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ABSTRACT. Necessary and sufficient conditions are found for all oscillatory

solutions of the equation

(rn_l(t) (rn_2(t) (---(r2(t) (rl(t)y’ (t)) ’) ’) ’---) + a(t)h(y(g(t))) b(t)

to approach zero. Sufficient conditions are also given to ensure that all

solutions of this equation are unbounded.
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AMS(MOS) SUBJECT CLASSIFICATION (1970) CODES.

i. INTRODUCTION.

Recently, T. Kusano and H. Onose [6] studied the equation

(rn_l (t) (rn_2 (t) (--- (r2 (t) (rl(t)y’(t))’)’---)’)’)’ + a(t)h(y(g(t))) b(t) (i)

and found sufficient conditions which force all bounded nonoscillatory solutions

of (I) to approach zero when a(t) is oscillatory. For positive a(t), the same
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conditions ensured that all nonoscillatory solutions of (I) approached zero.

Kartsatos [4, Theo. I] also found sufficient criteria for all bounded non-

oscillatory solutions of (i) to, asymptotically, vanish generalizing results

of this author and Dahiya [7, Theo. I]. In fact, since the work of Hammett

[3] such asymptotic results about the nonoscillatory solutions of ordinary

and retarded differential equations have been obtained by many authors such

as Kartsatos [4], Kusano and Onose [5, 6], this author and Dahiya [7], this

author [9, I0, ii] and many others. A fairly exhaustive list of references

on oscillation can be found in Graef [2]. Most of these results relate to

nonoscillation properties of solutions. Very little has been said about the

asymptotic nature of the corresponding oscillatory solutions of these equations.

This author’s work [8, 9, 12] is devoted to this type of study about the

oscillatory solutions of such equations.

Our purpose.in this paper is to further the study initiated by Kusano

and Onose [6] and find necessary and sufficient conditions to ensure that all

oscillatory solutions of equation (I) tend to zero as t / . In the last

section, we give sufficient conditions which cause all solutions of (i) to

be unbounded, then [i] studied a similar problem but our results are

different and more extensive.

In what follows, we shall restrict our study to those solutions of (I)

which can be continuously extended on some positive half line, say for

t _> tO
> o. We shall, therefore, assume the point t

O
fixed for the rest

of this paper. The term "solution" applies only to continuously extendable

solutions on R+ [to, ).

2. DEFINITIONS AND ASSUMPTIONS.

The following conditions hold for the rest of this paper:

(i) a (t), b(t), g (t), rI (t), ---, rn_1 (t) are real valued and continuous
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on [to, ), h C (-, );

(ii) g(t) < t, g(t) + as t / ;

(iii) t h(t) > o, t + o;

(iv) there exists a number m such that

h(t___) < m (2)

t

(v) ri(t) _> > o, i i, 2, ---, n-l; for large t on R+.
A solution is said to be oscillatory if it has arbitrarily large zeros, other-

wise it is said to be nonoscillatory. To further shorten notations we

designate:

ZlY(t (rl(t)y,(t)), Z2Y(t) (r2(t) (rl(t)y,(t)),),

ZiY(t) (ri (t) (ri_l (t) (--- (r2 (t) (rl(t)y’ (t))’)’---)’)’)’,

i i, 2, ---, n-l. (3)

3. MAIN RESULTS.

be a bounded oscillatory solution of (I). Then

ri+l (ZiY (t)

tn-i-2
(4)

as t + , i I, 2, ---, n-2.

PROOF. Since y(t) is oscillatory, ZiY(t) is oscillatory for i I,

2, ---, n-l. Let E > o be arbitrary and let tI > to be so large that

Zn_2Y(tI) o,

mMla(t) Idt < /2 (5)
tI

and

(6)

where Y(g(t)) < M for t >_. tI.
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Integrating equation (i) we have

Irn_l(t)Zn_2Y(t) < mMftla(x)Idx + Ib(x) Idx <
tI tI

Thus Zn_2Y(t) / o as t / .
Let now t2 > tI be a zero of Zn_3Y(t) so that

for t > t2 Now

t
rn_2(t)Zn_3Y(t) f Zn_2Y(s)ds

t
2

which readily gives

(7)

Irn_l (t)Zn_2Y(t) < E

Irn_2(t)Zn_3Y(t) < (t-t2)

t t
(9)

Proceeding this way, the proof is completed.

LEMMA (3 2) Suppose la(t) Idt < , Ib(t) Idt < and

rI (t) tn-8

for some 8 e [0, i). Then oscillatory solutions of (i) are bounded.

