UNIFORM APPROXIMATION BY INCOMPLETE POLYNOMIALS

E. B. SAFF*

Department of Mathematics University of South Florida Tampa, Florida 33620 U.S.A.

R. S. VARGA**

Department of Mathematics Kent State University Kent, Ohio 44242 U.S.A.

(Received June 5, 1978)

<u>ABSTRACT</u>. For any θ with $0 < \theta < 1$, it is known that, for the set of all incomplete polynomials of type θ , i.e., $\{p(x) = \sum_{k=s}^{n} a_k x^k \colon s \ge \theta \cdot n\}$, to have the Weierstrass property on $[a_{\theta}, 1]$, it is necessary that

$$\theta^2 \leq a_{\alpha} \leq 1$$
.

In this paper, we show that the above inequalities are essentially sufficient as well.

<u>KEY WORDS AND PHRASES</u>. Incomplete polynomials, Weierstrass property, uniform convergence.

AMS (MOS) SUBJECT CLASSIFICATION. 41A10 primary; 41A30 secondary.

^{*}The research of this author was conducted as a Guggenheim Fellow, visiting at the Oxford University Computing Laboratory, Oxford, England.

^{**} Research supported in part by the Air Force Office of Scientific Research under Grant AFOSR-74-2729, and by the Department of Energy under Grant EY-76-S-02-2075.

1. INTRODUCTION.

At the <u>Conference on Rational Approximation with Emphasis on Applications of Padé Approximants</u>, held December 15-17, 1976 in Tampa, Florida, Professor G. G. Lorentz introduced new results and open questions for incomplete polynomials, defined as follows. Let θ be any given real number with $0 \le \theta \le 1$. Then, a real or complex polynomial of the form

$$p(x) = \sum_{k=s}^{n} a_k x^k,$$

is said to be an incomplete polynomial of type θ if $s \ge \theta \cdot n$. Note that the set of all incomplete polynomials of type θ contains polynomials of arbitrary degree, and that when $\theta > 0$, this collection is not closed under ordinary addition. This set, however, is closed under ordinary multiplication.

For such incomplete polynomials, we have, combining recent results,

THEOREM 1.1. (Lorentz [2], and Saff-Varga [4]). For any fixed θ with $0 < \theta \le 1$, let $\left\{p_{n_i}(x)\right\}_{i=1}^{\infty}$ be a sequence of incomplete polynomials of respective types θ_i , where $\liminf_{i \to \infty} \theta_i \ge \theta > 0$. If

$$|p_{n_i}(x)| \le M$$
 for all $x \in [0,1]$, all $i \ge 1$ and $\lim_{i \to \infty} deg p_{n_i} = \infty$, (1.1)

then

$$p_{n_i}(x) \rightarrow 0$$
, uniformly on every closed subinterval of $[0, \theta^2)$. (1.2)

Furthermore, (1.2) is best possible in the sense that, for each θ with $0 < \theta \le 1$, there is a sequence $\{\hat{p}_{n_i}(x)\}_{i=1}^{\infty}$ of incomplete polynomials of type θ satisfying (1.1) and a sequence $\{\xi_i\}_{i=1}^{\infty}$ with $\lim_{i \to \infty} \xi_i = \theta^2$ for which $|\hat{p}_{n_i}(\xi_i)| = M$ for all $i \ge 1$. Hence, the interval $[0, \theta^2)$ of convergence to zero in (1.2) cannot be replaced by any larger interval $[0, \theta^2 + \varepsilon)$ for $\varepsilon > 0$.

For generalizations of Theorem 1.1, see [4] and [5].

