A NOTE ON CHEN'S BASIC EQUALITY FOR SUBMANIFOLDS IN A SASAKIAN SPACE FORM

MUKUT MANI TRIPATHI, JEONG-SIK KIM, and SEON-BU KIM

Received 28 January 2002

It is proved that a Riemannian manifold *M* isometrically immersed in a Sasakian space form $\tilde{M}(c)$ of constant φ -sectional curvature c < 1, with the structure vector field ξ tangent to *M*, satisfies Chen's basic equality if and only if it is a 3-dimensional minimal invariant submanifold.

2000 Mathematics Subject Classification: 53C40, 53C25.

1. Introduction. Let \tilde{M} be an *m*-dimensional almost contact manifold endowed with an almost contact structure (φ, ξ, η) , that is, φ be a (1, 1)-tensor field, ξ be a vector field, and η be a 1-form, such that $\varphi^2 = -I + \eta \otimes \xi$ and $\eta(\xi) = 1$. Then, $\varphi(\xi) = 0$, $\eta \circ \varphi = 0$, and *m* is an odd positive integer. An almost contact structure is said to be *normal*, if in the product manifold $\tilde{M} \times \mathbb{R}$ the induced almost complex structure *J* defined by $J(X, \lambda d/dt) = (\varphi X - \lambda \xi, \eta(X) d/dt)$ is integrable, where *X* is tangent to \tilde{M} , *t* is the coordinate of \mathbb{R} , and λ is a smooth function on $\tilde{M} \times \mathbb{R}$. The condition for an almost contact structure to be *normal* is equivalent to the vanishing of the torsion tensor $[\varphi, \varphi] + 2d\eta \otimes \xi$, where $[\varphi, \varphi]$ is the Nijenhuis tensor of φ .

Let *g* be a compatible Riemannian metric with the structure (φ, ξ, η) , that is, $g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$ or equivalently, $g(X, \varphi Y) = -g(\varphi X, Y)$ and $g(X, \xi) = \eta(X)$ for all $X, Y \in T\tilde{M}$. Then, \tilde{M} becomes an almost contact metric manifold equipped with the almost contact metric structure (φ, ξ, η, g) . Moreover, if $g(X, \varphi Y) = d\eta(X, Y)$, then \tilde{M} is said to have a *contact metric structure* (φ, ξ, η, g) , and \tilde{M} is called a *contact metric manifold*. A normal contact metric structure in \tilde{M} is a *Sasakian structure* and \tilde{M} is a *Sasakian manifold*. A necessary and sufficient condition for an almost contact metric structure to be a Sasakian structure is

$$(\tilde{\nabla}_X \varphi) Y = g(X, Y) \xi - \eta(Y) X, \quad X, Y \in T\tilde{M},$$
(1.1)

where $\tilde{\nabla}$ is the Levi-Civita connection of the Riemannian metric g. The manifolds \mathbb{R}^{2n+1} and S^{2n+1} are equipped with standard Sasakian structures. The sectional curvature $\tilde{K}(X \wedge \varphi X)$ of a plane section spanned by a unit vector X orthogonal to ξ is called a φ -sectional curvature. If \tilde{M} has a constant

 φ -sectional curvature *c*, then it is called a *Sasakian space form* and is denoted by $\tilde{M}(c)$. For more details, we refer to [2].

Let *M* be an *n*-dimensional submanifold immersed in an almost contact metric manifold $\tilde{M}(\varphi, \xi, \eta, g)$. Also let *g* denote the induced metric on *M*. We denote by *h* the second fundamental form of *M* and by A_N the shape operator associated to any vector *N* in the normal bundle $T^{\perp}M$. Then $g(h(X,Y),N) = g(A_NX,Y)$ for all $X, Y \in TM$ and $N \in T^{\perp}M$. The mean curvature vector is given by nH = trace(h), and the submanifold *M* is *minimal* if H = 0.