PROOF. Let T > tO be large enough so that for t > T, g(t) > tO

Integrating (I) (for t > T) over [tO t] we have

Zn_2(t)y(t) 1 rn_l(t0)Zn_2Y(t0) 1 fta (x) h (y (g (x)) )dx

rn_1 (t) rn_1 (t) t
0

+ 1 ftb (x)dx.

rn_1 (t) t
O

On repeated integration (I0) yields

rl(t)y’ (t) rl(t0)y’ (to + r2(t0)ZlY(t0) ftl/r2(x)dx
to

x2
+ r3(t0)Z2(Y(t0)) ;tl/r2(x2) f I/r3(x )axdx2 +---

to t
O

+--- + rn_l(t0)Zn_2Y(t0) ftl/r2(x2 fx21/r3 fxn-2

;tl/r2 (x2)
to to

(i0)

i/rn_1 (x)dx dx2
to to tO

I/r3 (x3) fx3___ ;xn-2 1 fXn-la (x) h (y (g (x)))dx dx2
tO tO rn-i (Xn-l) tO
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+ ;tl/r2 (x2) i/r3 (x3)
t
O

to tO tO rn-i (Xn-1

]Xn-lb (x)dx dx2
to

(Ii)

Dividing (Ii) by rl(t) and integrating between to and g(t)

y(g(t)) y(g(t0) + rl(t0)Y’ (to) fg(t)i/rl(X)dx + r2(t0)ZlY(t0)
to

we have

(t)
i/rl (Xl) ll/r2 (x) dxdxl

tO t0

+ r3(t0) Z2Y(t0) f(t)
t
0

I/rI (xI) ll/r2 (x2) /x21/r3 (x)dxdx2dx1
to to

+ + rn-l(t0)Zn-2Y(t0) (t)
tO

Xl
i/rl(xI) / i/r2(x2)

to

Xn-2

to rn_1 (x)
dXdXn-2 dXl

xI x2 Xn-2fg(t)i/l(Xl / i/r2(x2) f i/r3(x3) + f i/rn_l(X0)
to tO to to

xof a(x)h(y(g(x)))dxdx0 dx1
t
O

+ fg (t)i/rl (Xl) /Xl
to to

x2 Xn-2
i/r2(x2) f i/r3(x3) f I/rn_l(xn-I)

to tO

Xn-If b (x)dxdxn_IdXn_2dXn_3 dx1
to

(12)

Since each
1

I/r(t) < i 2, 3, n-i and g(t) < t we have from

above

ly(g(t))l < ly(g(t0))I + Irl(t0)Y’ (t0) ftl/rl(X)dx
to

+ Ir2 (to)ZlY(tO) (X-to)/rI (x)dx
to
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1 irn_1 (t0)Zn-2Y(t0) ft (x-t0) n-2/rI (x)dx(n-2) !n-2 t
0

;x (x_s)n-2 la (s)I lh (y (g (s)))Idsdx
(n-2) !n-2 0rl (x) to

1 I t 1 IX n-2
+

(n-2)! n-2 f r (x’ j (x-s) Ib(s) Idsdx.
t 1 to0

(13)

Due to conditions on rI (t) we find that each term on the right hand side of

(13) except possibly last two are bounded, and since h(t)/t < m, there exist

constants KI, K2
and K3

such that

ft fx (x-s)n-2

to t
O

xn-8

ft sX (X-s)n-2
+ K3 xn_ 8’

t
O

to
Ib(s) dsdx.

Rearranging constants still further we get

S
t

Sx la(s) llY(g(s))l dsdxIY(g(t)) < K1 + K4
t0 t0 x2-8

t
0

t
0

x2-’

+ :4 xh_ x lll,gs))lds
to

+ Ks ax Ib(s (14)

by change of order of integration. Now
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it 1
dx < C

s x2-
(15)

for some constant C > o since o < 8 < i. Thus the last term in (14) is

bounded, since Ib(s) Ids <

From (14) and (15), there exists a positive constant K6 such that

By Gronwall’s inequality y(g (t)) is bounded and the proof is complete.

THEOREM (3.1). Subject to the conditions of Lemma 3.2 all oscillatory

solutions of equation (I) approach zero.

PROOF. Suppose to the contrary that some oscillatory solution y(t)

of (i) is such that

im sup
t /

for some number d. Let T > t be large enough so that for t > T weo

have (from lemma 3.1)

ri+1 (t) (Ziy (t) d
< i I, 2, ---, n-2

ileitn-i-2 n (17)

It follows from (4) that

rI (t) y’ (t)
/o as t /.

tn-2
(18)

Let now TO > T be a zero f y(t) so that for t > TO, (17) and (18) imply

ri+l (t) Z
i
(y (t) d

< i I, 2, ---, n-2,
ile

I
tn-i-2 n

and

r
I
(t)y’ (t) d

<
tn-2 n

(19)

Integrating (I) between [T0, t] we have
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y(t) rl(T0)y’ (To) I/rl(x)dx + r2(T0)ZI(T0) ;Xll/r2(xl) fXll/r2(x)dXdXl
T
O T