In Lorentz [2], the set of all incomplete polynomials of fixed type $\theta\ (0 < \theta < 1) \text{ is said to have the } \underline{\text{Weierstrass property}} \text{ on } [a_{\theta}, 1] \text{ if, for every continuous function f defined on } [a_{\theta}, 1], \text{ there exists a sequence } \{p_{n_i}(x)\}_{i=1}^{\infty}, \text{ with } p_{n_i} \text{ an incomplete polynomial of type } \theta \text{ for all } i \geq 1, \text{ which converges uniformly to f on } [a_{\theta}, 1]. \text{ Evidently, from (1.2), a } \underline{\text{necessary condition that the set of all incomplete polynomials of a fixed type } \theta, \\ 0 < \theta < 1, \text{ has the Weierstrass property on } [a_{\theta}, 1] \text{ is that}$

$$\theta^2 \le a_{\theta} \le 1. \tag{1.3}$$

The main purpose of this paper is to show that the condition (1.3) is essentially <u>sufficient</u> as well. The outline of the paper is as follows. In $\S 2$, we state our new results and comment on their sharpness and their relation to known results in the literature. The proofs of these new results are then given in $\S 3$.

2. STATEMENTS OF NEW RESULTS.

As our first result, we have

THEOREM 2.1. For any fixed θ with $0 < \theta < 1$, let F be any continuous function on [0, 1] which is not an incomplete polynomial of type θ . Then, a necessary and sufficient condition that F be the uniform limit on [0, 1] of a sequence of incomplete polynomials of type θ , is that

$$F(x) = 0 \text{ for all } 0 \le x \le \theta^2.$$
 (2.1)

As an application of Theorem 2.1, fix any θ with $0 < \theta < 1$ and consider any continuous function $\hat{\mathbf{F}}$ on [0, 1] with $\|\hat{\mathbf{F}}\|_{L_{\infty}[0,1]} = 1$ and with $\hat{\mathbf{F}}$ vanishing on $[0, \theta^2]$ and on $[\theta^2 + \varepsilon, 1]$, where $0 < \varepsilon < 1 - \theta^2$. For $\eta > 0$, there

exists, using Theorem 2.1, an incomplete polynomial \hat{p}_n of type θ with $\|\hat{p}_n - \hat{f}\|_{L_{\infty}[0,1]} < \eta$, which implies, for η sufficiently small, that \hat{p}_n assumes its maximum absolute value on [0,1] in the interval $[\theta^2,\theta^2+\varepsilon]$. Thus, the sequence $\{(\hat{p}_n(\mathbf{x})/\|\hat{p}_n\|_{L_{\infty}[0,1]})^j\}_{j=1}^{\infty}$ of incomplete polynomials, each of type θ , cannot tend uniformly to zero in $[\theta^2,\theta^2+\varepsilon]$ for any ε with $0<\varepsilon<1-\theta^2$. This observation then gives a different proof of the sharpness portion (cf. [4]) of Theorem 1.1. We also remark that the sufficiency of Theorem 2.1 improves a related result of Roulier [3, Theorem 4] concerning Bernstein polynomials.

From Theorem 2.1, the following is deduced.

THEOREM 2.2. For any θ with $0 < \theta < 1$, let $\left\{\theta_{i}\right\}_{i=1}^{\infty}$ be any sequence of real numbers such that $0 < \theta_{i} < \theta$ for all $i \geq 1$. Then, for any continuous function f on $\left[\theta^{2},1\right]$, there exists a sequence $\left\{P_{n_{i}}\left(x\right)\right\}_{i=1}^{\infty}$, with each $P_{n_{i}}$ an incomplete polynomial of type θ_{i} , such that

$$P_{n_i}(x) \rightarrow f(x)$$
, uniformly on $[\theta^2, 1]$, (2.2)

and such that the sequence $\left\{P_{n_i}(x)\right\}_{i=1}^{\infty}$ is uniformly bounded on [0,1].

In the case of major interest in Theorem 2.2, i.e., when $\theta_i \to \theta$ as $i \to \infty$, we remark that the result of Theorem 2.2 is <u>best possible</u> in the following sense. If $[a,b] \supset [\theta^2, 1]$ with $[a,b] \neq [\theta^2, 1]$, then there are, continuous functions on [a,b] which <u>cannot</u> be uniformly approximated on [a,b] by a sequence $\{P_{n_i}(x)\}_{i=1}^{\infty}$, with each P_{n_i} an incomplete polynomial of type θ_i , where $\theta_i \to \theta$ as $i \to \infty$.

