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We use the Lagrange identity method and the logarithmic convexity to obtain
uniqueness and exponential growth of solutions in the thermoelasticity of type
III and thermoelasticity without energy dissipation. As this is not the first contri-
bution of this kind in this theory, it is worth remarking that the assumptions we
use here are different from those used in other previous contributions. We assume
that the elasticity tensor is positive semidefinite, but we allow that the constitu-
tive tensor of the entropy flux vector (kij), which is a characteristic tensor in
this theory, is not sign-definite. The Lagrange identity method is used to obtain
uniqueness in the context of the thermoelasticity of type III. The fundamental key
to obtain exponential growth in the thermoelasticity without energy dissipation is
the use of a new functional. This functional is inspired in that it is used when the
elasticity tensor is not sign-definite, but (kij) is positive definite.

2000 Mathematics Subject Classification: 35Q72, 74F05, 74H25.

1. Introduction. The usual theory of heat conduction based on the Fourier

law allows the phenomena of the infinite diffusion velocity which is not well

accepted from a physical or engineering point of view. The articles of Dreyer

and Struchtrup [5] and Caviglia et al. [2] provide an extensive survey of work on

experiments involving the propagation of heat as a thermal wave. They report

instances where the phenomena of second sound has been observed in several

kind of materials. This kind of fact has provoked an explosion of activity in

the field of heat propagation. Extensive reviews on the second sound theories

are the work of Chandrasekharaiah [3] and the books of Jou et al. [12], Müller

and Ruggeri [14].

In the more recent surveys of Chandrasekharaiah [4] and Hetnarski and Ig-

naczack [11], the theory proposed by Green and Naghdi [7, 8, 9, 10] is consid-

ered as an alternative formulation of the propagation of heat. This theory is

developed in a rational way to produce a fully consistent theory which is capa-

ble of incorporating thermal pulse transmission in a very logical manner. They

make use of a general entropy balance rather than an entropy inequality. The

development is quite general and the characterization of material response for

the thermal phenomena is based on three types of constitutive functions, that

is, they labeled of types I, II, and III. When the theory of type I is linearised,
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the parabolic equation of the heat conduction arises. The theory of type II (is

a limiting case of the type III) does not admit energy dissipation. This theory

is usually called “without energy dissipation.”

The relevant equations of anisotropic inhomogeneous thermoelasticity of

type II with a center of symmetry are

ρüi =
(
aijkhuh,k

)
,j−

(
aijθ

)
,j+ρfi, (1.1)

cθ̈ =−aijüi,j+
(
kijθ,j

)
,i+ρr , (1.2)

where (ui) is the displacement vector field and θ is the temperature field.

Standard notation is employed throughout the paper, and a superposed dot

denotes ∂/∂t. The quantities ρ, fi, and r are density, body, and heat supply,

while c is the specific heat. The tensoraij is the coupling tensor, and we assume

that the elasticity tensor (aijkl) and the constitutive tensor of the entropy flux

vector (kij) satisfy the symmetry relations

aijkl = alkji, kij = kji. (1.3)

In a recent paper, Quintanilla and Straughan [17] proved the uniqueness and

exponential growth of the solutions of system (1.1) and (1.2) whenever the

tensor (kij) is positive meanwhile the density and the specific heat are positive,

but the elasticity coefficients are not sign-definite. In fact, the growth results

were extended to the thermoelasticity of type III in [15]. We also recall the

results concerning the existence obtained in [16]. The aim of this paper is to

obtain results similar to those presented in [17] in the case that the density

and the specific heat are positive, the elasticity tensor is positive semidefinite,

but the tensor (kij) is not sign-definite. The method follows the ideas of [17],

after seeing the similar game of the variables (ui) and θ in the system. We can

see this paper as a continuation and a consequence of the ideas used in [17].

Let B be a bounded domain in the three-dimensional Euclidean space with

boundary ∂B smooth enough to allow applications of the divergence theorem.

