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Boardman, Johnson, and Wilson (1995) gave a precise formulation for an unstable
algebra over a generalized cohomology theory. Modifying their definition slightly
in the case of complex K-theory by taking into account its periodicity, we prove
that an unstable algebra for complex K-theory is precisely a filtered λ-ring and
vice versa.
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1. Introduction. Lambda operations in complex K-theory were first intro-

duced by Grothendieck. These operations should be thought of as exterior

power operations; in fact, for an element α in K(X) that comes from an actual

vector bundle on X with X a finite complex, λi(α) is the element represented

by the ith exterior power of that vector bundle. It was realized early that these

operations generate all K-theory operations (see, e.g., [8]). A λ-ring is, roughly

speaking, a commutative ring with operations λi which behave exactly like λ-

operations on K-theory of spaces. It is, therefore, natural to think that λ-rings

have all the algebraic structures to capture the unstable K-theory algebra of

spaces. There is, however, a more precise notion of an unstable algebra, which

we now recall.

In their seminal article [4], Boardman et al. gave a precise definition for an

unstable E∗-cohomology algebra, where E∗ is a generalized cohomology the-

ory, such as K-theory, satisfying some reasonable freeness conditions. Given

E∗, denote by Ek the kth space in the Ω-spectrum representing E∗. Of course,

operations on Ek(−) are just the elements of E∗Ek. There are functors

Uk(−)= FAlg
(
E∗Ek,−

)
: FAlg �→ Set (1.1)

from the category FAlg of complete Hausdorff filtered E∗-algebras and con-

tinuous E∗-algebra homomorphisms to sets. Thanks to the extra structures

on the spaces Ek, the functor U whose components are Uk to graded sets be-

comes a comonad on the category FAlg. Then, these authors define an unstable

E-cohomology algebra to be a U -coalgebra. This definition applies to K-theory

in particular.
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The purpose of this paper is to show that the notions of λ-rings and of

unstable algebras forK-theory (almost) coincide. This is perhaps not surprising

and is even intuitively obvious, but the author feels that it is still worthwhile

to record this result.

We need to modify the above definition of an unstable E-cohomology algebra

slightly in the case of K-theory by taking into account its 2-periodicity. Now,

the base point component of the 0th space in the Ω-spectrum representing K-

theory is the classifying space BU of the infinite unitary group. Since K0(pt)=
Z, it makes sense to use Z as the ground ring and to consider the functor

U(−)=U0(−)= FRing
(
K(BU),−) : FRing �→ Set (1.2)

from the category FRing of complete Hausdorff filtered rings and continuous

ring homomorphisms. This functor can again be lifted to a comonad on the

category of filtered rings. In what follows, an unstable K-cohomology algebra

is by definition a U -coalgebra for this comonad U .

We will precisely define what a filtered λ-ring is below (see Definition 2.1).

This is basically a filtered ring with a λ-ring structure for which, in the expres-

sion λi(r), both the λ-variable and the r -variable are continuous.

We are now ready to state the main result of this paper.

Theorem 1.1. For a commutative filtered ring R that is complete and Haus-

dorff, there is a canonical bijection from the set of unstable K-cohomology al-

gebra structures on R to the set of filtered λ-ring structures on R.

One advantage of having a result like this is that, in order to study unstable

algebras in the sense of Boardman, Johnson and Wilson, we have to be able to

unravel the enormous amount of information encoded in a U -coalgebra and

should compare it to more familiar structures whenever possible. Theorem 1.1

does this for K-theory, identifying U -coalgebras with the well-studied λ-rings.

1.1. Organization of the paper. The rest of this paper is organized as fol-

lows.

In Section 2, we recall the definitions of filtered rings and λ-rings. Then, we

describe the filtered ring K(BU). The main aims of the section are to define a

filtered λ-ring and to observe that the completion of the K-theory of a space

is such.

Section 3 begins with recalling the notions of comonads and their coalge-

bras which are necessary in order to define unstable K-cohomology algebra.

We define the modified comonad U for K-theory, taking into account its peri-

odicity, and define an unstable K-cohomology algebra as a coalgebra over this

comonad. Particular attention is paid as to how this comonad arises from the

extra structure of the space BU . We also observe that the completion of the

K-theory of a space X is an unstable K-cohomology algebra.

In Section 4, the main result, that is, Theorem 1.1, is proved.
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2. Filtered λ-ring. All rings considered in this paper are assumed to be com-

mutative, associative, and have a unit.