O TO

+ r3 (T0)Z2Y(T0) I/rl (Xl) ; i/r2 (x2) 3
TO TO TO

,Xn-2
+ rn_l(T0)Zn_2Y(T0) "jtl/r (xI) ")Xll/r (x2)---J I/rn_1+

TO
1 2

TO TO

(x)dxdxn_2 dx
I

ftl/rl Xl Xn-2 Xn-la(x
I f i/r2 (x2) f I/rn-i-i f (x) h (y (g (x)) dXdXn_1T T

O TO TO0

dxI

xI x2 xn+ tl/rl(xI) I I/r2(x2) i/r3(x3) f ib(x)dxdXn_l dxI.T
O

TO TO TO

(20)

Since y(t) is bounded, let ly(g(t))l < CI for some positive constant

C1. From (20) we have

1ly(t) < [rl(T0)Y,(T0)l ftl/rl(X)dx + Ir2(T0)ZIY(T0) ft (x_T0)dx
T
O

T rlx0

+ 1 r3(T0 (TO ft (x-T0) 2/rI (x)dx21u2 Z2Y
TO

.i ;t (X-To) n-2/rl (x)dx
(n-2) len-2 T

O

fx n-2+ elm ;tl/rl (x) (x-s) la (s)Idsdx
(n-2) lun-2 TO TO

(n-2) !en-2 TO TO
(21)

Now there exists a constant D
i

> o such that for each i

i-2

ui T
O rI (x)

dx
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<I r i-2; x-0i+l (To) ZiY (To)
Di(:l xn-8

ri+l (T0)ZiY(T0) St I, dx
Di n-i+2-8ei! T

O
x

< Iri+I(T0)ZiY(T0)I Di.. .i
.11 n-i+l-8

1 + 1 81tn-i+l-8 T-i+l-
d< (22)n

in view of (17), conveniently large enough choice of TO and the fact that

8<1.

Similarly, as it was shown in the later part of inequality (14) (by

changing the order of integration) it is easily shown that a large choice of

T0 results in

Clm S
t
l/rl(x) sX(x-s)n-21a(s) Idsdx

n-2) lC
n’2

T
O

T
O

< d_ (23)

and

(n-2) len-2
i/rI (x) (x-s)

0 TO
n-21h(s) Idsdx < d. (24)n

From (21), (22), (23) and (24) we get

g<_ + + d (25)

From (25) we see that if we choose a large enough T
O

then for all t > TO,

ly(t) < d. But this contradicts (16) for any positive d. The proof is now

complete.

EXAMPLE (3. i). The equation

(t(ety (t))’)’ + e-t-2y(t-) 2e-tt sin t + e-tsin t

+ 4te-t cos t 3e-t cos t e-3t sin t, (26)
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t > has y e-2t sin t as an oscillatory solution approaching zero. All

conditions of Theorem 3.1 are satisfied. Hence all oscillatory solutions of

(26) vanish at .
Our next theorem leads to a necessary and sufficient criteria for all

oscillatory solutions of equation (1) to vanish at

1
THEOREM (3.2). Suppose a(t) > o, rlt for

o < < 1 and f a(t)dt < Further suppose that b(t)/a(t) approaches a

finite limit as t / . Then a necessary and sufficient condition for all

oscillatory solution of (I) to approach zero is

lim
t a (t)

PROOF. (SUFFICIENCY). Suppose that b(t___) / o as t / . Since
a(t)

/a(t)dt < , we have Ib(t) Idt < . By Theorem 3.1 all oscillatory

solutions approach zero.

(NECESSITY). Let y(t) be an oscillatory solution of (1).

Dividing (i) by a (t) we have

(rn_l(rn_2(___(rly, (t)) ’) ’) ’--) + h(y(g(t))) b(t) (28)

Now y(t) / o as t / . Suppose to the contrary that

im Ib()l > > o.
t a (t)

(29)

Since h(y(g(t))) / o, (28) from (29) reveals that there exists a large T

such that for t _> T, Zn_lY(t) > o. But then y(t) is nonoscillatory, a

contradiction. The proof is now complete.

EXAMPLE (3.2). Consider the equation

1 5(t2y (t))’ + y(t) j (sin(Ent) coS(nt)) +
sin (nt

t5
(30)

Here all conditions of Theorem 3.2 are satisfied. Hence all oscillatory

solutions approach zero. In fact y(t) sin(nt)/t3 is an oscillatory
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solution of (30).

The necessity part of Theorem 3.2 leads us to the following theorem.

THEOREM (3.3). Suppose
rl(t)

-0(I/tn-8) for some 8 such that

o _< 8 < I. Further suppose that fa(t)dt < , a > o and b(t)/a(t) is

bounded. Then all oscillatory solution of equation (i) approach zero as

PROOF. Since fa(t) < boundedness of b(t)/a(t) implies

Ib(t) Idt < ". Conditions of Theorem 3.1 hold. The proof is complete.