For a vector field *X* in *M*, we put $\varphi X = PX + FX$, where $PX \in TM$ and $FX \in T^{\perp}M$. Thus, *P* is an endomorphism of the tangent bundle of *M* and satisfies g(X,PY) = -g(PX,Y) for all $X, Y \in TM$. From now on, let the structure vector field ξ be tangent to *M*. Then we write the orthogonal direct decomposition $TM = \mathfrak{D} \oplus \{\xi\}$. Let $\{e_1, \dots, e_n\}$ be an orthonormal basis of the tangent space T_pM . We can define the squared norm of *P* by $||P||^2 = \sum_{i,j=1}^n g(e_i, Pe_j)^2$. For a plane section $\pi \subset T_pM$, we denote the functions $\alpha(\pi)$ and $\beta(\pi)$ of tangent space T_pM into [0,1] by $\alpha(\pi) = (g(X,PY))^2$ and $\beta(\pi) = (\eta(X))^2 + (\eta(Y))^2$, where π is spanned by any orthonormal vectors *X* and *Y*.

The scalar curvature τ at $p \in M$ is given by $\tau = \sum_{i < j} K(e_i \wedge e_j)$, where $K(e_i \wedge e_j)$ is the sectional curvature of the plane section spanned by e_i and e_j . The well-known Chen's invariant δ_M on M is defined by

$$\delta_M = \tau - \inf K,\tag{1.2}$$

where $(\inf K)(p) = \inf \{K(\pi) \mid \pi \text{ is a plane section } \subset T_p M\}$. For a submanifold *M* in a real space form $\mathbb{R}^m(c)$, Chen [4] gave the following inequality:

$$\delta_M \le \frac{n^2(n-2)}{2(n-1)} \|H\|^2 + \frac{1}{2}(n+1)(n-2)c.$$
(1.3)

He also established in [5] the similar basic inequalities for submanifolds in a complex space form. For an *n*-dimensional submanifold *M* in a Sasakian space form $\tilde{M}(c)$ tangential to the structure vector field ξ in [7], the authors established the following Chen's basic inequality.

THEOREM 1.1. Let M be an n-dimensional ($n \ge 3$) Riemannian manifold isometrically immersed in a Sasakian space form $\tilde{M}(c)$ of constant φ -sectional curvature c < 1 with the structure vector field ξ tangent to M. Then,

$$\delta_M \le \frac{n^2(n-2)}{2(n-1)} \|H\|^2 + \frac{1}{8} \{n(n-3)c + 3n^2 - n - 8\}$$
(1.4)

with equality holding if and only if M admits a quasi-anti-invariant structure of rank (n-2).

For certain inequalities concerned with the invariant $\delta(n_1,...,n_k)$, which is a generalization of δ_M , we also refer to [6].

In this note, we prove the following obstruction to the Chen's basic equality.

THEOREM 1.2. Let *M* be an *n*-dimensional Riemannian manifold isometrically immersed in an *m*-dimensional Sasakian space form $\tilde{M}(c)$ of a constant φ -sectional curvature c < 1 with the structure vector field ξ tangent to *M*. Then, *M* satisfies the Chen's basic equality

$$\delta_M = \frac{n^2(n-2)}{2(n-1)} \|H\|^2 + \frac{1}{8} \{n(n-3)c + 3n^2 - n - 8\},$$
(1.5)

if and only if M is a 3*-dimensional minimal invariant submanifold. Hence, Chen's basic equality* (1.5) *becomes*

$$\delta_M = 2. \tag{1.6}$$

2. Proof of Theorem 1.2. First, we recall the following theorem [3].

THEOREM 2.1. Let \tilde{M} be an *m*-dimensional Sasakian space form $\tilde{M}(c)$. Let M be an *n*-dimensional ($n \ge 3$) submanifold isometrically immersed in \tilde{M} such that $\xi \in TM$. For each plane section $\pi \subset \mathfrak{D}_p$, $p \in M$,

$$\begin{aligned} \tau - K(\pi) &\leq \frac{n^2(n-2)}{2(n-1)} \|H\|^2 + \frac{1}{8} \{n(n-3)c + 3n^2 - n - 8\} \\ &+ \frac{c-1}{8} \{3\|P\|^2 - 6\alpha(\pi)\}. \end{aligned} \tag{2.1}$$