2.1. Filtered ring. More information about filtered objects can be found in

Boardman [3, Sections 3 and 6].

A filtered ring is a ring R equipped with a directed system of ideals IaR.

Directedness means that, for every IaR and IbR, there exists an IcR which

is contained in the intersection IaR∩ IbR. The filtration induces a filtration

topology on R, which is Hausdorff (resp., complete) if and only if the natural

map

c : R �→ lim←����������������������������������� R/I
aR (2.1)

is injective (resp., surjective). If R is not already complete Hausdorff, we can al-

ways complete it by taking the inverse limit R∧ = limR/IaR, which is complete

and Hausdorff with the induced filtrations. The ringR∧ is called the completion

of R.

We mention two elementary but very useful facts about the completion.

(i) The map c has the following universal property. If f : R → S is a con-

tinuous ring homomorphism to a complete Hausdorff filtered ring S, then f
uniquely factors through c by a continuous ring homomorphism f∧ : R∧ → S.

(ii) The image of R in its completion is dense.

From now on, all filtered rings will be required to be complete and Hausdorff

unless otherwise specified.

A filtered ring homomorphism is a ring homomorphism which is continuous

with respect to the filtration topology. The category of complete Hausdorff

filtered rings and continuous ring homomorphisms is denoted by FRing.

When we discuss the comonad U , we need to use the not-at-all obvious fact

that the completed tensor product is the coproduct in the category of complete

Hausdorff filtered rings. More precisely, suppose that R = (R,{IaR}) and S =
(S,{IbS}) are complete Hausdorff filtered rings. Then, their completed tensor

product is defined as

R⊗̂S = lim←�����������������������������������
a,b

R⊗S
ker

(
R⊗S → (R/IaR)⊗(S/IbS)) . (2.2)

Then, R⊗̂S is a complete Hausdorff filtered ring and is the coproduct of R and

S in the category FRing (see [3, Lemma 6.9] for a proof).

2.2. λ-ring. More information about λ-rings can be found in [1, 2, 6]. Consult

[5] for a more algebraic-geometric viewpoint to the subject of λ-rings.

A λ-ring is a ring R equipped with functions

λi : R �→ R (i≥ 0) (2.3)
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which satisfy the following conditions. For any integers i,j ≥ 0 and elements

r and s in R,

(i) λ0(r)= 1,

(ii) λ1(r)= r ,

(iii) λi(1)= 0 for i > 1,

(iv) λi(r +s)=∑i
k=0λk(r)λi−k(s),

(v) λi(rs)= Pi(λ1(r), . . . ,λi(r);λ1(s), . . . ,λi(s)),
(vi) λi(λj(r))= Pi,j(λ1(r), . . . ,λij(r)).

The polynomials Pi and Pi,j are defined as follows. Consider the variables

ξ1, . . . ,ξi and η1, . . . ,ηi. Denote by s1, . . . ,si and σ1, . . . ,σi, respectively, the el-

ementary symmetric functions of the ξ’s and the η’s. The polynomial Pi is

defined by the requirement that the expression Pi(s1, . . . ,si;σ1, . . . ,σi) be the

coefficient of ti in the finite product

i∏
m,n=1

(
1+ξmηnt

)
. (2.4)

Similarly, if s1, . . . ,sij are the elementary symmetric functions of ξ1, . . . ,ξij ,
then the polynomial Pi,j is defined by the requirement that the expression

Pi,j(s1, . . . ,sij) be the coefficient of ti in the finite product

∏
l1<···<lj

(
1+ξl1 ···ξlj t

)
. (2.5)

A λ-ring map is a ring map which commutes with the λ-operations.

An example of a λ-ring is the degree-0 partK(X) of theK-theory of a pointed,

connected CW space X. It is also a filtered ring with filtration ideals

Ia(X)= ker
(
K(X) �→K(Xa)), (2.6)

where Xa runs through all the finite subcomplexes of X. This is sometimes

called the profinite filtration on K(X) (cf. [3, Definition 4.9]). Although the fil-

tration on X is not unique, the isomorphism type of the resulting filtered ring

structure on K(X) is well defined.

The induced map in the K-theory of a map between spaces is, of course, a

λ-ring map as well as a filtered ring map.

2.3. The filtered ring K(BU). The purpose of this section is to describe the

filtered ring K(BU) in relation to the λ-operations.

