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The main purpose of this paper is to prove the Hyers-Ulam stability of the additive
functional equation for a large class of unbounded domains. Furthermore, by using
the theorem, we prove the stability of Jensen’s functional equation for a large class
of restricted domains.
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1. Introduction. The starting point of studying the stability of functional

equations seems to be the famous talk of Ulam [14] in 1940, in which he dis-

cussed a number of important unsolved problems. Among those was the ques-

tion concerning the stability of group homomorphisms: let G1 be a group and

let G2 be a metric group with a metric d(·,·). Given ε > 0, does there exist

a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality d(h(xy),
h(x)h(y)) < δ for all x,y ∈ G1, then there exists a homomorphism H : G1 →
G2 with d(h(x),H(x)) < ε for all x ∈G1?

The case of approximately additive mappings was solved by Hyers [3] under

the assumption that G1 and G2 are Banach spaces. Later, the result of Hyers

was significantly generalized by Rassias [11]. It should be remarked that we can

find in [4] a lot of references concerning the stability of functional equations

(see also [2, 5, 6]).

In [12, 13], Skof investigated the Hyers-Ulam stability of the additive func-

tional equation for many cases of restricted domains in R. Later, Losonczi [9]

proved the local stability of the additive equation for more general cases and

applied the result to the proof of stability of the Hosszú’s functional equation.

In Section 2, the Hyers-Ulam stability of the additive equation will be inves-

tigated for a large class of unbounded domains. Moreover, in Section 3, we

will apply the previous result to the proof of the local stability of the Jensen’s

functional equation on unbounded domains.

Throughout this paper, let E1 and E2 be a real (or complex) normed space

and a Banach space, respectively.

2. Stability of additive equation on restricted domains. Assume that ϕ :

(0,∞) → [0,∞) is a decreasing mapping for which there exists a d > 0 such
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that

ϕ(s)≤ s, (2.1)

for any s ≥ d.

We now define

B1 =
{
(x,y)∈ E1 \{0}×E1 : ‖y‖<ϕ(‖x‖)}∪{(0,y)∈ E2

1 :y ∈ E1
}
,

B2 =
{
(x,y)∈ E2

1 : ‖x+y‖<d}. (2.2)

In the following theorem, we generalize the theorems of Skof [12, 13] and

of Losonczi [9] concerning the stability of the additive equation on restricted

domains.

Theorem 2.1. If a mapping f : E1 → E2 with ‖f(0)‖ ≤ ε satisfies the inequal-

ity

∥∥f(x+y)−f(x)−f(y)∥∥≤ ε, (2.3)

for some ε ≥ 0 and all (x,y)∈ E2
1 \(B1∪B2), then there exists a unique additive

mapping A : E1 → E2 such that

∥∥f(x)−A(x)∥∥≤ 39ε, ∀x ∈ E1. (2.4)

Proof. First, we assume that (x,y)∈ B2 satisfies x ≠ 0, y ≠ 0, and x+y ≠
0. For this case, we can choose a z1 ∈ E1 with

∥∥z1

∥∥≥ϕ(‖x+y‖), ∥∥z1

∥∥≥ϕ(‖x‖), ∥∥x+z1

∥∥≥ϕ(‖y‖),
∥∥x+y+z1

∥∥≥ d, ∥∥x+z1

∥∥≥ d. (2.5)

Thus, the pairs (x+y,z1), (x,z1), and (y,x+z1) do not belong to B1∪B2.

Hence, it follows from (2.3) that

∥∥f(x+y)−f(x)−f(y)∥∥≤ ∥∥−f (x+y+z1
)+f(x+y)+f (z1

)∥∥
+∥∥f (x+z1

)−f(x)−f (z1
)∥∥

+∥∥f (x+y+z1
)−f(y)−f (x+z1

)∥∥
≤ 3ε,

(2.6)

for any (x,y)∈ B2 with x ≠ 0, y ≠ 0, and x+y ≠ 0.

