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Given a general quasidifferential expressions τ1,τ2, . . . ,τn each of order n with
complex coefficients and their formal adjoints are τ+1 ,τ

+
2 , . . . ,τ

+
n on [0,b), respec-

tively, we show under suitable conditions on the function F that all solutions of the

product of the quasi-integrodifferential equation [
∏n
j=1τj]y =wF(t,y,

∫ t
0 g(t,s,

y,y′, . . . ,y(n2−1)(s))ds) on [0,b), 0<b ≤∞; t,s≥0, are bounded and L2
w -bounded

on [0,b). These results are extensions of those by the author (1994), Wong (1975),
Yang (1984), and Zettl (1970, 1975).

2000 Mathematics Subject Classification: 34A05, 34C11, 34E15, 34G10, 47E05.

1. Introduction. In [8, 11, 15] Wong and Zettl proved that all solutions of

a perturbed linear differential equation belong to L2(0,∞) assuming the fact

that all solutions of the unperturbed equation possess the same property. In

[6] the author extends their results for a general quasidifferential expression

τ of arbitrary order n with complex coefficients, and considered the property

of boundedness of solutions of a general quasidifferential equation τ[y]−
λwy =wf(t,y), where λ∈ C, on [0,b), f(t,s) satisfies

∣∣f(t,y)∣∣≤ e1(t)+r1(t)|y|σ , t ∈ [0,b) for some σ ∈ [0,1], (1.1)

where e1(t) and r1(t) are nonnegative continuous functions on [0,b).
Our objective in this paper is to extend the results in [4, 6, 8, 9, 11, 15] to

more general class of quasi-integrodifferential equation in the form


 n∏
j=1

τj


y =wF(t,y,

∫ t
0
g
(
t,s,y,y ′, . . . ,y(n

2−1)(s)
)
ds

)
on [0,b), (1.2)

where 0< b ≤∞; t,s ≥ 0. Also, we prove under suitable condition on the func-

tion F that, if all solutions of the equations (
∏n
j=1τj)y = 0 and (

∏n
j=1τ

+
j )z = 0

belong to L2
w(0,b), then all solutions of (1.2) also belong to L2

w(0,b), where τ+j
is the formal adjoint of τj , j = 1,2, . . . ,n.
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We deal throughout this paper with a quasidifferential expression τj each

of arbitrary order n defined by Shin-Zettl matrices (see [4, 13]) on the interval

I = [0,b). The left-hand end point of I is assumed to be regular but the right-

hand end point may be regular or singular.

2. Notation and preliminaries. The domain and range of a linear operator

T acting in a Hilbert space H will be denoted by D(T) and R(T), respectively

and N(T) will denote its null space. The nullity of T , written nul(T), is the

dimension of N(T) and the deficiency of T , written def(T), is the codimension

of R(T) in H; thus if T is densely defined and R(T) is closed, then def(T) =
nul(T∗). The Fredholm domain of T is (in the notation of [2]) the open subset

�3(T) of C consisting of those values of λ∈ C which are such that (T −λI) is

a Fredholm operator, where I is the identity operator in H. Thus λ∈�3(T) if

and only if (T −λI) has a closed range and a finite nullity and deficiency.

A closed operator A in a Hilbert space H has property (C), if it has closed

range and λ= 0 is not an eigenvalue, that is, there is some positive number r
such that ‖Ax‖ ≥ r‖x‖ for all x ∈D(A).

Note that, property (C) is equivalent to λ = 0 being a regular type point of

A. This in turn is equivalent to the existence of A−1 as a bounded operator on

the range of A (which need not be all of H).

Given two operators A and B, both acting in a Hilbert space H, we wish to

consider the product operator AB. This is defined as follows

D(AB) := {
x ∈D(B) | Bx ∈D(A)}, (AB)x =A(Bx), ∀x ∈D(AB). (2.1)

It may happen in general that D(AB) contains only the null element of H.

However, in the case of many differential operators, the domains of the product

will be dense in H.

The next result gives conditions under which the deficiency of a product is

the sum of the deficiencies of the factors.

Lemma 2.1 (cf. [4, Theorem A] and [12]). Let A and B be closed operators

with dense domains in a Hilbert space H. Suppose that λ = 0 is a regular type

point for both operators and defA and defB are finite. Then AB is a closed

operator with dense domain, has λ= 0 as a regular type point and

defAB = defA+defB. (2.2)

Evidently, Lemma 2.1 extends to the product of any finite number of oper-

ators A1,A2, . . . ,An.

We now turn to the quasidifferential expressions defined in terms of a Shin-

Zettl matrix F on an interval I. The set Zn(I) of Shin-Zettl matrices on I consists

of n×n matrices P = {prs}, 1 ≤ r ,s ≤ n, whose entries are complex-valued
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functions on I which satisfy the following conditions:

prs ∈ L1
loc(I) (1≤ r ,s ≤n, n≥ 2),

prs ≠ 0 a.e. on I (1≤ r ≤n−1),

prs = 0 a.e. on I (2≤ r +1< s ≤n).
(2.3)

For P ∈ Zn(I), the quasiderivatives associated with P are defined by

y[0] :=y,

y[r] := (
pr,r+1

)−1

{(
y[r−1])′ − r∑

s=1

prsy[s−1]

}
(1≤ r ≤n−1),

y[n] := (
y[n−1])′ − n∑

s=1

pnsy[s−1],

(2.4)

where the prime ′ denotes differentiation.