As other consequences of Theorems 2.1 and 2.2, we have

COROLLARY 2.3. For any θ with $0 < \theta < 1$, consider any continuous function f on $[\theta^2,1]$. Then, for any q with $1 \le q < \infty$, there exists a

sequence $\{P_{n_{\hat{i}}}(x)\}_{\hat{i}=1}^{\infty},$ with each $P_{n_{\hat{i}}}$ an incomplete polynomial of type $\theta,$ such that

$$\|f - P_{n_i}\|_{L_q[\theta^2, 1]} := \{ \int_{\theta^2}^1 |f(t) - P_{n_i}(t)|^q dt \}^{1/q} \to 0 \text{ as } i \to \infty,$$
 (2.3)

and such that the sequence $\{P_{n_i}(x)\}_{i=1}^{\infty}$ is uniformly bounded on [0, 1].

COROLLARY 2.4. For any θ with $0 < \theta < 1$, the set of incomplete polynomials of type θ is dense in the Banach space $L_q[\theta^2,1]$ (with respect to the norm $\|\cdot\|_{L_q[\theta^2,1]}$) for each q with $1 \le q < \infty$.

COROLLARY 2.5. For any θ with $0 < \theta < 1$, the set of incomplete polynomials of type θ is dense in the space of continuous functions on $\left[\theta^2 + \varepsilon, 1\right]$ (with respect to the norm $\left\|\cdot\right\|_{L_{\infty}\left[\theta^2 + \varepsilon, 1\right]}$) for every $0 < \varepsilon < 1 - \theta^2$.

The sharpness remarks following Theorem 2.2 similarly apply to the results of Corollaries 2.3-2.5.

To conclude this section, we remark that Corollary 2.5 leaves as an open question whether or not each continuous function f on $[\theta^2,1]$ with $f(\theta^2) \neq 0$ is the uniform limit of incomplete polynomials of type θ . In attempting to settle this question, consider the special case of $\theta = \frac{1}{2}$ and $f(x) \equiv 1$ on $[\frac{1}{4}, 1]$. Setting

$$\boldsymbol{\varepsilon}_{m} \coloneqq \inf\{ \left\| 1 - \mathbf{x}^{m} \mathbf{g}_{m}(\mathbf{x}) \right\|_{\mathbf{L}_{\infty}} [\frac{1}{4}, \ 1] \colon \ \mathbf{g}_{m} \text{ is a polynomial of degree m} \},$$

a modified Remez algorithm was used to produce the following partial numerical results, rounded to three decimal, where α_m denotes the least alternation point in $\left[\frac{1}{4},\ 1\right]$ for each $m\geq 1$.

m	€ m	ထ္မ
1	.220	.625
2	.261	.494
3	.279	.435
4	.289	.402
5	.296	.380
6	.300	.365

m	€ m	α_{m}
7	.304	.353
8	.307	.344
9	.309	.336
10	.311	.330
11	.313	.326
12	.314	.321
13	.316	.317

It is interesting to note that the ε_m 's are, in this partial listing, monotone increasing with m.

PROOFS.

PROOF OF THEOREM 2.1. Let F be any continuous function [0,1] which is not an incomplete polynomial of type θ , and assume that F is the uniform limit of a sequence of incomplete polynomials of type θ . Then, (2.1) follows from (1.2) of Theorem 1.1, establishing the necessity of (2.1).

For sufficiency, let n_0 be any positive integer with $n_0 \ge (1 - \theta)^{-1}$. If [y] denotes the integer part of the real number y, let

$$S_{n}(x) := \sum_{k=[n\theta]}^{n-1} \hat{a}_{k} x^{k} , \forall n \ge n_{0},$$
 (3.1)

be the (unique) least squares approximation to the constant function 1 on [0, 1], i.e.,

$$\sigma_{n} := \left\{ \int_{0}^{1} (1 - S_{n}(t))^{2} dt \right\}^{\frac{1}{2}} = \inf \left\{ \left[\int_{0}^{1} (1 - \sum_{k=0}^{n-1} a_{k} t^{k})^{2} dt \right]^{\frac{1}{2}} : a_{k} \text{ is real} \right\}.$$

Next, set

$$Q_{n}(x) := \int_{0}^{x} S_{n}(t) dt = \sum_{k=0}^{n-1} \frac{\hat{a}_{k}}{(k+1)} x^{k+1}, \quad \forall n \geq n_{0}. \quad (3.2)$$

Note that Q_n , which is of degree at most n, is an incomplete polynomial type θ for all $n \ge n_0$, since ($[n\theta] + 1$) $\ge \theta \cdot n$.