Since the K-theory of a pointed, connected CW space is represented by the

classifying space BU of the infinite unitary group, the Yoneda lemma implies
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that theK-theory operations for such spaces can be identified with self-maps of

BU , which in turn can be identified with the elements ofK(BU). More precisely,

we consistently identify the following:

(i) a self-map r : BU → BU ,

(ii) the corresponding element r ∈K(BU),
(iii) the operation r∗ :K(−)→K(−).
It is well known that the K-theory filtered ring of BU is a power series ring

K(BU)= Z
[[
λ1,λ2, . . .

]]
(2.7)

in countably infinitely many variables λi (i > 0), corresponding to the opera-

tions λi in K-theory (see, e.g., [8, Theorem 4.15]). The variable λi exactly lies in

filtration 2i, and the filtered ring structure on K(BU) is generated this way.

2.4. Filtered λ-ring

Definition 2.1. A filtered λ-ring is a complete Hausdorff filtered ring R=
(R,{IaR}) with a λ-ring structure such that the following two conditions hold.

(i) The λi (i > 0) is an equicontinuous family of functions. That is, for every

filtration ideal IaR, there exists an IbR such that whenever r ∈ IbR,

λi(r)∈ IaR for every i > 0.

(ii) For every element r ∈ R and every filtration ideal IaR, there exists an

integer N > 0 (depending on r and a) such that, whenever
∑k
l=1 ilel ≥N,∏k

l=1λil(r)el ∈ IaR.

Thus, a filtered λ-ring is essentially a filtered ring with a λ-ring structure in

which the expression λi(r) is continuous in both the λ- and the r -variables.

A filtered λ-ring map is a continuous ring homomorphism which commutes

with the λ-operations.

In order that these algebraic gadgets do model the K-theory of spaces (com-

pleted if necessary), we have to show that K(X)∧ is a filtered λ-ring for any CW

space X.

Proposition 2.2. For any pointed, connected CW space X, the completion

K(X)∧ has a canonical filtered λ-ring structure for which the completion map

c :K(X)→K(X)∧ is a λ-ring map.

Proof. The completion K(X)∧ is clearly a complete Hausdorff filtered ring.

Its universal property implies that the composite map

K(X) λi
��������������������������������������������������������→ K(X) c

������������������������������������→ K(X)∧ (2.8)

uniquely factors through c via a map that we call λi. Once it is shown that

these λi make K(X)∧ a filtered λ-ring, it is automatically true that c is a map

of λ-rings.
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Now, since the image of K(X) in its completion is dense and since K(X)
with its λ-operations is a λ-ring, it follows immediately that K(X)∧ with its λi

is also a λ-ring. Still, we must prove that these λi have the required continuity

properties in Definition 2.1 to make K(X)∧ a filtered λ-ring. Again, since K(X)
is dense in K(X)∧, it suffices to show that the λ-operations on K(X) have these

continuity properties.

To see that the λi onK(X) are equicontinuous, pick any filtration ideal IaX =
ker(K(X) → K(Xa)) corresponding to a finite subcomplex Xa and pick any

elementα∈ IaX. Then,α is represented by a mapα :X → BU whose restriction

to Xa is nullhomotopic. If r ∈ K(BU) is any operation at all, represented as a

map r : BU → BU , then the composite r ◦α : X → BU is still nullhomotopic

when restricted to Xa. That is, the filtration ideal IaX is, in fact, closed under

any K-theory operations, including the λ-operations. This proves that {λi}i>0

is an equicontinuous family of functions on K(X).
To demonstrate the other continuity property, let α be an element of K(X)

and let IaX be a filtration ideal. The element α is represented by a map α :X →
BU , which induces a continuous ring homomorphism

α∗ :K(BU) �→K(X), (2.9)

sending an element r ∈ K(BU) to the element r(α) in K(X) represented by

the composite

X α
�������������������������������������������→ BU r

���������������������������������������→ BU. (2.10)

That the required continuity property holds follows now from the continuity

of α∗ and the filtered ring structure on K(BU) (see Section 2.3).

Corollary 2.3. If f :X → Y is a map of pointed, connected CW spaces, then

the induced map f∗∧ :K(Y)∧ →K(X)∧ is a filtered λ-ring map.

3. Unstable K-cohomology algebra. The main purpose of this section is to

define the comonad U (see (3.3)). Its coalgebras are, by definition, the unstable

K-cohomology algebras. We also see that the K-theory of a space (completed

if necessary) is a U -coalgebra.

