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i. INTRODUCTION.

A significant deformation of an ocean floor caused by an underwater

earthquake, landslide or volcanic eruption produces a seismic wave (often

called a tsunami) on the ocean surface. Once the tsunami is generated, it

propagates into more and more shallow ocean, and its propagation is influ-

enced by the depth of the ocean. Both the wave amplitude and energy increase

significantly toward the shoreline. Since the energy of the tsunami is dissi-

pared very slowly, the large amplitude ocean waves then strike the coastline,

producing a serious threat to life, wealth and economic resources in coastal

regions. Indeed, among the various natural hazards, the tsunamis are found to

have catastrophic effects on near and distant coastal regions, coastal struc-

ture, marine vehicles and equipment.

Van Dorn (i) and Carrier (2) have made some informative surveys on the

dynamics of tsunamis and discussed the qualitative and quantitative results

obtained for various simplified modes of tsunamis. In order to indicate our

interest in the problem of generation and propagation of tsunami in a running

ocean, mention may be made of the two recent models of the ocean floor disturb-

ances. Based upon the linear and nonlinear theory of wave motion in an ocean

of uniform depth, Hammack (3) has made both theoretical and experimental
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investigation of tsunami generation due to some particular ocean floor distur-

bances. The main emphasis of his analysis is to determine the applicability

of the linear theory in the generation region. Although this model does con-

sider the nonlinearity, the surface displacement integrals related to ocean

floor disturbances have not been evaluated so that no conclusion can be drawn

about the principal features of the wave motions. Braddock et al (4) have

considered the problems of tsunami generation due to a sea floor disturbance

which is described by series of orthogonal functions. Using the standard

techniques of integral transforms and stationary phase methods, they have

presented the asymptotic solution for the free surface flows produced by the

applied ocean floor disturbance. It has been shown that tsunami consists of

a dispersive wave train preceded by a nondispersive wave front traveling as

a long ocean wave. The relative order of magnitude of the wave train and the

wave front is found to depend on the degree of symmetry or asymmetry of the

ocean floor disturbances.

In almost all models considered in the literature including the two men-

tioned above, the dynamics of tsunamis was confined to shallow or deep oceans

at rest. In this paper, a study is made of the generation and propagation of

tsunamis in a shallow running ocean due to the action of an arbitrary ocean

floor or ocean surface disturbance. An asymptotic analysis for both two and

three dimensional tsunamis is presented to investigate the principal features

of the free surface elevation. It is shown that the propagation of the tsuna-

mis depends on the relative magnitude of the speed of the running ocean and

the critical wave speed in the shallow ocean. When the basic speed, U, of the

running ocean is less than the speed of the shallow ocean wave, both the two

and the three dimensional free surface elevation represent the generation and

-1/2 for the twopropagation of surface waves which decay asymptotically as t

-I
dimensional problem and as t for the three dimensional tsunamis.
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2. MATHEMATICAL FORMULATION OF GENERAL PROBLEM.

We consider an inviscid incompressible fluid of infinite horizontal extent

which is bounded above by the free surface at z 0 and bounded below by a

solid bottom at z =-h. In its undisturbed state, the fluid flows with con-

stant velocity. The wave motion is set up in the fluid by the combined action

of a given bottom disturbance and the pressure distribution at the free surface.

It is convenient to formulate the initial value problem in a coordinate frame

with respect to which the applied pressure is at rest. We thus take the Car-

tesian coordinate system Oxyz such that the x- y plane represents the undis-

turbed free surface with the origin located on it, the z axis is directed

vertically upward and the fluid moves in the Ox direction with uniform velocity

U relative to this frame.

At time t > 0, the solid bottom of the ocean is subjected to move in a

prescribed manner given by z -h + (_r, t) such that (_r, t) 0 as r

when r (x, y). In addition, the pressure is prescribed on the free surface

of the liquid so that the free surface flow is generated in the shallow running

ocean by the action of the surface pressure or the bottom disturbance.