The set of (1.1) and (1.2) (or (1.6) and (1.7) see below) hold on B× (0,T ) for

some time T(≤ ∞), and we consider boundary and initial conditions of the

form

ui(x, t)=u∗i (x, t), θ(x, t)= θ∗(x, t), x∈ ∂B, (1.4)

ui(x,0)=u0
i (x), u̇i(x,0)= v0

i (x), θ(x,0)= θ0(x), θ̇(x,0)= η0(x).
(1.5)

In Section 2, we use the Lagrange identity method to obtain a uniqueness result

for the thermoelasticity of type III. It will be worth recalling that the system of
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equations governing the thermoelasticity of type III with a center of symme-

try is

ρüi =
(
aijkhuh,k

)
,j−

(
aijθ

)
,j+ρfi, (1.6)

cθ̈ =−aijüi,j+
(
kijθ,j

)
,i+

(
bijθ̇,j

)
,i+ρr , (1.7)

where bij = bji. In Section 3, we show how the logarithmic convexity argument

may be adapted to derive exponential growth for a measure of the solutions

in the context of the thermoelasticity without energy dissipation.

2. Thermoelasticity of type III: uniqueness. The aim of this section is to

obtain a uniqueness result for the solutions of system (1.6) and (1.7). From

now on, we assume that the functions ρ and c are greater than or equal to a

positive constant and that the following inequality

aijkhζijζhk ≥ 0, for all tensor
(
ζij
)
, (2.1)

is satisfied. We also assume (in this section) that the tensor (bij) satisfies the

inequality

bijζiζj ≥ 0, for all vector
(
ζi
)
, (2.2)

and we also assume (1.3).

The proof is a direct consequence of two equalities obtained in ([17], see

equations (3.9), (3.10)), but we give a brief description of it.

To consider the uniqueness question, it is sufficient to see that the null

solution is the only solution that satisfies the system

ρüi =
(
aijkhuh,k

)
,j−

(
aijθ

)
,j , (2.3)

cθ̈ =−aijüi,j+
(
kijθ,j

)
,i+

(
bijθ̇,j

)
,i, (2.4)

with homogeneous boundary and initial conditions.

It is worth remarking that (2.4) can be written as

cτ̈ =−aiju̇i,j+
(
kijτ,j

)
,i+

(
bijθ,j

)
,i, (2.5)

where

τ(x, t)=
∫ t

0
θ(x,s)ds. (2.6)
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Some arguments related with the Lagrange identity method lead to the fol-

lowing identity ([17], see equation (3.9)):

∫
B

(
ρu̇iu̇i+kijτ,iτ,j−aijkhui,juh,k−cθ2)dV = 0. (2.7)

Multiplying (2.3) by u̇i and (2.5) by θ, and then integrating over B with the aid

of the boundary conditions, we find the energy equation

E1(t)= 1
2

∫
B

(
ρu̇iu̇i+aijkhui,juh,k+cθ2+kijτ,iτ,j+2

∫ t
0
bijθ,iθ,jds

)
dV = 0.

(2.8)

By a combination of (2.7) and (2.8), we find that

∫
B

(
cθ2+aijkhui,juh,k+

∫ t
0
bijθ,iθ,jds

)
dV = 0. (2.9)

We immediately deduce that θ ≡ 0. Now, the vector field (ui) satisfies the

system of the isothermal elasticity with homogeneous initial and boundary

conditions. Thus, (ui)≡ 0, and so uniqueness follows.

Remark 2.1. In [17], a uniqueness theorem under alternative conditions on

the constitutive tensors was established. We believe that the remarks proposed

at the end of Section 2 of [17] have a natural counterpart under the assump-

tions proposed in this section. We could employ mixed boundary conditions

involving conditions (1.4) on part of the boundary with prescribed traction

and entropy flux on the remainder. It also seems possible to modify previous

arguments to consider the case of unbounded domains.

Remark 2.2. If we take into account the results of [17], we may conclude

the uniqueness of solutions of system (1.1) and (1.2) whenever at least one of

the tensors ((aijkl) and (kij)) is positive (see (2.1) and [17, (2.1)]). It is natural

to ask about uniqueness in the case that neither of the tensors satisfies the

above condition.

It is worth recalling that Green [6] obtained a uniqueness result in the con-

text of the thermoelastic theory of Green-Lindsay using the Lagrange identity

method.