We begin by recalling the concepts of comonads and their coalgebras.

3.1. Comonad and coalgebra. The reader can consult MacLane’s book [7]

for more information on this topic.

A comonad on a category C is a functor F : C → C equipped with natural

transformations η : F → Id and ∆ : F → F2, called counit and comultiplication,

satisfying the counital and coassociativity conditions

Fη◦∆= IdR = ηF ◦∆, F∆◦∆=∆F ◦∆. (3.1)
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The natural transformations ∆ and η are often omitted from the notation, and

we speak of F as a comonad.

If F is a comonad on a category C, then an F -coalgebra structure on an object

X of C is a morphism ξ :X → FX in C, called the structure map, satisfying the

counital and coassociativity conditions

Fξ◦ξ =∆◦ξ, η◦ξ = IdX . (3.2)

We sometimes abuse notation and say that X is an F -coalgebra, leaving the

structure map ξ implicit.

A map of F -coalgebras g : (X,ξX)→ (Y ,ξY ) consists of a morphism g :X → Y
in C such that ξY ◦g = Fg◦ξX .

3.2. The comonad U for K-theory. The discussion in this section closely

follows Boardman et al. [4, Section 8], except that we take into account the

periodicity of K-theory and consider only the degree-0 part. We first define

the comonad U and then discuss its ring structure (when applied to a filtered

ring), filtration, comultiplication, and counit. After that, we define unstable K-

cohomology algebra and observe that the argument in Boardman, Johnson and

Wilson shows that the K-theory of any space (completed if necessary) is such.

We will use the Yoneda lemma many times without explicitly mentioning it.

3.2.1. Definition of U . Let, R = (R,{IaR}) be an arbitrary complete Haus-

dorff filtered ring. Define the functor U (to Set only at the moment) to be

UR = FRing
(
K(BU),R

)
, (3.3)

the set of continuous ring homomorphisms from K(BU) to R.

3.2.2. Ring structure on UR. Let X be an arbitrary pointed, connected CW

space.

There are maps

µ,φ : BU×BU BU (3.4)

which induce the natural addition (by µ) and multiplication (by φ) structure

on the K-theory K(X) of a space X. These maps satisfy certain associativity,

commutativity, and so on, conditions which make K(X) a commutative ring

with unit. Thanks to the Künneth isomorphism K(BU×BU)
 K(BU)⊗̂K(BU)
[3, Theorem 4.19], they induce in K-theory the following maps:

µ∗,φ∗ : Z
[[
λ1,λ2, . . .

]]
Z
[[
λ1,λ2, . . .

]]⊗̂Z
[[
λ1,λ2, . . .

]]
. (3.5)

Therefore, for each integer k≥ 1, we can write

µ∗
(
λk
)=∑

α
r ′α⊗r ′′α (3.6)
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for some elements r ′α and r ′′α in K(BU). By precomposition, this becomes the

Cartan formula for a sum

λk(x+y)=
∑
α
r ′α(x)r ′′α (y)

(
x,y ∈K(X))

=
∑
i+j=k

λi(x)λj(y),
(3.7)

where we have used the usual convention λ0(x) = 1. Since (3.7) holds for an

arbitrary space X and any elements x and y in K(X), we must have

µ∗
(
λk
)= ∑

i+j=k
λi⊗λj. (3.8)

A similar reasoning, using the property

λk(xy)= Pk
(
λ1x,. . . ,λkx;λ1y,. . . ,λky

)
, (3.9)

leads to the formula

φ∗
(
λk
)= Pk(λ1⊗1, . . . ,λk⊗1;1⊗λ1, . . . ,1⊗λk

)
. (3.10)

Now, suppose that f and g are elements of UR = FRing(K(BU),R). Their

sum and product f +g and fg both have the form

K(BU)→K(BU)⊗̂K(BU) f ⊗̂g��������������������������������������������������������������������→ R⊗̂R multiplication
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→ R, (3.11)

where for f +g (resp., fg), the left-hand map is µ∗ (resp., φ∗). Then, (3.8) and

(3.10) imply that, on the element λk ∈K(BU), these maps can be expressed as

the Cartan formulas

(f +g)(λk)= ∑
i+j=k

f
(
λi
)
g
(
λj
)
,

(fg)
(
λk
)= Pk(f (λ1

)
, . . . ,f

(
λk
)
;g
(
λ1
)
, . . . ,g

(
λk
))
.