Our next Theorem gives conditions when oscillatory solutions do not

approach limits.

THEOREM (3.4). Suppose a(t) > o and lira inflb(t) I/a(t) > o.
t/

Let y(t) be an oscillatory solution of equation (1). Then

o.

PROOF. Suppose to the contrary that y(t) /. o as t / . Then

h(y(g(t))) / o. From equation (i)

a(t)l l(rn_l(rn_2 (--(r2(t) (rl(t)y’(t))’)’--)’ + lh(y(g(t)))l _> Ib(t) I/a(t).

This shows that Zn_lY(t is eventually positive contradicting the fact that

y (t) is oscillatory.

REMARK. It is to be noted that the conditions

rl(t) tn_ ;a(t)dt < and Ib(t) Idt <-

are not needed here.

EXAMPLE (3.3). All oscillatory solutions of the equation

y’’ (t) + y(t-2) 2 (31)

satisfy lira suply(t) > o since this equation satisfies all conditions of
t +

Theorem 3.4. y(t) 2 + 2 cos (t) is one such solution.
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Next theorem gives nonoscillation criterion.

THEOREM (3.5). Suppose a(t) > o, fa(t)dt < and

o < 8 < I. Further suppose that lira inflb(t)I/a(t) > o
rI (t) t

and b(t)/a(t) is bounded. Then all solutions of equation (1) are nonoscil-

latory.

PROOF. Suppose to the contrary that y(t) is an oscillatory solution

of (1). Since all conditions of Theorem 3.3 are satisfied, y(t) / o as

t / . Thus h(y(g(t))) / o. From equation (i)

---!--i l(rn_l(rn_2(t) (---(rl(t)y’ (t)) ’) ’) ’---) > b(t) I/a(t) lh(y(g(t)))l (32)
a(t)

(32) suggests that Zn_lY(t) > o eventually, contradicting the fact that y(t)

is oscillatory. The proof is wow complete.

EXAMPLE (3.5). The equation

1 2y l--(t 1 i"
( t ’(t)) +

t2 - + t- (33)

satisfies all conditions of this theorem, y(t) 1/t2 is a nonoscillatory

solution of (33).

THEOREM (3 6) Suppose a(t) Id < and fb(t)dt . Then all

oscillatory solutions of (1) are unbounded.

PROOF. Suppose to the contrary that some oscillatory solution y(t)

satisfies ly(t) <_ CO
for some C

O
> o. From equation (i) on integration

for t > T.

Irn_l(t)zn_2y(t) + Irn_l(T)Zn_2Y(T)l + C0m ftla(s)Ids > Iftb(s)dsl. (34)
T T

(34) yields that Zn_2Y(t) assumes a constant sign eventually, contradicting

that y(t) is oscillatory. The proof is now complete. The following example

shows that under the conditions of Theorem 3.6, it is possible to have

bounded nonoscillatory solutions.
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EXAMPLE (3.6). The equation

1 1 1

satisfies all conditions of Theorem 3.6. It has y(t) i/t as a bounded

nonoscillatory solution.

THEOREM (3.7). Suppose Sla(t) Idt < and Sb(t)dt +_ . Further

suppose that ri(t) is bounded i 1, 2, ---, n-1. Then all solutions of

equation (i) are unbounded.

PROOF. Due to Theorem 3.6 we only need to prove it for a nonoscillatory

solution. Let y(t) be nonoscillatory and bounded. From inequality (34) in

the proof of Theorem 3.6 it follows that IZn_2Y(t) / as t / . Since

Zn_2Y (rn_2Zn_3Y(t))’ and rn_2 is bounded, we have Zn_3Y(t) / -+ .
Proceeding this way we find that y’ (t) / + forcing y(t) / -+ . The

proof is now complete by contradiction.

FINAL REMARK. Theorem 3.1 improves our main result in [9] (c.f [11])

here it was shown that oscillatory solutions of

(r(t)y’(t)) (n-l) + a(t)h(y(g(t))) f(t)

approach zero subject to:

la(t) Itn-2at < tn-2at <

and

o<8<1.
r(t)

(35)

The restriction on r(t) cannot be weakened i.e. 8 cannot be greater than

or equal to 1 as the following example shows.

EXAMPLE (3.7). The equation

(t2y 1
(t))" +

2
y(t)

t (nt)
3sin (n nt Cos n ntCos(n(nt) +

t (nt) 3 t (nt) 3 t (nt) 2

t > o (36)
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has y sin(n(nt)) as an oscillatory solution which does not have a limit

at Only the condition on r (t) is violated. We see that for n 3

1 1 so that
r(t)

even though . 1
dt < .

r(t)
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