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ABSTRACT. In this paper, the results of the first detailed and systematic

study of the family of fifth order implicit linear multistep methods requiring

function evaluations at four backpoints are given. Also described is a practi-

cal and efficient nonlinear optimization procedure which made it possible to

locate in a precise manner the methods of this type which possess optimal

ranges of relative stability in the sense-that the corresponding relative

stability regions contain maximal disks centered at the origin.
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I. INTRODUCTION.

The advantages of using linear multistep methods in the numerical inte-

gration of ordinary differential equations have long been recognized. While

the analytic theory of these methods has been discussed adequately by several

authors (see [2] or [5], for example), the results concerning the practical

problem of locating optimal methods have been less than satisfactory. In

particular, while it has been recognized that a determining factor in the

choice of such a method is often that of relative stability, most authors

have limited their attention to a study of absolute stability. As a result

very little information concerning relative stability is now available,

especially for methods of order greater than four.

In [8] an algorithm was given which may be used to determine numerically

the largest open line interval I on which a given method is both convergent

and relatively stable. The corresponding interval was computed for several

well-known methods. In [i0], from several families of Adams-style predictors

and correctors, the algorithm was used to locate methods for which the size

of intervals of the form (-,) contained in I is a maximum. The method was

also modified and used to locate methods with increased complex stability

regions. In particular, the complex stability characteristics of fourth order

correctors requiring three backpoints and fourth order predictors requiring

four backpoints were studied. Methods whose relative stability regions con-

rain maximal disks centered at the origin were located in each case. In this

paper the stability characteristics of fifth order methods will be considered

from this same point of view. For the convenience of the reader, several

pertinent definitions and some basic terminology will first be discussed.

Many details will be omitted since they are quite lengthy and are also rela-

tively straightforward. Any omissions are discussed at length in [i0].
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It is emphasized that use of the word "optimal" in the present study

applies only within the context of the methods considered. Indeed, the con-

clusions of this paper are not necessarily applicable to more general families

of methods (see [9], however), particularly if the desired optimization is in

respect to a different method characteristic (e.g., absolute stability). It

is noted, however, that methods obtained as in the present study also tend to

preserve other desirable method characteristics (see [9], for example).

2. DEFINITIONS AND PRELIMINARIES.

Consider the initial value problem

Z’ f (t,y)

Z(t0) Y0

where y’ dy/dt and y, fer
n The existence of a unique solution to this

initial value problem will be assumed. An analysis of the stability of a

numerical method applied to this problem may be carried out in the usual manner

by studying the stability of the method applied to the collection of initial

value problems

(2.2)

where i is an eigenvalue of (f/y) the Jacobian matrix of f with respect to y.

A numerical approximation to the solution of (2.2) may be obtained as

are constructed, which, under suitable conditionsfollows. Sequences Yn+lj 1 _(0)
is obtained usingwill yield the desired solution to (2.2). For each n, Yn+l

a predictor method. Given Yn+l"
(j) Yn+l(J+l) is calculated using a corrector formula

(j+l) 7.q + h I
q + (J)’

Yn+l i=O aiYn-i i=O blYn-i nD-lYn+l (2.3)
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where x
k

x
0 + kh, Yk Y(Xk)’ Yk f(xk,Yk) a

k
and b

k
are suitably chosen

constants with b_l# 0, and h is the fixed step size. The points (x,yk) are

referred to as backpoints. If equation (2.3) is satisfied exactly for poly-

r+l
nomials of degree less than r+l but not for the polynomial y x the

method will be said to have (polynomial) order r. In this case, the method

will also be said to be of type (r,q+l). When applied to the initial value

(J) (n 0,i,...) re-problem (2.2), the convergence of the sequences --Yn+lj=I
quires that lh%l < I/Ib_l I. It is primarily these values of h% which are of

interest in the present study.