The quasidifferential expression τ associated with P is given by

τ[y] := iny[n] (n≥ 2), (2.5)

this being defined on the set

V(τ) := {
y :y[r−1] ∈ACloc(I), r = 1, . . . ,n

}
, (2.6)

where L1
loc(I) and ACloc(I) denote, respectively, the spaces of complex-valued

Lebesgue measurable functions on I which are locally integrable and locally

absolutely continuous on every compact subinterval of I.
The formal adjoint τ+ of τ defined by the matrix P+ ∈ Zn(I) is given by

τ+[z] := inz[n] ∀y ∈ V(τ+),
V
(
τ+

)
:= {

z : z[r−1]
+ ∈ACloc(I), r = 1, . . . ,n

}
,

(2.7)

where z[r−1]
+ , r = 1,2, . . . ,n, are the quasiderivatives associated with the matrix

P+,

P+ = {
p+rs

}= (−1)r+s+1pn−s+1,n−r+1 for each r ,s; 1≤ r ,s ≤n. (2.8)

Note that (P+)+ = P and so (τ+)+ = τ . We refer to [2, 3, 6, 7, 13] for a full

account of the above and subsequent results on quasidifferential expressions.

Let the interval I have end points a, b (−∞≤ a < b ≤∞), and let w : I → R
be a nonnegative weight function with w ∈ L1

loc(I) and w(x) > 0 (for almost
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all x ∈ I). Then H = L2
w(I) denotes the Hilbert function space of equivalence

classes of Lebesgue measurable functions such that
∫
I w|f |2 < ∞; the inner-

product is defined by

(f ,g) :=
∫
I
w(x)f(x)g(x)dx

(
f ,g ∈ L2

w(I)
)
. (2.9)

The equation

τ[y]−λwy = 0 (λ∈ C) on I (2.10)

is said to be regular at the left end point a ∈ R, if for all X ∈ (a,b), a ∈ R;

w,prs ∈ L1[a,X], (r ,s = 1, . . . ,n). Otherwise (2.10) is said to be singular at a.

If (2.10) is regular at both end points, then it is said to be regular; in this case

we have,

a,b ∈R, w,prs ∈ L1(a,b), (r ,s = 1, . . . ,n). (2.11)

We will be concerned with the case when a is a regular end point of (2.10),

the end point b being allowed to be either regular or singular. Note that, in

view of (2.8), an end point of I is regular for (2.10), if and only if it is regular

for the equation

τ+[z]−λwz = 0 (λ∈ C) on I. (2.12)

Note that, at a regular end point a, y[r−1](a)(z[r−1]
+ (a)), r = 1, . . . ,n, is de-

fined for all u∈ V(τ) (v ∈ V(τ+)). Set

D(τ) := {
y :y ∈ V(τ), y,w−1τ[y]∈ L2

w(a,b)
}
,

D
(
τ+

)
:= {

z : z ∈ V(τ+), z,w−1τ+[z]∈ L2
w(a,b)

}
.

(2.13)

The subspaces D(τ) and D(τ+) of L2
w(a,b) are domains of the so-called max-

imal operators T(τ) and T(τ+), respectively, defined by

T(τ)y :=w−1τ[y]
(
y ∈D(τ)),

T
(
τ+

)
z :=w−1τ+[z],

(
z ∈D(τ+)). (2.14)
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For the regular problem, the minimal operators T0(τ) and T0(τ+) are the

restrictions of w−1τ[y] and w−1τ+[z] to the subspaces

D0(τ) := {
y :y ∈D(τ), y[r−1](a)=y[r−1](b)= 0, r = 1, . . . ,n

}
,

D0
(
τ+

)
:= {

z : z ∈D(τ+), z[r−1]
+ (a)= z[r−1]

+ (b)= 0, r = 1, . . . ,n
}
,

(2.15)

respectively. The subspacesD0(τ) andD0(τ+) are dense in L2
w(a,b), and T0(τ)

and T0(τ+) are closed operators (see [2, 3, 6] and [13, Section 3]).

In the singular problem, we first introduce the operators T ′0(τ) and T ′0(τ+);
T ′0(τ) being the restriction of w−1τ[·] to the subspace

D′0(τ) := {
y :y ∈D(τ), suppy ⊂ (a,b)} (2.16)

and with T ′0(τ+) defined similarly. These operators are densely defined and

closable in L2
w(a,b), and we defined the minimal operators T0(τ), T0(τ+) to

be their respective closures (see [2] and [13, Section 5]). We denote the domains

of T0(τ) and T0(τ+) by D0(τ) and D0(τ+), respectively. It can be shown that

y ∈D0(τ) �⇒y[r−1](a)= 0 (r = 1, . . . ,n),

z ∈D0
(
τ+

)
�⇒ z[r−1]

+ (a)= 0 (r = 1, . . . ,n),
(2.17)

because we are assuming that a is a regular end point. Moreover, in both reg-

ular and singular problems, we have

T∗0 (τ)= T
(
τ+

)
, T∗(τ)= T0

(
τ+

)
, (2.18)

see [13, Section 5] in the case when τ = τ+ and compare it with treatment in

[2, Section III.10.3] and [3] in general case.

3. Some technical lemmas. The proof of the general theorem is based on

the results in this section. We start by listing some properties and results of

quasi-differential expressions τ1,τ2, . . . ,τn each of order n. For proofs, the

reader is referred to [4, 12, 13, 14].

(
τ1+τ2

)+ = τ+1 +τ+2 ,(
τ1τ2

)+ = τ+2 τ+1 , (λτ)+ = λτ+, for λ is a complex number.
(3.1)

A consequence of properties (3.1) is that if τ+ = τ , then P(τ)+ = P(τ+) for

P is any polynomial with complex coefficients. Also we note that the leading

coefficients of a product is the product of the leading coefficients. Hence the

product of regular differential expressions is regular.
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Lemma 3.1 (cf. [4, Theorem 1]). Suppose that τj is a regular differential

expression on the interval [0,b] such that the minimal operator T0(τj) has

property (C) for j = 1,2, . . . ,n. Then

(i) the product operator
∏n
j=1[T0(τj)] is closed and has dense domain, prop-

erty (C), and

def

[ n∏
j=1

T0
(
τj
)]= n∑

j=1

def
[
T0
(
τj
)]

; (3.2)

(ii) the operators T0(τ1τ2 ···τn) and
∏n
j=1[T0(τj)] are not equal in gen-

eral, that is, [T0(τ1τ2 ···τn)]⊆
∏n
j=1[T0(τj)].