From the Muntz theory of best L_2 -approximation on [0,1], it is known (cf. Cheney [1, p. 196]) that

$$\sigma_{\mathbf{n}} = \prod_{\mathbf{j}=1}^{\mathbf{n} - \left[\mathbf{n} \theta \right]} \left(\frac{\mathbf{q}_{\mathbf{j}}}{1 + \mathbf{q}_{\mathbf{j}}} \right), \tag{3.3}$$

where

$$q_j = [n\theta] + j - 1, \quad j = 1, 2, \dots, n - [n\theta].$$

Since the q_j 's are consecutive integers, the product in (3.3) telescopes to $[n\theta]/n$, whence

$$\sigma_{n} = \left\{ \int_{0}^{1} (1 - S_{n}(t))^{2} dt \right\}^{\frac{1}{2}} = \frac{\ln \theta}{n} \to \theta \quad , \quad \text{as } n \to \infty.$$
 (3.4)

We now show that the sequence $\{Q_n(x)\}_{n=n_0}^{\infty}$ converges uniformly to the function $x - \theta^2$ on the interval $[\theta^2, 1]$. For this purpose, let ε be an arbitrary real number satisfying $0 < \varepsilon < \theta^2$. From (3.2), we have

$$x - \theta^2 - Q_n(x) = -\epsilon - Q_n(\theta^2 - \epsilon) + \int_{\theta^2 - \epsilon}^{x} (1 - S_n(t)) dt,$$

so that

$$|x-\theta^2-Q_n(x)| \le \varepsilon + \int_0^{\theta^2-\varepsilon} |s_n(t)| dt + \int_{\theta^2-\varepsilon}^1 |1-s_n(t)| dt, \forall x \in [\theta^2,1].$$

Applying the Cauchy-Schwarz inequality to the last integral, then

$$\|x-\theta^{2}-Q_{n}(x)\|_{L_{\infty}[\theta^{2},1]} \leq \varepsilon + \int_{0}^{\theta^{2}-\varepsilon} |S_{n}(t)| dt + (1+\varepsilon-\theta^{2})^{\frac{1}{2}} \cdot \left\{\int_{\theta^{2}-\varepsilon}^{1} (1-S_{n})^{2} dt\right\}^{\frac{1}{2}}$$
(3.5)

for all $n \ge n_0$. Clearly, since $\sigma_n = \|1-S_n\|_{L_2[0,1]} \to \theta$ as $n \to \infty$ from (3.4),

it follows that there is a constant M such that

$$\|\mathbf{s}_{\mathbf{n}}\|_{\mathbf{L}_{2}[0,1]} \leq \mathbf{M}$$
 , $\forall \mathbf{n} \geq \mathbf{n}_{0}$.

Next, note that each $S_n(x)$ from (3.1) is an incomplete polynomial of type $[n\theta]/(n-1)$, and $[n\theta]/(n-1) \rightarrow \theta$ as $n \rightarrow \infty$. Hence, using the more general L_2 -version of Theorem 1.1 (cf. Saff and Varga [4, Thm. 2.2 and the discussion of (2.4")]) gives that

$$S_n(x) \rightarrow 0$$
 uninformly on $[0, \theta^2 - \varepsilon]$, as $n \rightarrow \infty$. (3.6)

Furthermore, on writing

$$\int_{\theta^{2}-\varepsilon}^{1} (1-s_{n}(t))^{2} dt = \int_{0}^{1} (1-s_{n}(t))^{2} dt - \int_{0}^{\theta^{2}-\varepsilon} (1-s_{n}(t))^{2} d\tau$$

and applying (3.4) and (3.6), we obtain

$$\lim_{n \to \infty} \int_{\theta^2 - \varepsilon}^{1} (1 - s_n(t))^2 dt = \theta^2 - (\theta^2 - \varepsilon) = \varepsilon.$$
 (3.7)

Consequently, from (3.5)-(3.7).