This paper is concerned with the stability of only the corrector. (If

b_l 0 the explicit formula (2.3) is called a predictor.) Methods in which

the corrector is not iterated to convergence but is applied only a fixed num-

ber of times m are often used. It is well-known that the stability character-

istics of such PE(CE)
TM
methods are also affected by the predictor. It has

been found, however, that the information obtained in [i0] for the family of

iterative (4,3) correctors is quite useful in a present study of PE(CE)TM

(m 1,2,) methods where P is a (4,4) predictor and C is a (4,4) corrector.

It is expected that the results of the present study will also serve as a

guide in future studies of fifth order predictor-corrector combinations. At

any rate, it will be assumed for the remainder of this paper that (2.3) is a

genuine corrector method. (See also section 5 of [6] .)

The definition of stability which will be used, that of relative stability,

is taken from [5]. The characteristic equation for (2.3) is defined by

E
q

(a
i + bi)rq-i 0 (2.4)

i=-i

where a_l =-i and %h. The roots of (2.4) are continuous functions of ;

and one of the roots, which is denoted by r0( may be written as



OPTIMALLY STABLE FIFTH-ORDER INTEGRATION 323

r0() 1 + e + 0(e 2) exp(e) + 0(52)

for II sufficiently small, r0(e will be referred to as the principal root

of (2.4). Denote the remaining roots by rI(),. .,rq(e). (2.2) is said to

be relatively stable for lh in case

i l,...,q

subject to the restriction that when equality holds, ri() must be simple.

If (2.3) is relatively stable for e 0, it will be said to be initially

stable. An analytic description of the methods under consideration and the

necessary local error analyses will now be given.

3. ANALYTICAL DESCRIPTION OF FAMILY OF (514) MULTISTEP INTEGRATION METHODS.

Throughout this section, the concept of the relative stability disk for

(2.3) will be employed. By this will be meant the largest disk centered about

the origin in the complex plane and contained within the region for which

(2.3) is relatively stable. In [7] Ralston presented a (5,4) corrector which

was obtained in a manner similar to that in which Hamming’s well-known (4,3)

corrector was obtained. In [I0] a method belonging to the family of linear

combinations of this method and the fifth order Adams corrector ([ 2 ]) was

located for which the left endpoint of I is equal to-1.1015. The disk radius

for this method is 0.9600. (Using the notation of section 5, this method is

obtained for a -0.640. The disk radius corresponding to a -0.675 is

0.9653.) Since the disk radius for the fifth-order Adams corrector is 0.6815,

these results led to the consideration of the entire family of (5,4) correctors

in more detail.

Each such method has the form

Z 3 + hYn+l i=0 aiYn-i 13 biYn_i (3 I)
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where Z 3
ia

ii=O

3 3E ia
i
+ E bi= i

i=0 i=-i
(3.2)

and E (-i) a
i
+ j (-i)J- i

i=O i=-i i
(j 2,3,4,5)

(See [5].

For each value of (al,a2,a3) this system of equations has the unique

solution

where

(a
0 b_l,b0,bl,b2,b3)

T 1
72-- D(l’al’a2’a3)

n

720 -720 -720 -720

251 -19 -8 -27

646 346 272 378

-264 456 912 648

106 -74 272 918

-19 ii -8 243

(3.3)

This may be seen after rewriting (3.2) as

3a
0 i- 7. a

ii=l

b0 i + r.3 ia
iiffil

3E b
iiffi-i

iO

(3.4)
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where 1 -i -2 -3

9i 4

-i -8 -27

1 16 81

T
(b_l,bl,b2,b3)

(cT)j~ + (-i) j E a / (j+l),
i=l

(j 1,2,3,4)

and then observing that the Vandermonde matrix C is invertible with

-I iC 24

6 11 6 i

36 6 24

12 4 -12

-2 -i 2

It is also straightforward to show that the principal coefficient of the

local truncation error term ([5], [2]) is given by

E(al,a2,a3) (llaI + 27a
3 27)/1440 (3.5)

when this number is nonzero In what follows, (3.1) will be descriptively

identified with the point (al,a2,a3) when it is convenient to do so.