Lemma 3.2 (cf. [4, Theorem 2]). Let τ1,τ2, . . . ,τn be regular differential ex-

pressions on [0,b]. Suppose that T0(τj) satisfies property (C) for j = 1,2, . . . ,n.

Then

T0
(
τ1τ2 ···τn

)= n∏
j=1

T0
(
τj
)

(3.3)

if and only if the following partial separation condition is satisfied:

{
f ∈ L2

w(a,b), f [s−1] ∈ACloc[a,b)
}
, (3.4)

where s is the order of product expression (τ1τ2 ···τn) and (τ1τ2 ···τn)+f ∈
L2
w(a,b) together imply that (

∏k
j=1(τ

+
j ))f ∈ L2

w(a,b), k= 1, . . . ,n−1.

Furthermore, T0(τ1τ2 ···τn)=
∏n
j=1T0(τj) if and only if

def
[
T0
(
τ1τ2 ···τn

)]= n∑
j=1

def
[
T0
(
τj
)]
, (3.5)

then the product (τ1τ2 ···τn) is partially separated expressions in L2
w(0,b)

whenever property (3.4) holds.

Lemma 3.3 (cf. [4, Corollary 1]). Let τj be a regular differential expression

on [0,b] for j = 1, . . . ,n. If all solutions of the differential equations (τj)y = 0

and (τ+j )z = 0 on [0,b] are in L2
w(0,b) for j = 1, . . . ,n, then all solutions of

(τ1τ2 ···τn)y = 0 and (τ1τ2 ···τn)+z = 0 are in L2
w(0,b).

The special case of Lemma 3.3 when τj = τ for j = 1,2, . . . ,n and τ is sym-

metric was established in [14]. In this case, it is easy to see that the converse

also holds. If all solutions of τnu = 0 are in L2
w(0,b), then all solutions of

τy = 0 must be in L2
w(0,b). In general, if all solutions of (τ1τ2 ···τn)y = 0
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are in L2
w(0,b), then all solutions of τny = 0 are in L2

w(0,b) since these also

the solutions of (τ1τ2 ···τn)y = 0. If all solutions of the adjoints equation

(τ1τ2 ···τn)+z = 0 are also in L2
w(0,b), then it follows similarly that all solu-

tions of τ+1 z = 0 are in L2
w(0,b). So, in particular, for n= 2 we have established

the following lemma.

Lemma 3.4. Suppose that τ1, τ2, and τ1τ2 are all regular expressions on

[0,b]. Then the product is in the maximal deficiency case at b if and only if

both τ1, τ2 are in the maximal deficiency case at b, see [4, Corollary 2] for more

details.

Denote by S(τ) and S(τ+) the sets of all solutions of the equations


 n∏
j=1

τj


y = 0,


 n∏
j=1

τ+j


z = 0, (3.6)

respectively. Let φk(t), k = 1,2, . . . ,n2, denote the solutions of the homoge-

neous equation (
∏n
j=1τj)y = 0 determined by the initial conditions

φ[r]k
(
t0
)= δk,r+1 ∀t0 ∈ [0,b] (3.7)

(where k = 1,2, . . . ,n2; r = 0,1, . . . ,n2 − 1). Let φ+k (t), k = 1,2, . . . ,n2, denote

the solutions of the homogeneous equation (
∏n
j=1τ

+
j )z = 0 determined by the

initial conditions

(
φ+k

)[r](t0)= (−1)k+rδk,n2−r ∀t0 ∈ [0,b], (3.8)

where k= 1,2, . . . ,n2; r = 0,1, . . . ,n2−1.

Remark 3.5. If all solutionsφk(t),φ+k (t), k= 1,2, . . . ,n2, of (
∏n
j=1τj)y = 0

and (
∏n
j=1τ

+
j )z = 0, respectively are bounded (L2

w -bounded) on [0,b), then

S(τ) and S(τ+) are bounded (L2-bounded) and hence S(τ)∪S(τ+) is bounded

(L2-bounded) on [0,b); see [6] and [7, Lemmas 3.4 and 3.5].

The next lemma is a form of the variation of parameters formula of a general

quasidifferential equation, see [6, Section 3] and [7, 13].

Lemma 3.6. For f locally integrable, the solution φ of the quasidifferential

equation

( n∏
j=1

τj

)
y =wf on [0,b) (3.9)
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satisfying

φ[r]
(
t0
)=αr+1 ∀t0 ∈ [0,b), r = 0,1, . . . ,n2−1 (3.10)

is given by

φ(t)=
n2∑
j=1

αjφj(t)+ 1

in2

n2∑
j,k=1

ζjkφj(t)
∫ t
t0
φ+k (s)f (s)w(s)ds (3.11)

for some α1,α2, . . . ,αn2 ∈ C, whereφj(t) andφ+k (t), j,k= 1,2, . . . ,n2, are solu-

tions of the equations in (3.6), respectively,ζjk is a constant which is independent

of t.

In the sequel, we will require the following nonlinear integral inequality

which generalizes those integral inequalities used in [1, 5, 9, 10].