When x = 0 or y = 0, we have

∥∥f(x+y)−f(x)−f(y)∥∥= ∥∥f(0)∥∥≤ ε. (2.7)

Taking this fact into account, we see that inequality (2.6) is valid for all (x,y)∈
B2 with x+y ≠ 0.
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We now assume that (x,y) ∈ B2 satisfies x+y = 0 and ‖x‖ ≥ d. (In this

case, ‖y‖ = ‖−x‖ ≥ d.) In view of (2.1), both the pairs (−x,−x) and (x,−2x)
do not belong to B1∪B2. Hence, it follows from (2.3) that

∥∥f(−2x)−2f(−x)∥∥≤ ε, ∥∥f(−x)−f(x)−f(−2x)
∥∥≤ ε. (2.8)

From the last two inequalities we get

∥∥f(x+y)−f(x)−f(y)∥∥= ∥∥f(0)−f(x)−f(−x)∥∥
≤ ∥∥f(0)∥∥+∥∥f(−2x)−2f(−x)∥∥
+∥∥f(−x)−f(x)−f(−2x)

∥∥
≤ 3ε.

(2.9)

Considering all the previous inequalities including (2.3), we conclude that f
satisfies the inequality

∥∥f(x+y)−f(x)−f(y)∥∥≤ 3ε, (2.10)

for all (x,y)∈ E2
1 \(B1∪B2)∪{(u,v)∈ B2 : ‖u‖ ≥ d}.

Now, let (x,y)∈ E2
1 be arbitrarily given with ‖x‖ ≥ d and ‖y‖ ≥ d. Since ϕ

is decreasing, we see by (2.1) that

ϕ
(‖x‖)≤ϕ(d)≤ d≤ ‖y‖, (2.11)

and this implies that (x,y) 	∈ B1. If, moreover, the given pair (x,y) belongs

to B2, then (x,y) ∈ {(u,v) ∈ B2 : ‖u‖ ≥ d}. Otherwise, (x,y) ∈ E2
1 \(B1∪B2).

Hence, it follows from (2.10) that

∥∥f(x+y)−f(x)−f(y)∥∥≤ 3ε, (2.12)

for all (x,y)∈ E2
1 with ‖x‖ ≥ d and ‖y‖ ≥ d.

Assume that (x,y) ∈ E2
1 with ‖x‖ < d and ‖y‖ ≥ 4d. In this case, we may

choose a z2 ∈ E1 with 2d≤ ‖z2‖< 3d. Then, it holds that

∥∥x−z2

∥∥≥ d, ∥∥y+z2

∥∥≥ d, ∥∥x−z2

∥∥≥ d, ∥∥z2

∥∥≥ 2d,
∥∥−z2

∥∥≥ 2d,
∥∥y+z2

∥∥≥ d, ∥∥z2

∥∥≥ 2d,
∥∥−z2

∥∥≥ 2d.
(2.13)
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It then follows from (2.12) and (2.13) that

∥∥f(x+y)−f(x)−f(y)∥∥≤ ∥∥f(x+y)−f (x−z2
)−f (y+z2

)∥∥
+∥∥−f(x)+f (x−z2

)+f (z2
)∥∥

+∥∥−f(y)+f (−z2
)+f (y+z2

)∥∥
+∥∥f(0)−f (z2

)−f (−z2
)∥∥+∥∥−f(0)∥∥

≤ 13ε,

(2.14)

for (x,y)∈ E2
1 with ‖x‖<d and ‖y‖ ≥ 4d.

Combining (2.12) and (2.14), we have

∥∥f(x+y)−f(x)−f(y)∥∥≤ 13ε, (2.15)

for all (x,y)∈ E2
1 with ‖y‖ ≥ 4d. Since the Cauchy difference f(x+y)−f(x)−

f(y) is symmetric with respect to x and y , we conclude that inequality (2.15)

is true for all (x,y)∈ E2
1 with ‖x‖ ≥ 4d or ‖y‖ ≥ 4d.