It is pointed out that in [4], Newbery has given a collection of (q+2)xq

matrices Cq(q 2,...,8) for which

C a=d
q

where (a)i -aq-i-i (i I,... ,q-2)

q=l
Z a i(a)

q-i i=l i

(a)q~ i

.(d) i bq-i (i l,...,q+l)
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and (d)q+2 E(al,...,aq)

In particular,

1440 C4

502 464 486 448

1292 1984 1836 2048

-528 384 1296 768

212 64 756 2048

-38 -16 -54 448

27 16 27 0

Define the set

A-- (al,a2,a3) la3 0<l+al+2a2+3a3
(-i,i)

0<l-al-a3

# l+al+2a2+3a3, 0< l-ala3/(a3-1) -a
2 # l+ai+2a2+3a3 (3.7)

It is shown in [i0] that a (4,4) predictor is initially stable if and only

if (al,a2,a3) belongs to the set D A u C where

C (0,a2,1)I-2<a2<2}.
In the present case, each point in C determines a (6,4) corrector since llaI +.
27a3 27 0 for these points. Since the initial stability of (3.1) is not

affected by -i’ it follows that (3.3) defines an initially stable (5,4) method

if and only if (al,a2,a3) belongs to A with llaI + 27a
3

27 # 0. It is

straightforward to check that the last condition is satisfied for all points in

A, however. Since this paper is interested in (5,4) methods which are relative-

ly stable on disks containing the origin, further attention will therefore be

limited to methods determined by points in A. (See also Theorems 5.5, 5.6, and

5.10 of [2] .) Observe that for points belonging to the interior of A, the exis-

tence of such nondegenerate disks follows from the continuity of the roots of

(2.4) as functions of (al,a2,a3). The preceding results are contained in the

following theorem.
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THEOREM. Denote by M M(al,a2,a3) the (5,4) method defined by (3.1).

M is initially stable if and only if (al,a2,a3) belongs to A where A is de-

fined by (3.7). In this case, the principal coefficient of the local trunca-

tion error is given by (3.5). Furthermore, if y y(x) belongs to C6[a,b],

the local truncation error is given by

E(al,a2,a3)h6y (6) () (3.8)

for some in (Xn_3, Xn+l) if -19 + llaI 8a
2 + 243a

3
< 0.

It is remarked that the last condition is satisfied for all points

(al,a2,a3) in A with a
3
< 0.

A discussion of the last assertion of the theorem depends on the notion

of the influence function w(s) for (3.1) ([5]). w(s) is given by

(l-a)
% (l-a-5b_l) se [Xn,Xn+l]

w(s)/h5 = Z 3 [-a.(i-j+a) 5 + 5bi(i-j+e)]
i=j

1

se[Xn_j, Xn_j+11; j 1,2,3

(3.9)

where for se[Xn_j, Xn_j+I] (j 0,...,3), s is chosen so that

(s Xn_j)/h as.

The local truncation error may be expressed in the form given by (3.8) for

each y y(x) in C6[a,b] if and only if w(s) does not change sign on

belongs to [0 i][Xn_3,Xn+I] (See [i0] [5] [i] Since h is constant as

for each s. w(s) will therefore be referred to as a function on [0,i] if it

is convenient to do so.

The behavior of w(s) for (3.1) will now be considered. For s in [Xn,Xn+l],
if w(s) is to have constant sign, it must be the case that 0 <_ 107 19a

1

8a
2

27a3. But 0 <_ i aI a
3

for points in A, and from this it follows
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that

19a
I + 8a

2
+ 27a

3
<-SaI + 8a

2 + 27 < 107.

(-6,2] x [2,4] x [-i,I] .) The influence function is therefore of constant

sign on Ix Xn+I] for all points in A.n’
For each s in [Xn_3, Xn+I] the kernel of w(s), considered as a linear

function al,a2 and a3, is given by the plane

llaI 8a2 + a3(243-144) 19 0.

As increases from 0 to I, the corresponding planes turn on the line

llaI 8a2 19 0

a
3

O.

If a3
> 0 these planes clearly intersect A only at points for which

llaI 8a2 + 243a3 19 > 0.