Lemma 3.7 (cf. [5, 10]). Let u(t), v(t), f(t,s), gi(t,s), and hi(t,s) (i =
1,2, . . . ,n2) be nonnegative continuous functions defined on the interval I and

I× I, respectively, here I = (0,c), 0 < c ≤ ∞, with their ranges in R+. Let v(t)
be nondecreasing on I, and f(t,s), gi(t,s), and hi(t,s), (i = 1,2, . . . ,n2) be

nondecreasing in t for each s ∈ I fixed. Suppose that the inequality

u(t)≤ v(t)+
∫ t

0
f(t,s)u(s)ds+

n2∑
j=1

∫ t
0
gi(t,s)

[∫ s
0
hi(t,s)

[
u(τ)

]σdτ]ds
(3.12)

holds for all t ∈ I, where σ ∈ (0,1] is constant. Then

(i) if 0<σ < 1,

u(t)≤
[[
v(t)F(t)

]1−σ +(1−σ)
n2∑
i=1

Gi(t)F(t)
∫ t

0
hi(t,s)ds

]1/(1−σ)
, t ∈ I,

(3.13)

(ii) if σ = 1,

u(t)≤ v(t)exp
∫ t

0

[
f(t,s)+

n2∑
i=1

Gi(t)F(t)hi(t,s)
]
ds, (3.14)

where

F(t)= exp
∫ t

0
f(t,s)ds, Gi(t)=

∫ t
0
gi(s)ds, i= 1,2, . . . ,n2. (3.15)

Corollary 3.8 (cf. [9, 10]). Let u(t), f1(t), f2(t), g1(t,s), and g2(t,s) be

nonnegative continuous functions defined on the intervals I = [0,b) and I× I,
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respectively. Suppose that the inequality

u(t)≤ C+
∫ t

0
f1(s)u(s)ds+

∫ t
0
f2(s)uσ(s)ds

+
∫ t

0

(∫ s
0
g1(s,x)u(x)dx

)
+
∫ t

0

(
g2(s,x)uσ(x)

)
ds

(3.16)

holds for all t ∈ [0,b), where σ ∈ (0,1] and C is constant. Then

u(t)≤
[
C(1−p)+(1−σ)

×
∫ t

0

[
f2(s)+

∫ s
0
g2(s,x)dx

]

×exp
[
(1−σ)

∫ s
0

[
f1(τ)+

∫ s
0
g1(τ,x)dx

]
dτ

]
ds

]1/(1−p)

×exp
(∫ t

0

[
f1(s)+

∫ s
0
g1(s,x)dx

]
ds

)
.

(3.17)

4. Boundedness of solutions. In this section, we consider the question of

determining conditions under which all solutions of (1.2) are bounded and

L2
w -bounded.

Suppose there exist nonnegative continuous functions e1(t), e2(t), e3(t),
r1(t), r2(t), K0(t,s), and Ki(t−s) on [0,b), 0< b ≤∞; i = 1,2, . . . ,n2−1 such

that,

∣∣∣∣F
(
t,y,

∫ t
0
g
(
t,s,y,y ′, . . . ,y(n

2−1)(s)
)
ds

)∣∣∣∣
≤ e1(t)+r1(t)

∣∣y(t)∣∣σ +r2(t)
[∫ t

0

[
e2(t)+e3(s)+K0(t,s)

∣∣y(s)∣∣σ ]ds

+
∣∣∣∣∣
∫ t

0

n2−1∑
i=1

Ki(t−s)y(i)(s)ds
∣∣∣∣∣
]
,

(4.1)

for t,s ≥ 0 and some σ ∈ [0,1]; see [5, 9, 10].

Theorem 4.1. Suppose that (4.1) is satisfied with σ = 1, S(τ)∪ S(τ+) is

bounded on [0,b), and that

(a) k(�)i (0)= 0 for all � = 0,1, . . . , i−1; i= 1,2, . . . ,n2−1,

(b) e1(t), r1(t), and r2k
(�)
i (t)∈ L1

w(0,b), � = 0,1, . . . , i−1; i= 1,2, . . . ,n2−1,

(c) the following integrals are bounded at t→ b,
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(i)
∫ t
0 r2(s)(

∫ s
0 [e2(x)+e3(x)]dx)w(s)ds,

(ii)
∫ t
0 r2(s)(

∫ s
0 K0(s,x)dx)w(s)ds,

(iii)
∫ t
0 r2(s)(

∑n2−1
i=1

∫ s
0 |(∂i/∂xi)Ki(s−x)|dx)w(s)ds.

Then all solutions of (1.2) are also bounded on [0,b).

Proof. Note that (4.1) implies that all solutions are defined on [0,b). Let

{φ1(t), . . . ,φn2(t)} and {φ+1 (t), . . . ,φ+n2(t)} be two sets of linearly independent

solutions of the equations in (3.6), respectively, and let φ(t) be any solution

of (1.2) on [0,b), then by Lemma 3.6, we have

φ(t)=
n2∑
j=1

αjφj(t)+ 1

in2

n2∑
j,k=1

ζjkφj(t)
∫ t

0
φ+k (s)F(s)w(s)ds. (4.2)

Hence,

∣∣φ(t)∣∣≤ n2∑
j=1

∣∣αj∣∣∣∣φj(t)∣∣

+
n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣

×
∫ t

0

∣∣φ+k (s)∣∣
[
e1(s)+r1(s)

∣∣φ(s)∣∣

+r2(s)
[∫ s

0

[
e2(s)+e3(x)+K0(s,x)

∣∣φ(x)∣∣]dx

+
∣∣∣∣∣
∫ s

0

n2−1∑
i=1

Ki(s−x)φ(i)(x)dx
∣∣∣∣∣
]]
w(s)ds.