If (x,y)∈ E2
1 satisfies ‖x‖< 4d and ‖y‖< 4d, then we can choose a z3 ∈ E1

with ‖z3‖ ≥ 8d. Then, we have ‖x+z3‖ ≥ 4d. Since inequality (2.15) holds true

for all (x,y)∈ E2
1 with ‖x‖ ≥ 4d or ‖y‖ ≥ 4d, we get

∥∥f(x+y)−f(x)−f(y)∥∥≤ ∥∥−f (x+y+z3
)+f(x+y)+f (z3

)∥∥
+∥∥f (x+z3

)−f(x)−f (z3
)∥∥

+∥∥f (x+y+z3
)−f(y)−f (x+z3

)∥∥
≤ 39ε,

(2.16)

for any (x,y)∈ E2
1 with ‖x‖< 4d and ‖y‖< 4d.

Inequality (2.16) together with (2.15) yields

∥∥f(x+y)−f(x)−f(y)∥∥≤ 39ε, ∀x,y ∈ E1. (2.17)

According to [1], there exists a unique additive mapping A : E1 → E2 that

satisfies inequality (2.4) for each x in E1.

Corollary 2.2. Let d> 0 and ε ≥ 0 be given. If a mapping f : E1 → E2 with

‖f(0)‖ ≤ ε satisfies inequality (2.3) for all x,y ∈ E1 with max{‖x‖,‖y‖} ≥ d
and ‖x+y‖ ≥ d, then there exists a unique additive mapping A : E1 → E2 that

satisfies inequality (2.4) for each x ∈ E1.

Proof. Because of the symmetry property of the Cauchy difference with

respect to x and y , we can, without loss of generality, assume that f satisfies

inequality (2.3) for all x,y ∈ E1 with ‖y‖ ≥ d and ‖x+y‖ ≥ d.
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For a constant mapping ϕ(s)= d (s > 0), define

B1 =
{
(x,y)∈ E1 \{0}×E1 : ‖y‖<d}∪{(0,y)∈ E2

1 :y ∈ E1
}
,

B2 =
{
(x,y)∈ E2

1 : ‖x+y‖<d}. (2.18)

Since

E2
1 \B1 =

{
(x,y)∈ E1 \{0}×E1 : ‖y‖ ≥ d},

E2
1 \B2 =

{
(x,y)∈ E2

1 : ‖x+y‖ ≥ d}, (2.19)

we have

E2
1 \
(
B1∪B2

)= {(x,y)∈ E1 \{0}×E1 : ‖y‖ ≥ d and ‖x+y‖ ≥ d}. (2.20)

Thus, it follows from our hypothesis that f satisfies inequality (2.3) for all

(x,y)∈ E2
1 \(B1∪B2).

According to Theorem 2.1, there exists a unique additive mapping A : E1 →
E2 that satisfies inequality (2.4) for all x ∈ E1.

In 1983, Skof [12] presented an interesting asymptotic behavior of the addi-

tive mappings: a mapping f :R→R is additive if and only if |f(x+y)−f(x)−
f(y)| → 0 as |x|+|y| →∞.

Without difficulty, the above theorem of Skof can be extended to mappings

from a real normed space to a Banach space. We now apply Corollary 2.2 to a

generalization of Skof theorem.

Corollary 2.3. A mapping f : E1 → E2 is additive if and only if

∥∥f(x+y)−f(x)−f(y)∥∥ �→ 0 (2.21)

as ‖x+y‖→∞.

Proof. On account of the hypothesis, there exists a decreasing sequence

(εn) with limn→∞ εn = 0 and

∥∥f(x+y)−f(x)−f(y)∥∥≤ εn, (2.22)

for all (x,y)∈ E2
1 with ‖x+y‖ ≥ n. With y = 0 and ‖x‖ →∞, our hypothesis

implies that f(0)= 0.

By Corollary 2.2, there exists a unique additive mapping An : E1 → E2 such

that

∥∥f(x)−An(x)∥∥≤ 39εn, ∀x ∈ E1. (2.23)

Now, let l and m be integers with m> l > 0. Then, inequality (2.23) implies

that

∥∥f(x)−Am(x)∥∥≤ 39εm ≤ 39εl, (2.24)
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for x ∈ E1, and further, the uniqueness of An implies that Am = Al for all

integers l,m > 0, that is, An = A1 for any n ∈ N. By letting m→∞ in the last

inequality, we get

∥∥f(x)−A1(x)
∥∥= 0, (2.25)

for any x ∈ E1, which means that f is additive. The reverse assertion is trivial.

