Internat. J. Math. & Math. Sci. Vol. 1 (1978) 529-532

ON NONAMENABLE GROUPS

SU-SHING CHEN

School of Mathematics Georgia Institute of Technology Atlanta, Georgia 30332 U.S.A.

(Received April 10, 1978 and in revised form October 3, 1978)

<u>ABSTRACT</u>. A sufficient condition is given for a countable discrete group G to contain a free subgroup of two generators.

KEY WORDS AND PHRASES. Nonamenable group, free group.

AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. 22D05.

Given a topological group G, we denote by L the Banach algebra of all real valued bounded left uniformly continuous functions on G with the supremem norm. A mean m on L is a continuous, positive, linear functional such that m(1) = 1. A mean is called invariant if $m(f^g) = m(f)$ for every $f \in L$ and $g \in G$, where f^g is the translate of f by g.

G is called amenable if there exists an invariant mean on L. G has the fixed point property if whenever G acts on a compact convex set Q affinely in a locally convex topological vector space E, then G has a fixed point in Q [2]. It is well known that G is amenable if and only if G has the fixed point property for any topological group G.

In [4], von Neumann proved that if G has a free subgroup of two generators then G is not amenable and conjectured that the converse is true. In this paper, we shall give a sufficient condition for a discrete group G to contain a free subgroup of two generators. This result may be interesting to the investigation of von Neumann's conjecture.

Let ϕ be an affine transformation of a compact convex set Q in a locally convex topological vector space E. Then ϕ has a fixed point in Q by the famous Tychonoff fixed point theorem. Furthermore, one can prove easily that the fixed point set F_{ϕ} of an affine transformation ϕ of Q is a compact convex subset of Q.

Let us consider a discrete group G acting affinely on Q. The fixed point set F_{ϕ} of each element ϕ of G coincides with the fixed point set F_{ϕ} -1 of the inverse ϕ^{-1} . An element ϕ of G is said to be attractive if for each weak neighborhood U_{ϕ} of the fixed point set F_{ϕ} of ϕ , the orbit $\{\phi^{n}(S) \mid n \in \mathbb{Z}\}$ of any compact convex subset S in Q $-U_{\phi}$ converges to the fixed point set F_{ϕ} of ϕ , that is, there is a positive integer N such that for all $|n| > N, \phi^{n}(S) \subset U_{\phi}$. An element ϕ of G is said to be weakly attractive if, for each weak neighborhood U_{ϕ} of the fixed point set F_{ϕ} of ϕ , there is a positive integer N' such that for all $n \in \mathbb{Z}^{*} {\binom{1}{2}} \phi^{nN'}$ (S) $\subset U_{\phi}$. It is obvious that an attractive element ϕ of G is weakly attractive. [Note: (1) $\mathbb{Z}^{*} = \mathbb{Z} - \{0\}$]

<u>THEOREM</u>. If a discrete group G acts on a compact convex set of Q of a locally convex topological vector space E affinely such that G contains at least two weakly attractive elements without common fixed points, then G contains a free subgroup of two generators.

<u>PROOF</u>. Let ϕ and ψ be two weakly attractive elements of G. Then the fixed point sets F_{ϕ} and F_{ψ} are disjoint. By the seperation theorem [6], there exist a linear functional L on E and real numbers c_1 and c_2 such that L x < c_1 < c_2 < Ly for every x in F_{ϕ} and every y in F_{ψ} . Without loss of generality, we may assume that $c_1 < 0 < c_2$.

Thus $K_1 = \{x \in Q | Lx < 0\}$ is a weak convex neighborhood of F_{ϕ} and $K_2 = \{x \in Q | Lx > 0\}$ is a weak convex neighborhood of F_{ψ} . The complements K_1^C and K_2^C of K_1 and K_2 respectively are compact and convex sets in $Q - K_1$ and $Q - K_2$. By the definition of weak attractiveness, there exist positive integers N' and N" such that $\phi^{nN'}$ (K_1^C) $\subset K_1$ and $\psi^{nN''}(K_2^C) \subset K_2$ for all $n \in \mathbb{Z}^*$. Let $s = \phi^{N'}$ and $t = \psi^{N''}$. Then the group F generated by s and t is a free group. In fact, for any relation $s^P t^Q \ldots = id$, we have $s^P t^Q \ldots (z) = z$ for each z in the hyperplane section $K_1^C \cap K_2^C = \{z \in Q | Lz = 0\}$ of Q. But clearly $Ls^P t^Q \ldots (z) \neq 0$, while Lz = 0. We have a contradiction.

<u>COROLLARY</u>. If a nonamenable discrete group G acts on a compact convex set Q of a locally convex topological vector space E affinely such that G contains all weakly attractive elements then G contains a free subgroup of two generators.

<u>PROOF</u>. This follows from the theorem and the non-fixed point property of nonamenable groups.

ACKNOWLEDGEMENT. The author is indebted to the referee for his comments.

S. CHEN

REFERENCES

- Furstenberg, H., A Poisson Formula for Semisimple Lie Groups, <u>Ann. of Math.</u> <u>77</u> (1963) 335-383.
- Glasner, S., Proximal Flows, <u>Lecture Notes in Math.</u>, Springer-Verlag, Vol. 517, 1976.
- 3. Greenleaf, F. P., Invariant Means on Topological Groups, <u>Van Nostrand Math.</u> <u>Studies</u>, 1969.
- Klee, V., Some Topological Properties of Convex Sets, <u>Trans. Amer. Math. Soc.</u>, 78 (1955) 30-45.
- 5. Von Neumann, J., Zur allgemeinen theorie des masses, <u>Fund. Math</u>. <u>13</u> (1929) 73-116.
- 6. Rudin, W., Functional Analysis, McGraw-Hill 1973.
- 7. Tits, J., Free Subgroups in Linear Groups, <u>Jour. of Algebra</u> <u>20</u> (1972) 250-270.