(4.3)

Since φ+k (t) is bounded on [0,b), k = 1, . . . ,n2, and e1(t) ∈ L1
w(0,b), then

φ+k (t)e1(t)∈ L1
w(0,b), k= 1,2, . . . ,n2. Setting

Ck =
∫ t

0

∣∣φ+k (s)∣∣e1(s)w(s)ds, (4.4)

and integrating the last integral in (4.3) by parts, we have

n2−1∑
i=1

∫ s
0
Ki(s−x)φ(i)(x)dx

=
i−1∑
�=0

(−1)�+1K(�)i (s)φ(i−1−�)(0)+(−1)i
∫ s

0

∂i

∂xi
Ki(s−x)φ(x)dx,

(4.5)
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where K(�)i (0)= 0 for all � = 0,1, . . . , i−1; i= 1,2, . . . ,n2−1. Then (4.3) becomes

∣∣φ(t)∣∣≤ n2∑
j=1

(
Cj+

∣∣αj∣∣)∣∣φj(t)∣∣

+
n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣

×
∫ t

0

∣∣φ+k (s)∣∣
[
r1(s)

∣∣φ(s)∣∣

+r2(s)
(∫ s

0

[
e2(s)+e3(x)+K0(s,x)

∣∣φ(x)∣∣]dx

+
n2−1∑
i=1

i−1∑
�=0

∣∣K(�)i (s)
∣∣∣∣φ(i−1−�)(0)

∣∣

+
n2−1∑
i=1

∫ s
0

∣∣∣∣ ∂i∂xi Ki(s−x)
∣∣∣∣∣∣φ(x)∣∣dx

)]
w(s)ds,

(4.6)

where |φ(i−1−�)(0)| ≤ β for all � = 0,1, . . . , i−1; i= 0, . . . ,n2−1. Let

h(t)=
n2∑
j=1

(
Cj+

∣∣αj∣∣)∣∣φj(t)∣∣

+
n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣
∫ t

0

∣∣φ+k (s)∣∣
[
r2(s)

[∫ s
0

[
e2(s)+e3(x)

]
dx

+
n2−1∑
i=1

i−1∑
�=0

∣∣K(�)i (s)
∣∣β

]]
w(s)ds.

(4.7)

Then (4.6) becomes∣∣φ(t)∣∣≤ h(t)
+

n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣

×
∫ t

0

∣∣φ+k (s)∣∣
[
r1(s)

∣∣φ(s)∣∣

+r2(s)
[∫ s

0
K0(s,x)

∣∣φ(x)∣∣dx

+
n2−1∑
i=1

∫ s
0

∣∣∣∣ ∂i∂xi Ki(s−x)
∣∣∣∣∣∣φ(x)∣∣dx

]]
w(s)ds.

(4.8)
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From our assumptions and conditions (i) and (ii), it follows that h(t) is

bounded on [0,b). Applying Lemma 3.7 with σ = 1, we obtain

∣∣φ(t)∣∣

≤ h(t)exp

{ n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣

×
∫ t

0

∣∣φ+k (s)∣∣
[
r1(s)+r2(s)

[∫ s
0

[
K0(s,x)

+
n2−1∑
i=1

∣∣∣∣ ∂i∂xi Ki(s−x)
∣∣∣∣
]
dx

]]
w(s)ds

}
,

(4.9)

and hence our assumptions and conditions (i), (ii), and (iii) yield that φ(t) is

bounded on [0,b).

Theorem 4.2. Suppose that S(τ)∪S(τ+)⊂ L2
w(0,b) with σ = 1, and that

(i) r1(t) and r2(t) are bounded on [0,b),
(ii) e1(s) and K(�)i (s)∈ L2

w(0,b) for all � = 0,1, . . . , i−1; i= 1,2, . . . ,n2−1,

(iii)
∫ t
0[
∫ s
0 [e2(s)+e3(x)]dx]2w(s)ds <∞,

(iv)
∫ t
0[
∫ s
0 [(1/w)(K

2
0(s,x))+[

∑n2−1
i=1 |(∂i/∂xi)Ki(s−x)|]2]dx]w(s)ds <∞.

Then all solutions of (1.2) are in L2
w(0,b).

Proof. The proof is the same up to (4.5), since φ+k (s), e1(s) ∈ L2
w(0,b)

(see Lemma 3.3), then φ+k (s)e1(s) ∈ L1
w(0,b), k = 1,2, . . . ,n2, for all s ∈ (0,b).

By using (4.4) and applying the Cauchy-Schwartz inequality to the integral in

(4.6), we have

∣∣φ(t)∣∣≤ n2∑
j=1

(
Cj+

∣∣αj∣∣)∣∣φj(t)∣∣

+
n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣

×
∫ t

0

∣∣φ+k (s)∣∣

(∫ t

0

∣∣φ+k (s)∣∣2r 2
1 (s)w(s)ds

)1/2(∫ t
0

∣∣φ(s)∣∣2w(s)ds
)1/2

+
(∫ t

0

∣∣φ+k (s)∣∣2r 2
2 (s)w(s)ds

)1/2

×


(∫ t

0

[∫ s
0

[
e2(s)+e3(x)

]
dx

]2

w(s)ds
)1/2

+
(∫ t

0

[∫ s
0
K0(s,x)

∣∣φ(x)∣∣dx]2

w(s)ds
)1/2



ON THE L2
w -BOUNDEDNESS OF SOLUTIONS FOR PRODUCTS . . . 651

+
(∫ t

0

[n2−1∑
i=1

i−1∑
�=0

∣∣K[�]i (s)β
∣∣]2

w(s)ds
)1/2

+
(∫ t

0

[n2−1∑
i=1

∣∣∣∣ ∂i∂xi Ki(s−x)φ(x)
∣∣∣∣dx

]2

w(s)ds




1/2


.