3. Stability of Jensen’s equation on restricted domains. Kominek investi-

gated in [8] the Hyers-Ulam stability of the Jensen’s functional equation

2f
(
x+y

2

)
= f(x)+f(y), (3.1)

for the class of mappings defined on a bounded subset of RN . On the other

hand, the author proved in [7] the Hyers-Ulam stability of that equation on

unbounded domains.

In this section, we use Theorem 2.1 to generalize the theorems of the author

and of Kominek.

Let ϕ1 : [0,∞)→ [0,∞) be a decreasing mapping that satisfies ϕ1(0)= d0 >
0. Define

B1 =
{
(x,y)∈ E1 \{0}×E1 : ‖y‖<ϕ1

(‖x‖)}∪{(0,y)∈ E2
1 :y ∈ E1

}
,

B2 =
{
(x,y)∈ E2

1 : ‖x+y‖<d0
}
,

D = {(0,y)∈ E2
1 : ‖y‖ ≥ d0

}
.

(3.2)

Theorem 3.1. If a mapping f : E1 → E2 satisfies the inequality

∥∥∥∥2f
(
x+y

2

)
−f(x)−f(y)

∥∥∥∥≤ ε, (3.3)

for some ε ≥ 0 and all (x,y) ∈ E2
1 \ (B1∪B2)∪D, then there exists a unique

additive mapping A : E1 → E2 such that

∥∥f(x)−A(x)−f(0)∥∥≤ 78ε, (3.4)

for any x ∈ E1.

Proof. If we substitute g(x) for f(x)−f(0) in (3.3), then

∥∥∥∥2g
(
x+y

2

)
−g(x)−g(y)

∥∥∥∥≤ ε, (3.5)
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for any (x,y) ∈ E2
1 \ (B1∪B2)∪D. With x = 0 and ‖y‖ ≥ d0, inequality (3.5)

yields

∥∥∥∥2g
(
y
2

)
−g(y)

∥∥∥∥≤ ε, (3.6)

for each y ∈ E1 with ‖y‖ ≥ d0. Replace y by x+y (‖x+y‖ ≥ d0) in inequality

(3.6) to get

∥∥∥∥2g
(
x+y

2

)
−g(x+y)

∥∥∥∥≤ ε, (3.7)

for all x,y ∈ E1 with ‖x+y‖ ≥ d0.

It follows from (3.5) and (3.7) that

∥∥g(x+y)−g(x)−g(y)∥∥
≤
∥∥∥∥g(x+y)−2g

(
x+y

2

)∥∥∥∥+
∥∥∥∥2g

(
x+y

2

)
−g(x)−g(y)

∥∥∥∥
≤ 2ε,

(3.8)

for every (x,y)∈ E2
1 \(B1∪B2)∪D with ‖x+y‖ ≥ d0. Since (x,y)∈ E2

1 \(B1∪
B2) implies that ‖x+y‖ ≥ d0, the mapping g surely satisfies

∥∥g(x+y)−g(x)−g(y)∥∥≤ 2ε, (3.9)

for all (x,y)∈ E2
1 \(B1∪B2).

It trivially holds that ϕ1(s) ≤ s for all s ≥ d0. On account of Theorem 2.1,

there exists a unique additive mapping A : E1 → E2 such that

∥∥g(x)−A(x)∥∥≤ 78ε, (3.10)

for each x in E1.