As the flow is generated by the disturbances in the uniform stream, the

disturbance velocity potential (x,y,z;t) satisfies the Laplace equation

V2 -= xx + yy + zz 0, (x, y) e (-, =) -h <__ z <__ 0, t > 0. (2.1)

With (x,y;t) representing free surface displacement, the linearized

kinematic boundary conditions on the free surface and the solid bottom are

z nt + Unx on z 0, t > 0, (2.2)

z Ct + Ux on z 0, t > 0, (2.3)

In the absence of surface tension of the fluid, the dynamic condition on
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the free surface in the linearized form is given by

1
t + Ux + gn - p(x,y;t) on z 0, t > O, (2.4)

where p is the constant density of the fluid and p(x,y;t) is the pressure

prescribed on the face surface.

The initial conditions are

(x,y,z;0) (x,y;0) (x,y;0) 0, (2.5)

Further, it is assumed that , and are generalized functions (or

distributions) of x and y in the sense of Lighthill (5) so that their Fourier

transforms exist with respect to x and y.

3. SOLUTION OF THE INITIAL VALUE PROBLEM.

The above wave problem can readily be solved by using the Laplace trans-

form with respect to t and the generalized Fourier transform with respect to

x and y defined by

-- 1 I -ik’r I e-Stff(k,z;s) e dr (r,z;t)dt, (3.1)

where k -= (k,) is the two-dimensional wave vector, the tilda and the bar denote

the Laplace and the Fourier transforms respectively.

Application of (3.1) to the differential system (2.1) (2.5) gives the

solutions for the transform functions #(k,z;s) and n(k,s). Using the inverse

Laplace and Fourier transformations, the surface displacement (x,y;t) is

given by

where

c+i

n(x,y;t) n(k,s) exp(ik-r + st)dk_ds,
c-i

-(_.k, s)
T(_k,s) (s+Uik)2sechlklh-(gp)-ib2 (k,s)

(s+Uik) 2 + b 2

(3.2)

(3.3)
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-(k,s), p(k,s) are the Laplace and the Fourier transforms of (r,t) and p(r,t),

and b (glkltanh’Iklh) (3.4)

It is noted that in the absence of the surface pressure disturbance and the

basic stream, the integral solution (3.2) with (3.3) reduces to that of Hammack

(3) for the two dimensional case and to that of Braddock et al (4) for the

three dimensional case.

The Laplace inversion of (3.3) can be carried out by means of a suitable

complex contour integral combined with the theory of residues. The simple

poles of the integral of (3.2) are at s ibl, -ib
2
where bI b Uk and

b
2

b + Uk. These poles are on the imaginary axis of the complex s-plane

and their residue contributions to (x,y;t) lead to the propagation of surface

wave trains. The other singularities of (3.2), if any, related to some physi-

cally realistic bottom or pressure disturbances are all poles located at the

left of the imaginary axis in the s-plane. Their residue contributions to the

solution decay exponentially in time and so are in general insignificant.

The residue contributions only from the simple poles at s ibl, -ib
2

give the oscillatory surface elevation in the form

(x,y;t) A(k,-ib2) exp(ik-r- ib2t)dr- A(k, ibI) exp(ik.r + iblt)dk,
(3.5)

where

A(k,s) i[(k,s)(s+Uik)2_ sech Iklh + (g0)
-I b2(k,s)]_ (3.6)

It is evident that the terms exp[i(k-r +_ tb )], n i, 2 represent the
n

surface waves with the complex amplitudes A(k, + ib respectively.
n

On the other hand, when -(k,s) and (k,s) have polar singularities on the

imaginary axis in the s-plane, the Laplace inversion of (3.3) would be made up
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of these polar contributions including from ib
I
and-ib2.