The equality in (2.1) holds at $p \in M$ if and only if there exist an orthonormal basis $\{e_1, \ldots, e_n\}$ of T_pM and an orthonormal basis $\{e_{n+1}, \ldots, e_m\}$ of $T_p^{\perp}M$ such that (a) $e_n = \xi$, (b) $\pi = \text{Span}\{e_1, e_2\}$, and (c) the shape operators $A_r \equiv A_{e_r}$, $r = n + 1, \ldots, m$, take the following forms:

$$A_{n+1} = \begin{pmatrix} h_{11}^{n+1} & 0 & 0 & \cdots & 0 \\ 0 & -h_{11}^{n+1} & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix},$$
(2.2)
$$A_{r} = \begin{pmatrix} h_{11}^{r} & h_{12}^{r} & 0 & \cdots & 0 \\ h_{12}^{r} & -h_{11}^{r} & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}, \quad r = n+2, \dots, m.$$

A submanifold *M* of an almost contact metric manifold \tilde{M} with $\xi \in TM$ is called a *semi-invariant submanifold* [1] of \tilde{M} if the distributions $\mathfrak{D}^1 = TM \cap \varphi(TM)$ and $\mathfrak{D}^0 = TM \cap \varphi(T^{\perp}M)$ satisfy $TM = \mathfrak{D}^1 \oplus \mathfrak{D}^0 \oplus \{\xi\}$. In fact, the condition $TM = \mathfrak{D}^1 \oplus \mathfrak{D}^0 \oplus \{\xi\}$ implies that the endomorphism *P* is an *f*-structure [9] on *M* with a rank(*P*) = dim(\mathfrak{D}^1). A semi-invariant submanifold of an almost contact metric manifold becomes an *invariant* or an *anti-invariant submanifold* according as the anti-invariant distribution \mathfrak{D}^0 is $\{0\}$ (i.e., F = 0) or the invariant distribution \mathfrak{D}^1 is $\{0\}$ (i.e., P = 0) [1].

For each point $p \in M$, we put [3]

$$\delta_M^{\mathfrak{D}}(p) = \tau(p) - (\inf_{\mathfrak{D}} K)(p) = \inf \{ K(\pi) \mid \text{ plane sections } \pi \subset \mathfrak{D}_p \}.$$
(2.3)

For c < 1, we prove the following result.

THEOREM 2.2. Let M be an n-dimensional ($n \ge 3$) submanifold isometrically immersed in a Sasakian space form $\tilde{M}(c)$ such that the structure vector field ξ is tangent to M. If c < 1, then

$$\delta_M^{\mathcal{D}} \le \frac{n^2(n-2)}{2(n-1)} \|H\|^2 + \frac{1}{8} \{n(n-3)c + 3n^2 - n - 8\}.$$
 (2.4)

The equality case in (2.4) holds if and only if M is a 3*-dimensional minimal invariant submanifold.*

PROOF. Since c < 1, in order to estimate δ_M , we minimize $||P||^2 - 2\alpha(\pi)$ in (2.1). For an orthonormal basis $\{e_1, \dots, e_n = \xi\}$ of T_pM with $\pi = \text{span}\{e_1, e_2\}$, we write

$$\|P\|^{2} - 2\alpha(\pi) = \sum_{i,j=3}^{n} g(e_{i}, \varphi e_{j})^{2} + 2\sum_{j=3}^{n} \left\{ g(e_{1}, \varphi e_{j})^{2} + g(e_{2}, \varphi e_{j})^{2} \right\}.$$
 (2.5)

Thus, the minimum value of $||P||^2 - 2\alpha(\pi)$ is 0, provided that

$$\operatorname{span}\left\{\varphi e_{j} \mid j=3,\ldots,n\right\}$$
(2.6)

is orthogonal to the tangent space $T_p M$. Thus, we have (2.4) with equality case holding if and only if M is a semi-invariant such that rank(P) = 2. This means that

$$TM = \mathfrak{D}^1 \oplus \mathfrak{D}^0 \oplus \{\xi\} \tag{2.7}$$

with the dim(\mathfrak{D}^1) = 2. From (2.2), we see that *M* is minimal.