Let ϕ2 : (0,∞)→ [0,∞) be a continuous and decreasing mapping that satis-

fies

0<d= inf
{
s > 0 :ϕ2(s)= 0

}
<∞. (3.11)

Furthermore, assume that the restriction ϕ2|(0,d] is strictly decreasing.
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Now, we define

B1 =
{
(x,y)∈ E1 \{0}×E1 : ‖y‖<ϕ2

(‖x‖)}∪{(0,y)∈ E2
1 :y ∈ E1

}
,

B2 =
{
(x,y)∈ E2

1 : ‖x+y‖<d0
}
,

D = {(0,y)∈ E2
1 : ‖y‖ ≥ d0

}
,

(3.12)

where we set d0 = inf{d, lims→0+ϕ2(s)}.
Corollary 3.2. If a mapping f : E1 → E2 satisfies inequality (3.3) for some

ε ≥ 0 and all (x,y) ∈ E2
1 \ (B1 ∪ B2)∪D, then there exists a unique additive

mapping A : E1 → E2 satisfying inequality (3.4) for all x ∈ E1.

Proof. First, we define a mapping ϕ0 : [0,∞)→ [0,∞) by

ϕ0(s)=


d0, for s = 0,

inf
{
ϕ2(s), infϕ−1

2 (s)
}
, for s > 0,

(3.13)

where we set ϕ−1
2 (t) = {s > 0 :ϕ2(s) = t} and inf∅=∞. (We cannot exclude

the case ϕ−1
2 (s)=∅ from the above definition.) We define

B̃1 =
{
(x,y)∈ E1 \{0}×E1 : ‖y‖<ϕ0

(‖x‖)}∪{(0,y)∈ E2
1 :y ∈ E1

}
,

B̃2 =
{
(x,y)∈ E2

1 : ‖x+y‖<d0
}
,

D̃ = {(0,y)∈ E2
1 : ‖y‖ ≥ d0

}
.

(3.14)

The fact that ϕ0(s) ≤ ϕ2(s) for all s > 0 implies that B̃1 ⊂ B1. Since B2 = B̃2

and D = D̃, we get

E2
1 \
(
B1∪B2

)∪D ⊂ E2
1 \
(
B̃1∪ B̃2

)∪D̃. (3.15)

Now, assume that (x,y) ∈ E2
1 \ (B̃1∪ B̃2)∪ D̃ but (x,y) 	∈ E2

1 \ (B1∪B2)∪D.

Because (x,y) 	∈D and (x,y) 	∈ B2, we have

x ≠ 0, ‖x+y‖ ≥ d0. (3.16)

Moreover, (x,y) should belong to B1 \ B̃1, that is,

0< infϕ−1
2

(‖x‖)≤ ‖y‖<ϕ2
(‖x‖). (3.17)
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(Since ‖x‖> 0 and ϕ2|(0,d] is strictly decreasing, we have infϕ−1
2 (‖x‖) > 0.) If

we assume that (y,x)∈ B1, then we get ‖x‖<ϕ2(‖y‖). This fact implies that

‖y‖< infϕ−1
2 (‖x‖), which is contrary to (3.17). Hence, by (3.16), we conclude

that (y,x) 	∈ B1∪B2. This fact together with (3.3), yields

∥∥∥∥2f
(
y+x

2

)
−f(y)−f(x)

∥∥∥∥≤ ε, (3.18)

for all (x,y)∈ E2
1 \(B̃1∪ B̃2)∪D̃.

We now define another mapping ϕ : [0,∞)→ [0,∞) by

ϕ(s)=




d0, for s = 0,

inf
{
ϕ2(s), infϕ−1

2 (s)
}
, for 0< s ≤ d1,

sup
{
ϕ2(s),supϕ−1

2 (s)
}
, for s > d1,

(3.19)

where d1 > 0 is the unique fixed point of ϕ2, that is, d1 =ϕ2(d1), and we set

inf∅=∞ and sup∅= 0.

Let si > 0 (i = 1,2,3,4) be arbitrarily given with 0 < s1 < s2 ≤ d1 < s3 < s4.

Since ϕ2 is decreasing, we have

lim
s→0+

ϕ2(s)≥ϕ2
(
s1
)≥ϕ2

(
s2
)≥ d1 ≥ϕ2

(
s3
)≥ϕ2

(
s4
)
,

d≥ infϕ−1
2

(
s1
)≥ infϕ−1

2

(
s2
)≥ d1 ≥ supϕ−1

2

(
s3
)≥ supϕ−1

2

(
s4
)
.