(4.10)

Since r1(s), r2(s) are bounded on [0,b) andφ+k (s)∈ L2
w(0,b), thenφ+k (s)r1(s),

φ+k (s)r2(s) ∈ L2
w(0,b); k = 1,2, . . . ,n2 for all s ∈ [0,b) and hence there exist

positive constants ζ1, ζ2 such that

∥∥φ+k (s)ri(s)∥∥L2
w(0,b) ≤ ξi ∀k= 1,2, . . . ,n2; i= 1,2. (4.11)

Therefore (4.10) becomes

∣∣φ(t)∣∣
≤

n2∑
j=1

(
Cj+

∣∣αj∣∣)∣∣φj(t)∣∣

+
n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣
[
ξ1

(∫ t
0

∣∣φ(s)∣∣2w(s)ds
)1/2

+ξ2

{(∫ t
0

[∫ s
0

[
e2(s)+e3(x)

]
dx

]2

w(s)ds
)1/2

+
(∫ t

0

[∫ s
0
K0(s,x)

∣∣φ(x)∣∣dx]2

w(s)ds
)1/2

+
(∫ t

0

[n2−1∑
i=1

i−1∑
�=0

∣∣K(�)i (s)β
∣∣]2

w(s)ds
)1/2

+
(∫ t

0

[n2−1∑
i=1

∣∣∣∣ ∂i∂xi Ki(s−x)φ(x)
∣∣∣∣dx

]2

w(s)ds
)1/2}]

.

(4.12)

Let

h(t)=
n2∑
j=1

(
Cj+

∣∣αj∣∣)∣∣φj(t)∣∣

+
n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣
[
ξ2

(∫ t
0

[∫ s
0

[
e2(s)+e3(x)

]
dx

]2

w(s)ds
)1/2

+
(∫ t

0

[n2−1∑
i=1

i−1∑
�=0

∣∣K(�)i (s)β
∣∣]2

w(s)ds
)1/2]

,

(4.13)
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then

∣∣φ(t)∣∣≤ h(t)+ n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣

×
[
ξ1

(∫ t
0

∣∣φ(s)∣∣2w(s)ds
)1/2

+ξ2

{(∫ t
0

[∫ s
0
K0(s,x)

∣∣φ(x)∣∣dx]2

w(s)ds
)1/2

+
(∫ t

0

[n2−1∑
i=1

∣∣∣∣ ∂i∂xi Ki(s−x)φ(x)
∣∣∣∣dx

]2

w(s)ds
)1/2}]

.

(4.14)

Applying the Cauchy-Schwartz inequality and squaring both sides of (4.1), we

have∣∣φ(t)∣∣2 ≤ 2h2(t)

+4
n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣2

×
[
ξ2

1

(∫ t
0

∣∣φ(s)∣∣2w(s)ds
)

+ξ2
2

∫ t
0

(∫ s
0

1
w

(
K2

0(s,x)+
[n2−1∑

i=1

∣∣∣∣ ∂i∂xi Ki(s−x)
∣∣∣∣dx

]2)
dx

)

×
(∫ t

0

∣∣φ(s)∣∣2w(s)ds
)]
.

(4.15)

If u(t)= ∫ t
0 |φ(s)|2w(s)ds, then

u(t)≤ 2
∫ t

0
h2(s)w(s)ds

+4ξ2
1

n2∑
j,k=1

∣∣ζjk∣∣
∫ t

0

∣∣φj(s)∣∣2w(s)ds

+4ξ2
2

n2∑
j,k=1

ζjk
∫ t

0

∣∣φj(s)∣∣2

×
[∫ s

0

(∫ τ
0

1
w

(
K2

0(s,x)+
[n2−1∑

i=1

∣∣∣∣ ∂i∂xi Ki(s−x)
∣∣∣∣
]2)

dx
)

×u(τ)w(τ)dτ
]
w(s)ds.

(4.16)
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From conditions (ii) and (iii), it follows that the integral
∫ t
0 h2(s)w(s)ds will be

finite and by using Lemma 3.7, we obtain

u(t)≤
(

2
∫ t

0
h2(s)w(s)ds

)

×exp

{
4ξ2

1

n2∑
j,k=1

∣∣ζjk∣∣
∫ t

0

∣∣φj(s)∣∣2w(s)ds

+4ξ2
1

n2∑
j,k=1

ζjk
∫ t

0

∣∣φj(s)∣∣2

×
[∫ s

0

(∫ τ
0

1
w

(
K2

0(s,x)+
[n2−1∑

i=1

∣∣∣∣ ∂i∂xi Ki(s−x)
∣∣∣∣
]2)

dx
)

×w(τ)dτ
]
w(s)ds

}
.

(4.17)

Hence our assumption and condition (iv) yield that φ(t)∈ L2
w(0,b).

Next, we consider (4.1) with 0≤ σ < 1, and we have the following results.

Theorem 4.3. Suppose that S(τ)∪S(τ+) is bounded on [0,b) and that

(i) e1(s) and r1(s)∈ L2
w(0,b) for all s ∈ [0,b),

(ii)
∫ t
0 r2(s)(

∫ s
0 [e2(s)+e3(x)]dx)w(s)ds <∞,

(iii)
∫ t
0 r2(s)(

∑n2−1
i=1

∑i−1
�=0 |K(�)i (s)|)w(s)ds <∞,

(iv)
∫ t
0 r2(s)(

∫ s
0 K0(s,x)dx)w(s)ds <∞,

(v)
∫ t
0 r2(s)(

∑n2−1
i=1

∫ s
0 |(∂i/∂xi)Ki(s−x)|dx)w(s)ds <∞.

Then all solutions of (1.2) are bounded in [0,b).