For Be(-l,l) the (closed) cross-section of A for a
3

is the triangular

region determined by the lines

a
2 I + aI/(I-B)

al=l-
and

1 + aI + 2a
2 + 3a

3
0.

The plane for intersects the third line if and only if aI i- B(255-144)/

15. If < 0 then aI
> I . The plane intersects the second line at the

point for which a2 -I + (232-144)/8. In this case, a2
< -i if B < 0.

The vertices of the triangular region are

(-3(i-),i-38), (I-B,1+8) and (i-8,-i-8).
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Therefore, it follows that none of the planes intersect A at points with a
3 <_ 0.

[If 8 0, the plane intersects the last two lines at the point (1,-1,0) in A

and intersects the first llne at a point for which aI 27/11 > i].

For s in [Xn_2, Xn_I] it may be shown that

{ (al,a2,a3) 1144 w(s) 0}

is given by

i=l Pi()ai 0

where Pl () -63=4 + 443 + 66e2 + 44 + ii,

P2(=) 8(l-e)(18e 15e 3 lle2 5s- I),

p3(s) -9(16e 5 49 + 523 2e2 28 ii),

P4 () 87 76e3 I14s2

a4 I.

76a 19,

It may also be shown that for s in [Xn_l, Xn]
{ (al,a2,a3) lw(s) 0}

is given by

Pi (e)ai 0
i=l

where Pl () -1445 + 393e 2083 1802 + 56 + 102,

p2(e) =-8e(18e 57e 3 + 522 14),

P3() =-9(165 41e% + 16e 3 + 202 + 8=- 22),

p4(e) =-177 + 272e 3 + 1802 184e- 198.

In both cases it is possible to verify that none of these planes intersect A

at points for which
-19 + llaI 8a

2 + 243a3
< 0.
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In doing so, it is helpful to observe the "motion" of each family of planes as

increases from 0 to I. This completes the proof of the theorem.

4. OPTIMIZATION CRITERIA.

The purpose of the present study is to locate the method described in the

theorem above for which the corresponding relative stability disk is as large

as possible. It may be argued that more appropriate criteria exist by which

to optimize. For example, the roots of (2.4) rather than the coefficients may

be chosen as the free parameters, as in [3]. However, it is noted that the

manner in which linear multistep methods are implemented in several widely avail-

able automatic computer software packages permits an easy implementation of

other, methods via the redefinition of the method coefficients. The present

approach may therefore offer advantages for purposes of testing and comparison.

Related to the question above, many readers will also find the following

remarks to be of interest. The roots of (2.4) must satisfy several natural

constraints. In particular, they must satisfy the well-known root-condition

([2]) when h=0 (that is, they must be initially stable). This condition imposes

constraints on allowable values in the ala2a3-parameter space of present inter-

est. For example, (2.4) has a double root of r=l for h=0 if and only if

1 + aI + 2a2 + 3a
3 0. In the present study, we found it necessary to avoid

this plane. Indeed, when other families of methods were considered in related

studies, it was found that the optimization paths tended to follow this plane

in certain regions (see [9]).

5. NUMERICAL RESULTS.

In this section several numerical results obtained for the family of methods

under consideration are presented. The manner in which these results were ob-

tained will first be discussed. In order to study methods in the plane a
3 e,

linear combinations
aP* + (l-a)P (a(l-a3) a2,a3) (5.1)
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where P* (l-a3, a2, a3) and P (0, a2, a3)were considered. As a first

approximation to the manner in which the algorithm will ultimately be used to

study families with several parameters, the algorithm was also modified and

used in a modified steepest descent optimization procedure. Although the

algorithm thus obtained tended to exhibit the usual cycling behavior which is

characteristic of such a procedure, it was possible to locate the best method

given in Table i using it. As an initial starting point, the Adams corrector

(al,a2,a3) (0,0,0) with a disk radius of 0.6815 was chosen. It is pointed

out that, even when very accurate approximations for the left endpoint of I

are available, the computation of this endpoint can (and usually does) present

serious numerical difficulties. (This is particularly true near critical

points.) It will of course be interesting to determine the extent to which it

is possible to implement the present algorithm in a more sophisticated optimi-

zation procedure when higher order families are considered. It is remarked

that, at least at this point, use of the algorithm of [8] (as modified in [i0]

and herein) has permitted what seems to be the first attempt to seriously treat

the determination of the relative stability characteristics of (3.1) strictly

as a nonlinear optimization problem.