Next, from [8, Proposition 5.2], we have

$$A_{FX}Y - A_{FY}X = \eta(X)Y - \eta(Y)X, \quad X, Y \in \mathfrak{D}^0 \oplus \{\xi\}.$$
(2.8)

For $X \in \mathfrak{D}^0$ and using (2.8), we have

$$g(X,X) = -g(A_{FX}\xi,X), \qquad (2.9)$$

which in view of (2.2) becomes zero. Thus $\mathfrak{D}^0 = \{0\}$, and *M* becomes invariant. This completes the proof.

From (1.2) and (2.3), it follows that $\delta_M^{\mathfrak{D}}(p) \leq \delta_M(p)$. Hence in view of Theorem 2.2, we get the proof of Theorem 1.2.

REMARK 2.3. In Theorem 1.1, the phrase "*M* admits a quasi-anti-invariant structure of rank(n-2)" is identical with the statement "*M* is a semi-invariant submanifold with rank(P) = 2 or equivalently dim $(\mathfrak{D}^1) = 2$, where \mathfrak{D}^1 is the invariant distribution." Thus, nothing is stated here about the dimension of the anti-invariant distribution \mathfrak{D}^0 . But, in the proof of Theorem 2.2, we observe that *M* becomes minimal and consequently invariant, which makes dim $(\mathfrak{D}^0) = 0$ and dim(M) = 3.

ACKNOWLEDGMENT. This work was done while the first author was a Postdoctoral Researcher in the Brain Korea-21 Project at Chonnam National University, Korea.

REFERENCES

- [1] A. Bejancu, *Geometry of CR-Submanifolds*, Mathematics and Its Applications (East European Series), vol. 23, D. Reidel Publishing, Dordrecht, 1986.
- [2] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, vol. 509, Springer-Verlag, Berlin, 1976.
- [3] A. Carriazo, A contact version of B.-Y. Chen's inequality and its applications to slant immersions, Kyungpook Math. J. 39 (1999), no. 2, 465–476.
- [4] B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel) 60 (1993), no. 6, 568–578.
- [5] _____, *A general inequality for submanifolds in complex-space-forms and its applications*, Arch. Math. (Basel) **67** (1996), no. 6, 519–528.
- [6] F. Defever, I. Mihai, and L. Verstraelen, *B.-Y. Chen's inequalities for submanifolds of Sasakian space forms*, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4 (2001), no. 2, 521–529.
- [7] Y. H. Kim and D.-S. Kim, A basic inequality for submanifolds in Sasakian space forms, Houston J. Math. 25 (1999), no. 2, 247-257.
- [8] M. M. Tripathi, Almost semi-invariant submanifolds of trans-Sasakian manifolds, J. Indian Math. Soc. (N.S.) 62 (1996), no. 1-4, 225–245.
- [9] K. Yano and M. Kon, *Structures on Manifolds*, Series in Pure Mathematics, vol. 3, World Scientific Publishing, Singapore, 1984.

Mukut Mani Tripathi: Department of Mathematics and Astronomy, Lucknow University, Lucknow 226 007, India

E-mail address: mm_tripathi@hotmail.com

Jeong-Sik Kim: Department of Mathematics Education, Sunchon National University, Sunchon 540-742, Korea

E-mail address: jskim01@hanmir.com

Seon-Bu Kim: Department of Mathematics, Chonnam National University, Kwangju 500-757, Korea

E-mail address: sbk@chonnam.chonnam.ac.kr

716