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ABSTRACT. lqe purposes of the present paper are (i) to give a necessary and

sufficient condition for the uniqueness of the separable idempotent for a

separable group ring extension RG (R may be a non-commutative ring), and

(2) to give a full description of the set of separable idempotents for a qua-

ternion ring extension RQ over a ring R, where Q are the usual quaternions i,j,k

and multiplication and addition are defined as quaternion algebras over a field.

We shall show that RG has a unique separable idempotent if and only if G is

abelian, that there are more than one separable idempotents for a separable

quaternion ring RQ, and that RQ is separable if and only if 2 is invertible in
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INTRODUCTION.

M. Auslander and O. Goldman ([I] and [2]) studied separable alge-

bras over a commutative ring. Subsequently, the investigation of se-

parable algebras (in particular, Brauer groups and Azumaya algebras)

has attracted a lot of researchers, and rich results have been obtained

(see References). K. Hirata and K. Sugano ([5]) generalized the con-

cept of separable algebras to separable ring extensions; that is, let

S be a subring of a ring T with the same identity. Then T is called a

separable ring extension of S if there exists an element aibi
in

TST such that x([aibi) ([aibi)x for each x in T and [aibi
I.

Such an element aibi
is called a separable idempotent for T. We

note that a separable idempotent takes an important role in many theo-

reins (for example, see [6], Section 5,6, and 7). It is easy to verify

that (I/n)(gig1) and ei1eli ([4], Examples II and III, P. 41)

are separable idempotents for a group algebra RG and a matrix ring M (R)
m

{ } with n invertible in R and e.. arerespectively, where G gl,...,gn m3

matrix units. We also note that the separable idempotent for a commu-

tative separable algebra is unique ([6], Section I, P. 722).

2. PRELIMINARIES.

Throughout, G is a group of order n, R is a ring with an identity

I. The group ring RG rigi
/ r

i
in R and gi in G}, which is a free

R-module with a basis {gi and (rigi)(sigi) tkgk
where t

k

ris j
for all possible i,j such that gig j gk" The ring R is imbed-

ded in RG by r-rgl, where gl is the identity of G (gl I). The mul-

tiplication map RGRRG--RG is denoted by . Clearly, {gigj / i,j
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,... ,n form a basis for RGRRG. An element rij in RGRRG
is called a commutant element in RGRRG if x(rij (gigj))
(rij(gigj))x for all x in RG.

MAIN THEOREMS.

We begin with a representation for (x) for a commutant element x

in RGRRG and then we show that RG has a unique separable idempotent

if and only if G is abelian.

LEMMA I. Let x ri.i (gig.i )’ i,j 1,...,n, be a commutant e!e-

ment in RGRRG. Then (x) i=ml . rlk: )nk. Ck. where m is the number
I i i

of conjugate classes of G, nk. is the order of the normalizer of gk.’

and C
k

is the sum of different conjugate elements of --., for some k.
1 i

and k: in {1,...,n.
1

gpX in G.PROOF. Since x is a commutant element, xg for each gpP

gpgk x is rlk, and the coefficient ofThe coefficient of the term in gp
gp gqgp gk" Hence rlk rpq wheneverthe same term in x is rpq, where

gqgp gk" Thus x krlk(gpgq), where p,q run over 1,...,n, such

-I). TakingS(x)that gqgp gk; that is, x krlk(pgpgkgp
-I

nkCk where n
k

is the-I). For a fixed k pgpgkgp
order of the normalizer of Sk

and C
k

is the sum of all different conju-

gate elements of gk" Hence ,(x) k=]rknkCk. Since conjugate class-

es form a partition of G, C
i

C. if and only if gi is conjugate to gj.
Renumerating elements we let [gkl’’’’gkm} be all non-conjugate ele-

ments of each other; then {Ck ,...,Ck } are all different elements in
m
m

the set, {CI,...,Cn}. Thus (x) i:i (rlk :)nk.Ck. where rlk are

coefficients of the same Ck., and m is the number of conjugate classes



4 36 G. SZETO

of G.