Of special interest are the following bottom and pressure disturbances"

(r,t) 0(r_)f(t)H(t), p(_r,t) Pp(r)eitH(t), (3.7a,b)

where 0’ P are constants, H(t) is the Heaviside function of time t,

(_r) (x,y), and p(_r) p(x,y) are functions of compact support in the x-y

plane, f(t) is a suitable function of t and is the frequency of the applied

pressure.

The surface displacement n(x,y;t) related to (3.7a,b) is obtained from

(3.2) in the form

0 I (k)(x,y;t)
coshlklh

t

iUkf ik "dk[f(t) b e- (t-r)sinbr d]e-

0

I [_b
I

iblt -ib2t
P 1 1 imt e e+ 2’’g0 b(k)_ --)e+b2 (-bl +b2

ik- r)]e ----dk, (3.8)

In general, the exact evaluation of the integrals (3.5) and (3.8) is almost

a formidable task and hence it is necessary to resort to asymptotic methods.

4. ASYMPTOTIC ANALYSIS FOR THE TWO DIMENSIONAL PROBLEM.

In the corresponding two dimensional wave problem, there is no y dependence.

Hence, the free surface displacement (x,t) corresponding to (3.5) is given by

(x,t) I A(k’-ib2) exp(ikx- ib2t)dk
i I A(k’ibl) exp(ikx + iblt)dk,

(4.1)

where k is the one dimensional wave number,

1A(k,s) -[(k,s)(s + Uik)
2

sech kh + (gO) Ib2 (k,s)], (4.2)

b (gk tanh kh)1/2,and (4.3)
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In order to make an asymptotic evaluation of (4.1) for large t such that

Ixl << ut, we shall follow the method of Debnath and Rosenblat (1969). Writ-

ing X for kh, the stationary points for the integrals in (4.1) as t + are

approximately given by c’ (X) YU where c g/ and () (X tanhx) 1/2. The

necessary and sufficient condition for the existence of stationary points is

U < c. And if U > c, there are no stationary points of the integrals in (4.1).

From a graphical method similar to that of Debnath and Rosenblat (6), it

is easy to locate the roots of the equations c’() +U for U < c. Hence it

follows that the first and the second integrals in (4.1) have stationary

points at k -k2, (k2
> 0) and k kI

> 0 respectively for U <_ c. Invoking

the standard formula for the stationary phase expansion and incorporating the

existence condition for the stationary points through the Heaviside function,

the asymptotic representation of (4.1) for large t is given by

A(-k2 -ib
(x,t) H(c-U)[ 2 , +

It b" (-k2) 11/2 exp{-i(k2x + tb
2 7)

A (kl, ibl*
It b" (kI) 11/2

exp{ i(klX + tbl* + )}] + 0 ), (4.4)

* b(-k2) Uk
2
and bl* b(kI)where b

2
UkI. (4.5a,b)

This represents the generation and propagation of surface wave trains which

-1/2decay asymptotically as t

It is also noted that result (4.4) includes the critical case U c in the

-I
sense that then kI k

2
0 and the contribution to (x,t) is of the order t

Thus the wave system given by (4.4) decays more slowly than the wave front at

the origin.

For the case U > c, the integrals do not have any stationary points and

-I
consequently they decay like t as t - . Physically, this means that the
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free surface elevation has not yet penetrated into the region

In order to describe the ultimate wave system, we next evaluate the inte-

-t
gral solution (3.8) for the two dimensional problem with f(t) I e

> 0. It turns out that (3.8) has the form

n (x,t)
P (iI eit 0

gp2/
Jl) + (12 13 14 + J2 + J3)’ (4.6)

where the integrals I (n i, 2, 3, 4), J (n i, 2, 3) are given by
n n

II [b (k) i.
-b1

i )eikx dk, (4.7)
+b2

iblt
b (k) (eJl m-bI

-ib2t
e )eikx
m+b dk, (4.8)

2

cosh kh
ikx

e dk, (4.9)

i I b (k) (l+___l) elkX13 cosh kh bI
b
2

dk, (4.10)

e b (k) (e
1 1 ikx

2i cosh ’kh + ib
I

e_ ibm.) e dk, (4.)