$$\lim_{n\to\infty} \sup_{n\to\infty} \|\mathbf{x}-\boldsymbol{\theta}^2-\mathbf{Q}_n(\mathbf{x})\|_{\mathbf{L}_{\infty}[\boldsymbol{\theta}^2,1]} \leq \varepsilon + 0 + (1+\varepsilon-\boldsymbol{\theta}^2)^{\frac{1}{2}} \sqrt{\varepsilon},$$

and as & was arbitrary, then

$$\lim_{n \to \infty} \|\mathbf{x} - \theta^2 - Q_n(\mathbf{x})\|_{L_{\infty}[\theta^2, 1]} = 0.$$
 (3.8)

We next show that $Q_n(x) \to 0$ uniformly on $[0, \theta^2]$. For any x with $0 \le x \le \theta^2$, it follows from the definition of Q_n in (3.2) and the Cauchy-Schwarz inequality that

$$\begin{aligned} |Q_{n}(x)| &= |\int_{0}^{x} s_{n}(t)dt| \leq \int_{0}^{x} |s_{n}(t)|dt \leq \int_{0}^{\theta^{2}} |s_{n}(t)|dt \\ &\leq \theta \cdot \left\{ \int_{0}^{\theta^{2}} s_{n}^{2}(t)dt \right\}^{\frac{1}{2}} , \quad \forall x \in [0, \theta^{2}], \end{aligned}$$

whence

$$(\|Q_n\|_{L_{\infty}[0,\theta^2]})^2 \le \theta^2 \cdot \int_0^{\theta^2} s_n^2(t) dt.$$
 (3.9)

But $\int_{0}^{\theta^{2}} s_{n}^{2}(t) dt = \int_{0}^{\theta^{2}} [(1-s_{n}(t))^{2}-1+2s_{n}(t)] dt = \int_{0}^{\theta^{2}} (1-s_{n}(t))^{2} dt - \theta^{2} + 2 \int_{0}^{\theta^{2}} s_{n}(t) dt,$

and as the last integral is just $2Q_n(\theta^2)$ from (3.2), then

$$\int_{0}^{\theta^{2}} s_{n}^{2}(t)dt \le \int_{0}^{1} (1-s_{n})^{2}dt - \theta^{2} + 2Q_{n}(\theta^{2}).$$
 (3.10)

Since $\int_0^1 (1-S_n(t))^2 dt - \theta^2 \to 0$ as $n \to \infty$ from (3.4) and since $Q_n(\theta^2) \to 0$ as $n \to \infty$ from (3.8), it follows from (3.9) and (3.10) that

$$\lim_{n \to \infty} \|Q_n\|_{L_{\infty}[0,\theta^2]} = 0. \tag{3.11}$$

Thus, on defining the continuous function L on [0,1] by

$$L(\mathbf{x}) := \begin{cases} 0 & 0 \leq \mathbf{x} \leq \theta^2, \\ \mathbf{x} - \theta^2, & \mathbf{\theta}^2 \leq \mathbf{x} \leq 1, \end{cases}$$

we see from (3.8) and (3.11) that

$$\lim_{n \to \infty} \| \mathbf{L}(\mathbf{x}) - \mathbf{Q}_{n}(\mathbf{x}) \|_{\mathbf{L}_{\infty}[0,1]} = 0.$$
 (3.12)

To extend (3.12), we next assert that any continuous function $G(\mathbf{x})$ on [0,1] with

$$G(\mathbf{x}) := \begin{cases} 0, & 0 \le \mathbf{x} \le \theta^2, \\ P(\mathbf{x}), & \theta^2 \le \mathbf{x} \le 1, \text{ where P is any polynomial} \end{cases}$$
with $P(\theta^2) = 0$,

can be uniformly approximated on [0,1] by incomplete polynomials of type θ . Because $P(\theta^2) = 0$, we can write

$$P(x) = \sum_{k=0}^{m} b_k x^k (x - \theta^2).$$
 (3.14)