THEOREM 2. Let RG be a separable extension of R. Then, RG has a

unique separable idempotent if and only if @ is abelian.

PROOF. Let x Zrij(gig j) be a separable idempotent for RO.

m
)nk. Ck. where C is the sum oThen by the lemma, (x) i:I (rlk! k.

I i ! i

all conjugate elements of g.. Let gk I, the identity of G. Then
m

Ckl and n
kl

n, the order of G. Since (x) 1, (rlkl)nkl Ckl
and (rlk)nk

and (rlk,)nk C
k

0 for each i 1. Toting
kl i i i

that Ckl I, we have rlk r11 and so the first equation becomes

rlln . Hence the order of G, n, is invertible in R. Thus nk., bemng

a factor of n, is also invertible in R. But conjugate classes form a

partition of G, so (rlk,)nk.C,.. 0 implies that rlk 0 for each
I 1 I i

i I. This system of homogeneous equations rlk 0 in the unknowns
1

rlk with i 6 has trivial solutions if and only if n m, and this

holds if and only if G is abelian. Since the uniqueness of the separ-

able idempotent (= (I/n)(gig1)) is equivalent to the existence of

trivial solutions of the above system of equations, the same fact is equi-

valent to G being abelian.

The theorem tells us that there are many separable idempotents for

a separable group ring RG when G is non-abelian. Also, we remark that

if RG is a separable extension of R, the order of G is invertible in R

from the proof of the theorem. Next, we discuss another popular separ-

able ring extension, a quaternion ring extension RQ, where RQ

(r1+rii+rjj+rkk / i,j, and k are usual quaternions). (RQ,+.) is a ring

extension of R under the usual addition and multiplication similar to

quaternion algebras over a field. Now we characterize a separable idem-
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potent for a separable quaternion ring extension RQ.

THEOREM 3. Let RQ be a separable quaternion ring extension. Then

a commutant element x rst(St), s,t 1,i,j,k, in RQRRQ is a separ-

able idempotent for RQ if and only if r11 I/4.

PROOF. Since x is a commutant element in RQRQ, ix xi. The co-

efficients of the term 191 on both sides are -ril and -rli so ril rli.
Since jx xj, the coefficients of the term k1 on both sides are -ril

r Also, kx xk, so the coefficients of the term j1-rkj so ril k0
on both sides are -ril rjk. Hence rli ril rkj -rjk. Similarly,

by comparing coefficients of other terms, we have r11 -rii -rjj

-rkk rlj rjl -rki rik and rlk rkl -rij rji. In other words,

rst rpq if ts qp, and rst -rpq if ts -qp. Thus

x r (11-ii-jj-kk)+rli( 1i+i1-jk+kj)+rlj(1j+j1-ki+ik)+
r
Ik 1k+k -ij+ ji *

But then (x) r114+rliO+rljO+rlkO 4r11. Consequently, x is a se-

parable idempotent if and only if r11 I/4 (for (x) I).

COROLLARY 4. Let RQ be a quaternion ring extension of R. Then RQ

is separable if and only ,if 2 is invertible in R.

PROOF. The necessity is immediate from the theorem. The sufficien-

cy is clear since the element x with r11 I/4, rli rlj rlk 0 as

given in (*) in Theorem 3 is a separable idempotent for RQ.

REMARK. It is easy to see that every x of the form (*) in Theorem

3 with r11 rli rlj and rlk in the center of R is a commutant element

in RQRRQ. Hence, from the proof of Theorem 3, the complete set of corn-

mutant elements is- C (rst(St) / r r if qp ts, and rst pq st

-r if qp -ts}. Also, the complete set of separable idempotents for
Pq
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RQ is a subset of C such that r
11 I/4 and r

Ii’ rlj’ rlk
center of R. Thus there are many separable idempotents.

are in the
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