J2 cosh kh
+ e 2

e
b
2

dk, (4.12)
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iblt
J3 cosh kh a+ib

-ib2t
e ikx

e dk, (4.13)

It is convenient to write (4.6) in the form n(x,t) nl(X,t) + n2(x,t), (4.14)

where nI consists of I
1
and Jl’ and represents the free surface displacement

due to the surface pressure distribution; 2 is made up of In(n 2, 3, 4) and

J (n 2, 3), and describes also the surface displacement originated entirely
n

due to the bottom disturbance.

Integrals I
1

and Jl are exactly identical with those obtained by Debnath

and Rosenblat (6). A detailed asymptotic analysis of these integrals was

presented in that paper. It may therefore be fair to avoid duplication, and

to quote some important results without any further elaboration. It follows

from paper (6) that the asymptotic solution Dl(X,t) consists of the steady-

state and the transient wave components. For large Ixl and t such that

Ut >> Ixl, the latter is of the order t
-1/2 for c > U, and decays asymptotically

as t / =. Thus the ultimate steady-state wave system is established in the

limit t + and can be written in terms of notations of (6) as

and

where

Pi imt -six -s2x
nl(st)(x,t) e [l(-Sl)e + l(-S2) e

io2x+ H(c U) i(o2) e ], when x > 0,

i (mt+OlX)
(st)(x’t) H(c U) i(i) e

(4.15)

I(K)
b(K) (K)
dbI
(-)k:K

when x < 0, (4.16)

and I(K) b(K) (K) (4.17a,b)
db

2
(-rE-)

k:<

The steady-state solution represents the propagation of either two or four
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surface waves according as U > c or U < c.

At the critical speed, U c, both the steady-state and the transient

solutions asymptotically tend to infinity. Indeed, the former represents a

wave whose amplitude increases like x while the latter is also a wave whose

amplitude is of the order t
1/2 as t / . This clearly suggests that the llne-

arized theory based on small amplitude disturbances fails to provide with a

physically sensible solution at the critical speed. Naturally, it would be

necessary to include nonlinear terms in the original formulation of the

problem in order to achieve a physically reasonable solution.

We next turn our attention to the asymptotic evaluation of I and
n

J (n 2 3 4). These integrals have infinitely many pure imaginary poles

at (n+1/2) , n 0, +i +2, and can readily be evaluated by using

the residue theory over a suitable contour. The residue contributions from

these poles are insignificant as t or Ixl / =. The integral 12 does not have

any significant contribution to the free surface displacement.

From a graphical representation of (X) +_U-cX similar to that in (6),

it follows that when U < c, integral 13 has two real poles at k _+k
3 (say),

and when U > c, it has no real poles. Using the formula (24) of Debnath and

Rosenblat (6), the residue contribution from these poles, as Ixl / =, is

given by

i
ik3x

ik3x

13 - sgn x H(c U)[2(k3) e + 2(-k3) e ], (4.18)

where

2(K
b(K) () b(K) (K) (4 19a b)

() 2 ()
cosh Kh bI cosh Kh b2()

The transient integral J2 has the same poles as those of 13, and for t / ,
it has stationary points when ’ (X) +Uc The contribution to J2 from its

stationary points and the polar contribution to J2 can be evaluated
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asymptotically for large t by the same method employed in paper (6). The

asymptotic value of J2 as t / arising from its poles are given by

i ik3x -ik3x
J2(polar) -- H(c U)[2(k3) e + 2(-k3) e ], (4.20)

The transient part of J2 is made up of the contribution from the stationary

points and is given by

i
J2 H(c-U)

(t Ib" (-k2)l)-1/2

cosh k2h -(-k2) b2* exp{-i(k2x + tb2* + )}

(t Ib" (kl)l)-1/2
exp{i(klX + tbl + )}] + 0cosh klh (kl)bl (4.21)