Setting

$$\varepsilon_n := \|\mathbf{x} - \mathbf{\theta}^2 - \mathbf{Q}_n(\mathbf{x})\|_{\mathbf{L}_n[\mathbf{\theta}^2, 1]} \quad \forall n \geq n_0,$$

it follows that

$$\|\mathbf{x}^{k}(\mathbf{x} - \theta^{2} - Q_{n}(\mathbf{x}))\|_{\mathbf{L}_{m}[\theta^{2}, 1]} \le \epsilon_{n}$$
, $k = 0, 1, 2, \dots, \forall n \ge n_{0}$. (3.15)

Next, set B:= $\max\{ \left| b_k \right| : 0 \le k \le m \}$. Since the case B = 0 of our assertion is trivial, assume B > 0 and let δ be an arbitrary positive number. Since $\epsilon_n \to 0$ as $n \to \infty$ from (3.8), there exists a positive integer $N \ge n_0$ such that

$$\epsilon_{n} \leq \frac{\delta}{(m+1)B} \qquad \forall n \geq N.$$
(3.16)

Then, for the polynomial P(x) of (3.14), we have from (3.15) and (3.16) that

$$\| \mathbf{P}(\mathbf{x}) - \sum_{k=0}^{m} \mathbf{b}_{k} \mathbf{x}^{k} | \mathbf{Q}_{N+m-k}(\mathbf{x}) \|_{\mathbf{L}_{\infty}[\theta^{2}, 1]} = \| \sum_{k=0}^{m} \mathbf{b}_{k} \mathbf{x}^{k} \{ (\mathbf{x} - \theta^{2}) - \mathbf{Q}_{N+m-k}(\mathbf{x}) \} \|_{\mathbf{L}_{\infty}[\theta^{2}, 1]}$$

$$\leq \sum_{k=0}^{m} | \mathbf{b}_{k} | \epsilon_{N+m-k} \leq \sum_{k=0}^{m} | \mathbf{b}_{k} | \{ \frac{\delta}{(m+1)B} \} \leq \delta.$$

$$(3.17)$$

Next, we claim that $R(x) := \frac{\pi}{2} b_k x^k Q_{N+m-k}(x)$ is an incomplete polynomial of type θ . Indeed, its degree is at most N+m, and as $Q_{N+m-k}(x)$ is an incomplete polynomial of type θ , then each product $x^k Q_{N+m-k}(x)$ in this sum has a zero at x=0 of order at least $k+(N+m-k)\theta$. But as $k+(N+m-k)\theta=(N+m)\theta+k(1-\theta)\geq (N+m)\theta$, then R(x) is an incomplete polynomial of type θ . Thus, as $\delta>0$ was arbitrary, it follows from (3.17) that any polynomial P(x) with $P(\theta^2)=0$ can be uniformly approximated on $[\theta^2,1]$ by a sequence of incomplete polynomials of type θ . Next, as it is evident from (3.11) that

$$\lim_{N\to\infty} \left\| \sum_{k=0}^{m} b_k x^k Q_{N+m-k}(x) \right\|_{L_{\infty}[0,\theta^2]} = 0,$$

then G(x) of (3.13) can be uniformly approximated on [0,1] by a sequence of incomplete polynomials of type θ .

Now, for an arbitrary function F(x), continuous on [0,1] with $F(x) \equiv 0$ on $[0,\theta^2]$, let $u_n(x)$ be the polynomial of degree n of best uniform approximation to F on $[\theta^2,1]$. If $E_n: \|F-u_n\|_{L_{\infty}[\theta^2,1]}$, then $E_n \to 0$ as $n \to \infty$. Clearly, $|u_n(\theta^2)| = |u_n(\theta^2) - F(\theta^2)| \le E_n$, whence

$$\|F(x) - (u_n(x) - u_n(\theta^2))\|_{L_{\infty}[\theta^2, 1]} \le 2 E_n, \quad \forall n \ge 0.$$
 (3.18)

Since $(u_n(x) - u_n(\theta^2))$ is a polynomial vanishing at θ^2 , call $U_n(x)$ its continuous extension to [0, 1] with $U_n(x) \equiv 0$ on $[0, \theta^2]$ for all $n \ge 0$. Thus, from (3.18),

$$\|F - U_n\|_{L_m[0,1]} \le 2 E_n \quad \forall n \ge 0.$$
 (3.19)