Proof. For 0 ≤ σ < 1, the proof is the same up to (4.6). In this case (4.6)

becomes

∣∣φ(t)∣∣≤ n2∑
j=1

(
Cj+

∣∣αj∣∣)∣∣φj(t)∣∣

+
n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣

×
∫ t

0

∣∣φ+k (s)∣∣
[
r1(s)

∣∣φ(s)∣∣σ
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+r2(s)
(∫ s

0

[
e2(s)+e3(x)+K0(s,x)

∣∣φ(x)∣∣σ ]dx

+
n2−1∑
i=1

i−1∑
�=0

∣∣K(�)i (s)
∣∣β

+
n2−1∑
i=1

∫ s
0

∣∣∣∣ ∂i∂xi K(i)i (s−x)
∣∣∣∣∣∣φ(x)∣∣dx

)]
w(s)ds.

(4.18)

Let,

h(t)=
n2∑
j=1

(
Cj+

∣∣αj∣∣)∣∣φj(t)∣∣

+
n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣
∫ t

0

∣∣φ+k (s)∣∣
[
r2(s)

[∫ s
0

[
e2(s)+e3(x)

]
dx

+
n2−1∑
i=1

i=1∑
�=0

∣∣K(�)i (s)
∣∣β

]]
w(s)ds.

(4.19)

Then,

∣∣φ(t)∣∣

≤ h(t)+
n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣

×
∫ t

0

∣∣φ+k (s)∣∣
[
r1(s)

∣∣φ(s)∣∣σ

+r2(s)
[∫ s

0
k0(s,x)

∣∣φ(x)∣∣σdx

+
n2−1∑
i=1

∫ s
0

∣∣∣∣ ∂i∂xi K(i)i (s−x)
∣∣∣∣∣∣φ(x)∣∣dx

]]
w(s)ds.

(4.20)

By hypothesis, there exist positive constants ξ1 and ξ2 such that,

∣∣φj(t)∣∣≤ ξ1,
∣∣φ+k (t)∣∣≤ ξ2 ∀j,k= 1,2, . . . ,n2, (4.21)

and from conditions (i), (ii), and (iii), it follows that h(t) is bounded on [0,b),
that is, there exists a positive constant ξ3 such that h(t)≤ ξ3 for all t ∈ [0,b).
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Then,

∣∣φ(t)∣∣≤ ξ3+n2ξ1ξ2

[∫ t
0
r1(s)

∣∣φ(s)∣∣σw(s)ds

+
∫ t

0
r2(s)

(∫ s
0
k0(s,x)

∣∣φ(x)∣∣σdx)w(s)ds

+
n2−1∑
i=1

∫ t
0

(
r2(s)

∫ s
0

∣∣∣∣ ∂i∂xi Ki(s−x)
∣∣∣∣∣∣φ(x)∣∣dx

)
w(s)ds

]
.

(4.22)

Applying Corollary 3.8 with f1(x)= 0, we have

∣∣φ(t)∣∣≤ exp

(∫ t
0
r2(s)

(n2−1∑
i=1

∫ s
0

∣∣∣∣ ∂i∂xi Ki(s−x)
∣∣∣∣dx

)
w(s)ds

)

×
{[
ξ(1−σ)3 +(1−σ)

×
∫ t

0

(
r1(s)+

∫ s
0
r2(x)k0(s,x)dx

)

×exp(1−σ)
(∫ t

0

(
r2(τ)

n2−1∑
i=1

∫ τ
0

∣∣∣∣ ∂i∂xi Ki(s−x)
∣∣∣∣dx

)

×w(τ)dτ
)
w(s)ds

]1/(1−σ)}
.

(4.23)

Hence, from conditions (i), (ii), and (iii), it follows that φ(s) is bounded on

[0,b).

Theorem 4.4. Suppose that S(τ)∪S(τ+) ⊂ L2
w(a,b), r2(s) is bounded on

[0,b), and the following conditions are satisfied:

(i) e1(s)∈ L2
w(0,b) and r1(s)∈ L2/(1−σ)

w (0,b) for all s ∈ [0,b),
(ii)

∫ t
0(
∫ s
0 [e2(s)+e3(x)]dx)2w(s)ds <∞,

(iii)
∫ t
0(
∑n2−1
i=1

∑i−1
�=0 |K(�)i (s)|)2w(s)ds <∞,

(iv) [
∫ s
0 wσ/(σ−2)K2/(2−σ)

0 (s,x)dx](2−σ)/2 <∞,

(v) [
∫ s
0 w−1|(∂i/∂xi)Ki(s−x)|2dx]1/2w(s)ds <∞.

Then all solutions of (1.2) are in L2
w(0,b).
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Proof. For 0 ≤ σ < 1, the proof is the same up to (4.18). Applying the

Cauchy-Schwartz inequality to the integrals in (4.18), we have that

∫ t
0

∣∣φ+j (s)∣∣r1(s)
∣∣φ(s)∣∣σw(s)ds

≤
(∫ t

0

∣∣φ(s)∣∣2w(s)ds
)σ/2(∫ t

0

∣∣φ+k (s)r1(s)
∣∣µw(s)ds)1/µ

,
∫ s

0
K0(s ·x)

∣∣φ+k (s)∣∣σdx
≤
(∫ s

0

∣∣φ(x)∣∣2w(x)dx
)σ/2(∫ s

0
w1−µKµ0 (s,x)dx

)1/µ
,

∫ s
0

∣∣∣∣ ∂i∂xi Ki(s−x)φ(x)
∣∣∣∣dx

≤
(∫ s

0

∣∣φ(x)∣∣2w(x)dx
)1/2(∫ s

0
w−1

∣∣∣∣ ∂i∂xi Ki(s−x)
∣∣∣∣

2

dx
)1/2

,

(4.24)

where µ = 2/(2−σ). Sinceφ+k (s)∈ L2
w(0,b) (see Lemma 3.3), k= 1, . . . ,n2, and

r1(s) ∈ L2/(1−σ)
w (0,b) by hypothesis, we have φ+k r1 ∈ Lµw(0,b), k = 1,2, . . . ,n2.