At the critical speed, U c, J2 has a stationary point at k 0 and has

no polar singularities. Since b"(0) 0, the asymptotic expansion (4.18) is

no longer valid at the origin. Near the wave front at k 0, th asymptotic

value of J2 can be found from Copson (9) as

i r(1/2) _i

__
A(0l(6tlb’’’(0) l) 3 + 0(t 31, (4.22)J2 2 /

where A(0) lim A(k), A(k) b(k) -(k)
k-O cosh kh b

1
(k) and F(x) is the Gamma function.

It should be noted here that the wave front decays more slowly than the

main transient wave system described by (4.2).

Integrals 14 and J3 have infinite sets of purely imaginary poles at +-iBn

and +in’ where n and Bn’ satisfy the equations

c(Btan) UB ha 0, c(B’tanB’) + UB’ ha 0, (4.23a,b)

Evidently, as t / , these integrals do not have any sfgnificant contri-

bution from these imaginary poles.

On the other hand, J3 has the same stationary points as those of J2 and
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its contribution from the stationary points for large t can be written in the

form

1

J3 0(t-1/2) or 0(t 3), according as c > U or c U. (4.24a,b)

Thus the transient component of 2(x,t) decays asymptotically as t / and

the ultimate steady-state is reached which takes the asymptotic form:

ik3x
2(st) (x,t) -i0 H(c-U) [2(k3)e -ik3x], when x > 0+ 2 (-k3)e

(4.25a)

0 when x < 0. (4.25b)

Hence all the wave integrals involved in the free surface displacement

(x,t) given by (4.6) have been evaluated asymptotically for large Ix or t.

It follows from the above analysis that the transient component of n(x,t)

decays asymptotically as t + . And the ultimate steady-state wave system is

attained and consists of l(st) and 2(st) given by (4.15), (4.16) and (4.25a,b).

5. SOME PARTICULAR DISTURBANCES FOR TSUNAMI GENERATION.

It is of interest to mention some physically realistic form of disturbances

for the generation of tsunami:

(a) p(x) 6(x), (b) p(x) -!-I exp(- )

() p(x)
i*t

(d) (x) 6(x), f(t) e

1 t(e) (x) H(a-lxl) f(t) %-(l-co)H(T-t) + H(t-T)

x2 e-at),(f) (x) exp(- f(t) (I a > 0

where 6(x) is the Dirac delta function.

6. THREE DIMENSIONAL TSUNAMIS.

The integral representation for the free surface displacement (x,y;t) due
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to an arbitrary ocean floor disturbance only is given by

(x,y;t) coshTkh[(k ibl) exp(ik._r + iblt)

E(k, -ib2) exp(ik.r__- ib2t)]dk (6.1)

Invoking the polar coordinate transformation (x,y) (r cosS, r sin0)

and (k,Z)= (K cos, K sin), integral (6.1) takes the form

q (x,y;t) c I I (..) [--+ (,.) exp{itf+(l )}
4ih2 0 0

coshA

-_(,@) exp{it f-(E,)}]dE d@, (6.2)

where

i+_ [c() ; ux cos]), (6.3a,b)

and

+ 1f-(% ) --’"T cos(-8) +- c]()) U% cos],

() ( anh)1/2,

(6.4a,b)

h, (6.5a,b)

The exact evaluation of (6.2) is almost a formidable task. We then apply

the method of stationary phase twice to the integral (6.2). The points of

stationary phase related to the integrals of (6.2) are the solution of the

equations
+ +

f-- 0 and
f--

0, (6.6a,b)

The main interest is in finding the asymptotic expansion of (6.2) for large

r and t such that 0 < r << Ut. Consequently, the approximate form of-(6.6a,b)

as t + is sufficient to determine the points of stationary phase involved in

(6.2). Thus (6.6b) gives the stationary points approximately at 0, and



GENERATION AND PROPAGATION OF TSUNAMIS IN OCEAN 387

2. With these values of 9, and r x, (6.6a) reduces to the corresponding

equations for the two dimensional problem. Hence the existence condition for

the stationary points of (6.2) is the same as that discussed in Section 4.