The previous discussion shows that there is an incomplete polynomial P_n of type θ , for every n>0, such that

$$\|\mathbf{U}_{n} - \mathbf{P}_{n}\|_{\mathbf{L}_{m}[0,1]} \leq \frac{1}{n},$$

whence, with (3.19),

$$\|F - P_n\|_{L_n[0,1]} \le 2 E_n + \frac{1}{n}, \quad \forall n > 0.$$
 (3.20)

Since $E_n \to 0$ as $n \to \infty$, this proves (cf. (2.1)) that F(x) can be uniformly approximated on [0,1] by $\{P_n(x)\}_{n=0}^{\infty}$, where each $P_n(x)$ is an incomplete polynomial of type θ .

PROOF OF THEOREM 2.2. Consider any continuous function f(x) on $[\theta^2,1]$. Since $\{\theta_n\}_{n=0}^{\infty}$ is any sequence of real numbers with $0<\theta_n<\theta$ for all $n\geq 0$, extend f continuously for each n to [0,1], by means of

$$f_{n}(x) := \begin{cases} f(x), & x \in [\theta^{2}, 1], \\ f(\theta^{2})(x-\theta_{n}^{2})/(\theta^{2}-\theta_{n}^{2}), & x \in [\theta_{n}^{2}, \theta^{2}], \\ 0, & x \in [0, \theta_{n}^{2}]. \end{cases}$$

Note that $\|f_n\|_{L_{\infty}[0,1]} = \|f\|_{[\theta^2,1]}$ for all $n \ge 0$, and that each f_n satisfies the hypotheses of Theorem 2.1 with $\theta = \theta_n$. Applying Theorem 2.1, for any sequence $\{\eta_n\}_{n=0}^{\infty}$ with $\eta_n > 0$ for all $n \ge 0$ and $\lim_{n \to \infty} \eta_n = 0$, there is an incomplete polynomial $p_n(x)$ of type θ_n such that

$$\|f_{n} - p_{n}\|_{L_{\infty}[0,1]} \le \eta_{n} \quad \forall n \ge 0,$$
 (3.21)

which implies that

$$\|\mathbf{f} - \mathbf{p}_n\|_{\mathbf{L}_{\infty}[\theta^2, 1]} \leq \|\mathbf{f}_n - \mathbf{p}_n\|_{\mathbf{L}_{\infty}[0, 1]} \leq \eta_n \qquad \forall n \geq 0.$$

Consequently, (2.2) holds. It also follows from (3.21) that

$$\left\| p_n \right\|_{L_{\infty}\left[0,1\right]} \leq \left\| f_n \right\|_{L_{\infty}\left[0,1\right]} + \eta_n \leq \left\| f \right\|_{L_{\infty}\left[\theta^2,1\right]} + \eta_n \qquad \forall n \geq 0,$$

so that $\left\{\mathbf{p}_{\mathbf{n}}\right\}_{\mathbf{n}=\mathbf{0}}^{\infty}$ are uniformly bounded on [0,1].

To prove the sharpness of Theorem 2.2, let $[a,b]\supset [\theta^2,1]$ with $[a,b]\neq [\theta^2,1]$, take $f(x)\equiv 1$, and suppose there exists a sequence $\{P_{n_i}(x)\}_{i=1}^\infty$ of incomplete polynomials of respective types θ_i , where $\theta_i\to \hat{\theta}$, such that $P_{n_i}(x)\to f(x)$ uniformly on [a,b]. Clearly, $\{P_{n_i}(x)\}_{i=1}^\infty$ is uniformly bounded on [a,b]. If $0< a<\theta^2$, then from [5,Prop.1], this sequence is necessarily uniformly bounded on [0,1] since $\theta_i\to \theta$. But then, by Theorem 1.1, $P_{n_i}(a)\to 0\neq f(a)$. Similarly, if b>1, we deduce by rescaling that $P_{n_i}(\theta^2)\to 0\neq f(\theta^2)$.