3. Thermoelasticity of type II: exponential growth. In this section, we de-

rive some exponential growth results for the solutions of the equations of the

thermoelasticity of type II.

Let (ui,θ) be a solution of (2.3) and (2.4) (with bij ≡ 0) for the homogeneous

boundary conditions. We also assume that (ui,θ) satisfies the initial data (1.5).

The key is to define a suitable functional to which the logarithmic convexity is

applicable.
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In this situation, an energy equation is

E2(t)≡ 1
2

∫
B

(
ρüiüi+aijkhu̇i,ju̇h,k+c(θ̇)2+kijθ,iθ,j

)
dV = E2(0). (3.1)

We now define the functional

Gω,t0(t)=
∫
B

(
cθ2+aijkhui,juh,k

)
dV +ω(t+t0)2, (3.2)

whereω and t0 are constants to be selected. The addition of the termω(t+t0)2
is an idea of Knops and Payne [13] in the context of isothermal elasticity. By

differentiation, we see that

G′ω,t0(t)= 2
∫
B

(
cθθ̇+aijkhui,ju̇h,k

)
dV +2ω

(
t+t0

)
,

G′′ω,t0(t)= 2
∫
B

(
c(θ̇)2+aijkhu̇i,ju̇h,k+cθθ̈+aijkhui,jüh,k

)
dV +2ω.

(3.3)

We also have

∫
B

(
ρüiüi+aijkhuh,küi,j

)
dV =

∫
B
aijüi,jθdV,∫

B

(
cθθ̈+kijθ,iθ,j

)
dV =−

∫
B
aijüi,jθdV.

(3.4)

Upon addition,

∫
B

(
cθθ̈+aijkhuh,küi,j

)
dV =−

∫
B

(
ρüiüi+kijθ,iθ,j

)
dV. (3.5)

After the use of the previous inequalities, it is not difficult to see that

Gω,t0G
′′
ω,t0−

(
G′ω,t0

)2

= 4
(∫

B

(
cθ2+aijkhuh,kui,j

)
dV +ω(t+t0)2

)

×
(∫

B

(
c(θ̇)2+aijkhu̇h,ku̇i,j

)
dV +ω

)

−4
(∫

B

(
cθθ̇+aijkhuh,ku̇i,j

)
dV +ω(t+t0)

)2

−2Gω,t0
(
2E2(0)+ω

)
.

(3.6)

Since the Cauchy-Schwarz inequality, the following estimate follows

Gω,t0G
′′
ω,t0−

(
G′ω,t0

)2 ≥−2Gω,t0
(
2E2(0)+ω

)
. (3.7)

Now, we may state the following result.
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Theorem 3.1. If (a) E2(0) < 0; or (b) E2(0) = 0 and G′ω,t0(0) > 0; or (c)

E2(0) > 0 and G′ω,t0(0) > 2[2E2(0)Gω,t0(0)]1/2, then the functional Gω,t0 be-

comes exponentially unbounded.

Proof. This follows the proof of equivalent results of [13, pages 373–385],

and so, only brief details are sketched. For the case (a), we selectω=−2E2(0) >
0. Thus, a quadrature implies

Gω,t0(t)≥Gω,t0(0)exp

(
G′ω,t0(0)t
Gω,t0(0)

)
, t ≥ 0. (3.8)

We can always select t0 large enough that G′ω,t0(0) > 0 and then (a) follows.

The case (b) follows immediately by taking ω= 0.

Finally, case (c) follows the calculations of Knops and Payne ([13], see equa-

tion (3.6.14)) and the theorem is proved.

Remark 3.2. In the case that E2(0) = 0, inequality (3.7) also implies (see

Ames and Straughan [1, page 17])

F(t)≤ [F(0)](1−t/T)[F(T)]t/T , (3.9)

0≤ t ≤ T , where F =G0,0. Thus, if we consider homogeneous initial conditions,

we conclude that the solution is always zero, so we obtain uniqueness of so-

lutions in the thermoelasticity without energy dissipation by using the usual

logarithmic convexity argument.
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