Evidently, for U < c, the first equation in (6.6a) gives one non-negative

stationary point at % %1 when 0 or 2; and the second equation in (6.6a)

has also a non-negative stationary point at % %1 when . Thus the

first and the second integrals of (6.2) have stationary points at (%1’ 0) and

(%1’ ) respectively.

Application" of the stationary phase approximation for the double integral

in (6.2) as t / (Debnath, 7) yields

e2 + (%1’ 0)
f+

4i h
3 t cosh I ID+I 1/2

exp{it (%1’ 0)}

el e2 - (%1’ )

ID-I 1/2 exp{itf (i,) + 0(t )’ (6.7)

where

eI
exp[-- sgn{f%E(%1, 0)}], e

2
+ o)}]exp[-- sgn{f@@(%1,

eI exp[--sgn{f%(%l, )}], e
2

exp[ sgn{f@@(%I, n)}]

+ + + 2

D+ f%(l’ 0) f(%1, 0) {f (%1’ 0)} (6.8)

and

D_ f%% (%1,) f1% (i,) {fl# (hi,H) }2, (6.9)

It is evident that the asymptotic solution (6.7) for the free surface

elevation represents the generation and propagation of the sinusoidal surface

-i
wave trains of complex amplitude which decays as t
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At the critical case, U c, the first and the second integrals in (6.2)

have stationary points at (0, 0) and (0, ) respectively. It turns out that

the solution (6.7) includes this critical case and the asymptotic contribution

-2
to the free surface elevation is of the order t Thus the wave front decays

more rapidly than the main wave system described by (6.7).

Finally, in the supercritical case, U > c, there are no points where the

phase functions of the integrals in (6.2) are stationary. In the absence of

-Ithe stationary points, the solution decays asymptotically at least like t

7. MODELLING THE OCEAN FLOOR DISTURBANCES.

It is important for the study of tsunamis to model the ocean floor distur-

bances responsible for tsunami generation. As an application of the general

theory presented in the previous section, we shall mention some physically

realistic form of (r) and f(t) involved in (3.7a).

(a) (r) exp(-x2-y2), (k)

k2
exp[-() + )]

1(b) (r) (x) d(y), (k) 2

i i sinka sinb(c) (r) H([x[-a) H([y[-b), (k) 2a k

(d) (r) J0[b(a2-x2-y2)1/2] H(a2-x2-y2), b > 0

(k)
1/2]Jl[a(b2 + k2 + 2)

(b2 + k2)1/2 (b2 + k2 + 2)1/2
[Erdlyi, 8, 1.13 (47) and 1.7
(37)]

(e) (r) (i x2 b222 9-1 x2 b2a2
H(l

a2

(k)
2-IvF() J [(k2a2 + 2b2)1/2]

(k2a2 + 262)/2
[Erdlyi, 8, 1.3 (8) and 1.13
(50)
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X2 b v-i x2 b2(f) (r) ux" (i H(I
a3b 3 a2 a2

2 9F() kJ [(k2a2 + 2b2)%]
(k) 9+2 [Erdlyi, 8, 2.3 (9) and

(k2a2 + 2b2)I+/2 2.13 (51)]

and f(t) e-mt(m > 0).

We note that (a)-(e) represent symmetric bottom disturbances and (f) is

an asymmetric disturbance. Also, the disturbance (a) is distributed over a

finite region, (d) and, (e)-(f) are confined to an exactly circular region and

elliptic region respectively.

Finally, it may be added that in addition to the above ocean floor distur-

bances, the present analysis incorporates other forms of physically realistic

disturbances for the generation of tsunamis.
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