(3.12)

It follows that the additive and multiplicative identities 0UR and 1UR of UR are

given by the maps

0UR : λk � �→ 0 (k > 0),

1UR : λk � �→



1, if k= 1,

0, if k > 1.

(3.13)

The second equality follows from the fact that Pk(x1, . . . ,xk;1,0, . . . ,0)= xk.
3.2.3. Filtration on UR. The ring UR = FRing(K(BU),R) is filtered by the

ideals

IaUR = ker
(
UR �→U(R/IaR))

= {f ∈UR : f
(
λk
)∈ IaR ∀k > 0

}
.

(3.14)
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It is easy to see that the surjective mapUR→U(R/IaR) has kernel IaUR. Thus,

since R is complete Hausdorff, it follows that

UR = FRing
(
K(BU),R

)
= lim

a
FRing

(
K(BU),R/IaR

)
= lim

a
(UR)/IaUR.

(3.15)

That is, UR is also a complete Hausdorff filtered ring. Note that the indexing

set for the filtration of UR is the same as that for R.

So far we have seen that U is a functor on the category FRing of complete

Hausdorff filtered rings.

3.2.4. Comultiplication and counit. In order to make U a comonad on

FRing, we still need the natural transformations ∆ : U → U2 and η : U → Id.

We begin with the former.

There is a filtered ring map

ρ :K(BU) �→U(K(BU)), g � �→ (f � �→ f ◦g). (3.16)

Using the formula λiλj(x) = Pi,j(λ1x,. . . ,λijx), we can express the map ρ in

terms of the elements λi ∈K(BU) as follows:

ρ
(
λj
)(
λi
)= λi◦λj = Pi,j(λ1, . . . ,λij

)
. (3.17)

Here, λi ◦λj is the element in K(BU) represented by the composition of the

K-theory operations λi and λj . Now, if f is an element in UR, then its image

under the comultiplication map ∆R :UR→U2R is the composite map

∆Rf = (Uf)◦ρ :K(BU) �→U(K(BU)) �→UR. (3.18)

As for the counit η :U → Id, it is defined by

ηRf = f
(
λ1
)
; (3.19)

that is, ηR is simply the evaluation map at λ1.

3.2.5. Unstable K-cohomology algebra. The proof in Boardman et al. [4,

Theorem 8.8(a)] that their U is a comonad on the category of complete Haus-

dorff filtered E∗-algebras carries over almost without change to show the fol-

lowing.

Proposition 3.1. The functor U defined in (3.3), together with ∆ and η
above, is a comonad on the category FRing of complete Hausdorff filtered rings.

Following Boardman et al. [4, Definition 8.9], we now give the following def-

inition.
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Definition 3.2. An unstable K-cohomology algebra is a U -coalgebra for

the comonad U in Proposition 3.1. A map of unstable K-cohomology algebras

is a map of U -coalgebras.

Now, given any pointed, connected CW space X, composition of maps yields

a continuous map

◦ :K(BU)×K(X) �→K(X) (3.20)

which gives, after completion, the map

K(BU)×K(X)∧ �→K(X)∧. (3.21)

Taking its adjoint, we obtain a map

ρX :K(X)∧ �→ FRing
(
K(BU),K(X)∧

)=U(K(X)∧). (3.22)

The argument of [4, Theorem 8.11(a)] in Boardman et al., which shows that

their analogous map ρX : E∗(X)∧ → U(E∗(X)∧) makes E∗(X)∧ a U -coalgebra,

now gives the following proposition.

Proposition 3.3. The map ρX in (3.22) makes K(X)∧ an unstable K-coho-

mology algebra.

This proposition is also a consequence of Proposition 2.2 and Theorem 1.1.

Corollary 3.4. If f :X → Y is a map of pointed, connected CW spaces, then

the induced map f∗∧ : K(Y)∧ → K(X)∧ is a map of unstable K-cohomology

algebras.

4. Identifying unstable K-cohomology algebra with filtered λ-ring. In this

final section, we prove Theorem 1.1.

So let R = (R,{IaR}) be an arbitrary complete Hausdorff filtered ring. Sup-

pose that R has the structure of an unstable K-cohomology algebra ξ : R→UR.

We must show that this gives a filtered λ-ring structure on R. Recall that

UR = FRing
(
K(BU),R

)= FRing
(
Z
[[
λ1,λ2, . . .