(3.20)

Hence, we get

ϕ(0)≥ϕ(s1
)≥ϕ(s2

)≥ϕ(s3
)≥ϕ(s4

)
(3.21)

which implies that ϕ is decreasing.

Similarly as before, we define

B̂1 =
{
(x,y)∈ E1 \{0}×E1 : ‖y‖<ϕ(‖x‖)}∪{(0,y)∈ E2

1 :y ∈ E1
}
,

B̂2 =
{
(x,y)∈ E2

1 : ‖x+y‖<d0
}
,

D̂ = {(0,y)∈ E2
1 : ‖y‖ ≥ d0

}
.

(3.22)

Since B̂1 ⊃ B̃1, B̂2 = B̃2, and D̂ = D̃, we may conclude that inequality (3.3) holds

true for all (x,y)∈ E2
1 \(B̂1∪ B̂2)∪D̂.

According to Theorem 3.1, there exists a unique additive mapping A : E1 →
E2 such that inequality (3.4) is true for any x ∈ E1.

The author in [7] proved that it needs only to show an asymptotic property

of the Jensen difference to identify a given mapping with an additive one.
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Let X and Y be a real normed space and a real Banach space, respectively. A

mapping f :X → Y with f(0)= 0 is additive if and only if

∥∥∥∥2f
(
x+y

2

)
−f(x)−f(y)

∥∥∥∥ �→ 0 (3.23)

as ‖x‖+‖y‖→∞.

By using Theorem 3.1, we now prove an asymptotic behavior of additive

mappings which generalizes the above result.

Corollary 3.3. A mapping f : E1 → E2 with f(0)= 0 is additive if and only

if

∥∥∥∥2f
(
x+y

2

)
−f(x)−f(y)

∥∥∥∥ �→ 0 (3.24)

as ‖x+y‖→∞.

Proof. According to our hypothesis, there exists a decreasing sequence

(εn) with limn→∞ εn = 0 and

∥∥∥∥2f
(
x+y

2

)
−f(x)−f(y)

∥∥∥∥≤ εn, (3.25)

for all (x,y)∈ E2
1 with ‖x+y‖ ≥n.

The mapping ϕ1 : [0,∞) → [0,∞) defined by ϕ1(s) = −s+n (s ≥ 0) is de-

creasing. Moreover, it holds that ϕ1(0)=n. We define

B1 =
{
(x,y)∈ E1 \{0}×E1 : ‖y‖<−‖x‖+n}∪{(0,y)∈ E2

1 :y ∈ E1
}
,

B2 =
{
(x,y)∈ E2

1 : ‖x+y‖<n},
D = {(0,y)∈ E2

1 : ‖y‖ ≥n}.
(3.26)

Since B1∪B2 = {(x,y) ∈ E2
1 : x = 0 or ‖x+y‖ < n} and D = {(x,y) ∈ E2

1 :

x = 0 and ‖x+y‖ ≥n}, we have

E2
1 \
(
B1∪B2

)= {(x,y)∈ E2
1 : x ≠ 0 and ‖x+y‖ ≥n}, (3.27)

and hence

E2
1 \
(
B1∪B2

)∪D = {(x,y)∈ E2
1 : ‖x+y‖ ≥n}. (3.28)

Therefore, inequality (3.25) holds true for all (x,y)∈ E2
1 \(B1∪B2)∪D.
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According to Theorem 3.1, there exists a unique additive mapping An : E1 →
E2 such that

∥∥f(x)−An(x)∥∥≤ 78εn, ∀x ∈ E1. (3.29)

Now, let l and m be positive integers with m> l. Then, it follows from (3.29)

that

∥∥f(x)−Am(x)∥∥≤ 78εm ≤ 78εl, (3.30)

for x ∈ E1. However, the uniqueness of An implies that Am =Al for all positive

integers l and m, that is, An = A1 for any n ∈N. By letting m→∞ in the last

inequality, we get

∥∥f(x)−A1(x)
∥∥= 0, (3.31)

for each x ∈ E1, which implies that f is an additive mapping.

The reverse assertion is trivial because every additive mapping f : E1 → E2

is a solution of the Jensen functional equation (see [10]).
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