PROOF OF COROLLARY 2.3. For any sequence $\{\eta_n\}_{n=0}^{\infty}$ with $\gamma_n>0$ for all $n\geq 0$ and $\lim_{n\to\infty}\eta_n=0$, and for any fixed q with $1\leq q<\infty$, choose $\gamma_n>0$ with $\theta^2+\delta_n\leq 1$ such that $2\|f\|_{L_{\infty}[\theta^2,1]}\cdot\delta_n^{1/q}<\eta_n/2$, for every $n\geq 0$. Then, define f_n on [0,1] by means of

$$\mathbf{f}_{\mathbf{n}}(\mathbf{x}) := \begin{cases} \mathbf{f}(\mathbf{x}), & \mathbf{x} \in [\theta^{2} + \delta_{\mathbf{n}}, 1], \\ \mathbf{f}(\theta^{2} + \delta_{\mathbf{n}}) \cdot (\mathbf{x} - \theta^{2}) / \delta_{\mathbf{n}}, & \mathbf{x} \in [\theta^{2}, \theta^{2} + \delta_{\mathbf{n}}], \\ \mathbf{0}, & \mathbf{x} \in [0, \theta^{2}], \end{cases}$$

so that f_n is continuous on [0,1] and satisfies the hypotheses of Theorem 2.1. Note, moreover, that $\|f_n\|_{L_m[0,1]} \le \|f\|_{L_m[\theta^2,1]}$. Now,

$$\|\mathbf{f} - \mathbf{f}_n\|_{\mathbf{L}_{\mathbf{q}}[\theta^2, 1]} = \begin{cases} \theta^2 + \delta_n \\ \int_{\theta^2} |\mathbf{f}(\mathbf{t}) - \mathbf{f}_n(\mathbf{t})|^q d\mathbf{t} \end{cases}^{1/q} \leq 2 \|\mathbf{f}\|_{\mathbf{L}_{\infty}[\theta^2, 1]} \cdot \delta_n^{1/q} < \eta_n/2.$$

Applying Theorem 2.1 to f_n , there is an incomplete polynomial P_n of type θ such that $\|f_n - P_n\|_{L_{\infty}[0,1]} < \eta_n/2$, which also implies that $\|f_n - P_n\|_{L_{q}[\theta^2,1]} < \eta_n/2$. Thus, by the triangle inequality, $\|f - P_n\|_{L_{q}[\theta^2,1]} < \eta_n$, proving (2.3). Moreover, since $\|P_n\|_{L_{\infty}[0,1]} \le \|f_n - P_n\|_{L_{\infty}[0,1]} + \|f_n\|_{L_{\infty}[0,1]} < \eta_n/2 + \|f\|_{L_{\infty}[\theta^2,1]}$, it is clear that the sequence $\{P_n(x)\}_{n=0}^{\infty}$ is uniformly bounded on [0,1].

PROOF OF COROLLARY 2.4. As an abvious consequence of the fact that the continuous functions are dense in $L_q[\theta^2,1]$ for any $q\geq 1$, Corollary 2.4 then follows directly from Theorem 2.1 and Corollary 2.3.

PROOF OF COROLLARY 2.5. With $\theta_i := \theta$ for all $i \ge 1$, simply apply Theorem 2.2 to any continuous function on $[\theta^2 + \varepsilon, 1]$, where $0 < \varepsilon \le 1 - \theta^2$.

ACKNOWLEDGMENT

We wish to thank Mr. M. Lachance (University of South Florida) for having made the calculations which produced the numbers in the tables.

REFERENCES

- Cheney, E. W. Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
- Lorentz, G. G. Approximation by incomplete polynomials (problems and results), <u>Padé and Rational Approximations: Theory and Applications</u> (E. B. Saff and R. S. Varga, eds.), pp. 289-302, Academic Press, Inc., New York, 1977.
- 3. Roulier, J. A. Permissible bounds on the coefficients of approximating polynomials, J. Approximation Theory $\underline{3}(1970)$, 117-122.
- Saff, E. B. and R. S. Varga The sharpness of Lorentz's theorem on incomplete polynomials, Trans. Amer. Math. Soc. (to appear).
- Saff, E. B. and R. S. Varga On incomplete polynomials, Proceedings of the Oberwolfach Conference, Numerische Methoden der Approximationentheorie, (L. Collatz, G. Meinardus, and H. Werner, eds.), held November 14-19, 1977 (to appear).