]]
,R
)
. (4.1)

We define the operations

λi : R �→ R (i≥ 0) (4.2)

by setting λ0 ≡ 1 and, for i > 0,

λi(r) def= (ξr)(λi) (r ∈ R). (4.3)

We claim that these operations make R into a filtered λ-ring; that is, a λ-ring

structure on R, together with the two continuity properties in Definition 2.1.
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The argument is divided into six steps, the first one for the continuity proper-

ties and the rest for the λ-ring structure.

Step 1. We first check the continuity properties in Definition 2.1. To see

that the family {λi}i>0 is equicontinuous, let IaR be a filtration ideal. We must

show that there exists an IbR such that λi(IbR)⊂ IaR for every i > 0. Since ξ
is continuous, given IaUR, there exists IbR such that ξ(IbR) ⊂ IaUR. That is,

if r ∈ IbR, then λi(r)= (ξr)(λi)∈ IaR for every i > 0. This shows that {λi}i>0

is an equicontinuous family of functions on R.

To check the second continuity property in Definition 2.1, let r be an element

in R and let IaR be a filtration ideal. The element ξr ∈UR is a continuous ring

homomorphism from K(BU) to R. Thus, given IaR, there exists an integer

N > 0 such that whenever α ∈ K(BU) has a filtration strictly greater than N,

then (ξr)(α) ∈ IaR. Now, if
∑k
l=1 ilel ≥ N, then the filtration of the element∏k

l=1λ
el
il ∈K(BU) is

∑k
l=1 2ilel > N, and so we have

k∏
l=1

λil(r)el = (ξr)

 k∏
l=1

λelil


∈ IaR. (4.4)

This proves the desired continuity property.

Step 2. We check that λ1 is the identity map on R. Recall that the counit

ηR : UR → R is the evaluation map at λ1. Since there is an equality IdR = ηRξ,

it follows that, for any element r in R, we have

λ1(r)= (ξr)(λ1
)= (ηRξ)(r)= r . (4.5)

So λ1 is the identity map on R.

Step 3. We check that λi(1) = 0 for any i > 1. Denoting the multiplicative

identity of UR by 1UR (see (3.13)), we have, for i > 1,

λi(1)= (ξ1)
(
λi
)= 1UR

(
λi
)= 0 (4.6)

as desired.

Step 4. Now, we show the Cartan formula for a sum of any two elements x
and y in R. Using the additivity of ξ and (3.12), we calculate that

λk(x+y)= ξ(x+y)(λk)= (ξx+ξy)(λk)
=
∑
i+j=k

{
(ξx)

(
λi
)}{
(ξy)

(
λj
)}

=
∑
i+j=k

λi(x)λj(y).

(4.7)

This proves the Cartan formula for a sum.
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Step 5. The Cartan formula for λk(xy) is similarly proved using the mul-

tiplicativity of ξ and (3.12).

Step 6. Finally, we show that λiλj(x)= Pi,j(λ1x,. . . ,λijx). Let x be an ele-

ment in R. Then, using the coassociativity of ξ (see (3.2), (3.17), and (3.18)), we

calculate that

λiλj(x)= λi(ξx(λj))= {ξ(ξx(λj))}(λi)
= {∆R(ξx)(λj)}(λi)= {U(ξx)◦ρ}(λj)(λi)
= (ξx)Pi,j

(
λ1, . . . ,λij

)= Pi,j(λ1x,. . . ,λijx
) (4.8)

as desired.

We have shown that the operations λi in (4.3) make R into a λ-ring which

also satisfies the two continuity properties in Definition 2.1. Therefore, the

unstable K-cohomology algebra structure on R gives a filtered λ-ring structure

on R. This proves half of Theorem 1.1.

The above argument can easily be reversed to show that a filtered λ-ring

structure on R yields, via (4.3), an unstable K-cohomology algebra structure

on R. Indeed, the two continuity properties in the definition of a filtered λ-

ring make sure that both the proposed structure map ξ : R → UR and ξ(r) :

K(BU) → R for any r ∈ R are continuous. The Cartan formulas for λn(x +
y) and λn(xy) imply the additivity and multiplicativity, respectively, of the

structure map ξ, and the property about λiλj(x) leads to the coassociativity

of ξ. That ξ is counital follows from the condition that λ1 is the identity on R.

The proof of Theorem 1.1 is complete.
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