Several of the other programmatic aspects of the algorithm used to obtain

the present results will now be discussed. When a good approximation to the

principal root at the point e x0 + i Y0 was not available, it was found that

using exp(x + i y0 as an approximation worked well. (It is remarked that,

in their definition of relative stability, many authors replace r0(e) with

exp(e).) At any rate, after it was decided that a method in the plane a
3

was "optimal", the usual root-locus method was then also used to compute the

corresponding stability region directly. This additional computation also

serves as a safeguard against difficulties related to the numerical ill-

conditioning of polynomials as functions of their coefficients.
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Denote by 180-8 the argument of the complex ray containing . Values of

8 in [0, 90] at intervals of 2.5 were tested. Near 8 0 smaller increments

(usually at intervals of 0.25 were often used, however. To find the end-

point of the region on the ray for 8 > 0, the point on the circle with radius

equal to the magnitude of the corresponding point for the last ray at which

this point was known was used as an initial approximation. The Lin-Bairstow

algorithm, a modified Newton iteration, and inverse interpolation were used

for related root-findlng problems.

The criterion for comparing the stability characteristics of methods was

to compare the radii of the disks thus obtained. Generally speaking, near

the improved methods, the corresponding stability regions are somewhat elon-

gated with the radius determined for values of 8 near 30 It is possible to

locate methods, in fact, for which the left endpoint of I is near -1.5. The

disk radii for these methods tend to be somewhat smaller than those for the

methods given in Table i, however. (See [i0] for a similar discussion re-

lated to (4,4) predlctors.) In Table i are given the values a, a2, a3
and

the disk radius for several of the most stable methods which were located. In

each case, the remaining coefficients may be computed using (5.1) and (3.3).

The methods given in Table i corresponding to the values a 0.000, -288/691

and -18/41 are the Adams corrector and the correctors obtained in [i0] for the

values a -0.640 and a -0.675 as mentioned at the beginning of section 3.

The method corresponding to the entry in Table i for a -0.450 calculates

Yn+l according to the formula

Yn+l 1.26125yn 0.46125Yn_I + 0.22500Yn_2 0.02500Yn_3

h 3875y+I ++ 7- (258.6 538.15750y- 285.33000y 1

+ 178. 38250y_2 31.94875y_3). (5.2)
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If y y(x) is any function that has a continuous sixth derivative, the

local truncation error is given by

-32. 74875 h6y ()/1440

for some n in (Xn_3, Xn+l).

TABLE i. STABLE FIFTH-ORDER CORRECTOR METHODS

Disk
a a2 a3 radius

-0.546 -0.020 0.050 0.7691

-0.512 0.060 0.025 0.8559

-0.418 0.155 0.000 0.9466

-0.450 0.225 -0.025 0.9670

-0.000 0.000 0.000 0.6815

-288/691 16/75 -16/675 0.9600

-18/41 0.225 -0.025 0.9653

6. CONCLUSIONS.

From the family of (5,4) iterative correctors, the method (5.2) which has

optimal relative stability properties in the sense that its complex region of

relative stability contains a maximal disk centered at the origin has been

located. Besides being a feasible alternative to the standard fifth order

methods currently being used, the method is also a natural candidate as a start-

ing point for a detailed investigation of the relative stability characteristics

of fifth order predictor-corrector combinations. Furthermore, the algorithm

used to obtain this method may be generalized and applied to other classes of

linear multistep methods. The results given in this paper indicate that it is

possible to answer important questions, previously considered intractable,
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related to the notion of relative stability.
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