Using this fact and (4.18) in (4.16), we obtain

∣∣φ(t)∣∣≤ h(t)+ n2∑
j,k=1

∣∣ζjk∣∣∣∣φj(t)∣∣

×
[
ξ0

(∫ t
0

∣∣φ(s)∣∣2w(s)ds
)σ/2

+ξ1

(∫ t
0

∣∣φ+k (s)∣∣r2(s)
(∫ s

0

∣∣φ(x)∣∣2w(x)dx
)σ/2

w(s)ds
)

+n2ξ2

(∫ t
0

∣∣φ+k (s)∣∣r2(s)
(∫ s

0

∣∣φ(x)∣∣2w(x)dx
)1/2

w(s)ds
)]
,

(4.25)

where

ξ0 =
(∫ t

0

∣∣φ+k (s)r1(s)
∣∣µw(s)ds)1/µ

,

ξ1 =
(∫ t

0
w1−µKµ0 (s,x)dx

)1/µ
,

ξ2 =
(∫ t

0
w−1

∣∣∣∣ ∂i∂xi Ki(s−x)
∣∣∣∣

2

dx
)1/2

, for i= 1,2, . . . ,n2.

(4.26)
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Applying the Cauchy-Schwartz inequality again to the integrals in (4.25) and

squaring both sides, we have

∣∣φ(t)∣∣2

≤ 2h2(t)+4
n2∑
j,k=1

∣∣ζjk∣∣2∣∣φj(t)∣∣2

×
[
ξ2

0

(∫ t
0

∣∣φ(s)∣∣2w(s)ds
)σ

+ξ2
1

(∫ t
0

∣∣φ+k (s)∣∣2w(s)ds
)(∫ t

0
r 2

2

(∫ s
0

∣∣φ(x)∣∣2w(x)dx
)σ)

+n4ξ2
0

(∫ t
0

∣∣φ+k (s)∣∣2w(s)ds
)(∫ t

0
r 2

2

(∫ s
0

∣∣φ(x)∣∣2w(x)dx
)σ

×w(s)ds
)]
.

(4.27)

Let

u(t)=
∫ t

0

∣∣φ(s)∣∣2w(s)ds,

ξ3 =
(∫ t

0

∣∣φ+k (s)∣∣2w(s)ds
)1/2

, j = 1,2, . . . ,n2,
(4.28)

and integrate (4.27), to obtain

u(t)≤ 2
∫ t

0
h2(s)w(s)ds

+4ξ2
0

n2∑
j,k=1

∣∣ζjk∣∣2
∫ t

0

∣∣φj(s)∣∣2uσ(s)w(s)ds

+4ξ2
1ξ

2
3

n2∑
j,k=1

∣∣ζjk∣∣2
∫ t

0

∣∣φj(s)∣∣2
(∫ s

0
r 2

2 (x)u
σ(x)w(x)dx

)
w(s)ds

+4n4ξ2
2ξ

2
3

n2∑
j,k=1

∣∣ζjk∣∣2
∫ t

0

∣∣φj(s)∣∣2
(∫ s

0
r 2

2 (x)u(x)w(x)dx
)
w(s)ds.

(4.29)

From our assumptions and conditions (ii) and (iii), it follows that the integral∫ t
0h2(s)w(s)ds is finite, that is, there exists a positive constant ξ4 such that

‖h(t)‖L2
w(0,b) ≤ ξ4 for all t ∈ [0,b). Applying Corollary 3.8 with f1(x) = 0, we
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obtain

u(t)≤ exp

(∫ t
0

(
4n4ξ2

2ξ
2
3

n2∑
j,k=1

∣∣ζjk∣∣2∣∣φj(s)∣∣2
∫ s

0
r 2

2 (x)w(x)dx
)
w(s)ds

)

×
[
ξ(1−σ)4 +(1−σ)

×
∫ t

0
4

n2∑
j,k=1

∣∣ζjk∣∣2∣∣φj(s)∣∣2
(
ξ2

0+ξ2
1ξ

2
3

∫ s
0
r 2

2 (x)w(x)dx
)

×exp

(
(1−σ)

∫ s
0

[
4n4ξ2

2ξ
2
3

n2∑
j,k=1

∣∣ζjk∣∣2∣∣φj(x)∣∣2
∫ x

0
r 2

2 (τ)w(τ)dτ
]

×w(x)dx
)
w(s)ds

]1/(1−σ)
.

(4.30)

Since φj(t) ∈ L2
w(0,b), j = 1,2, . . . ,n2, and r2(t) is bounded on [0,b), then

φ(t)∈ L2
w(0,b) and hence the result.

Corollary 4.5. Suppose that S(τ)∪ S(τ+) ⊂ L2
w(0,b)∩L∞(0,b) and the

following conditions are satisfied:

(i) e1(s)∈ L2
w(0,b) and r1(s)∈ Lpw(0,b) for any p, 1≤ p ≤ 2/(1−σ),

(ii) r2(s) and K(�)i (s)∈ L2
w(0,b)∩L∞(0,b) for � = 0, . . . , i−1; i= 1, . . . ,n2−

1,

(iii)
∫ t
0(
∫ s
0 [e2(s)+e3(x)]dx)2w(s)ds <∞,

(iv) (
∫ s
0 wσ/(σ−2)K2/(2−σ)

0 (s,x)dx)(2−σ)/2 <∞, 0≤ σ < 1,

(v) [
∫ s
0 w−1|(∂i/∂xi)Ki(s−x)|2dx]1/2 <∞, i= 1, . . . ,n2−1.

Then all solutions of (1.2) belong to L2
w(0,b)∩L∞(0,b).

Proof. The proof follows from Theorems 4.3 and 4.4. We refer to [6, 7, 8,

11] for more details.
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