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The second-order symmetric Sturm-Liouville differential expressions τ1,τ2, . . . ,τn
with real coefficients are considered on the interval I = (a,b), −∞≤ a < b ≤∞. It
is shown that the characterization of singular selfadjoint boundary conditions in-
volves the sesquilinear form associated with the product of Sturm-Liouville differ-
ential expressions and elements of the maximal domain of the product operators,
and it is an exact parallel of the regular case. This characterization is an exten-
sion of those obtained by Everitt and Zettl (1977), Hinton, Krall, and Shaw (1987),
Ibrahim (1999), Krall and Zettl (1988), Lee (1975/1976), and Naimark (1968).
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1. Introduction. In [10], Krall and Zettl considered the Sturm-Liouville dif-

ferential expression

τ[y]= [−(py ′)′ +qy] on I = (a,b), −∞≤ a< b ≤∞, (1.1)

with real-valued Lebesgue measurable functions p and q assumed to satisfy

the following basic conditions:

p−1,q ∈ Lloc(I), (1.2)

and proved that the characterization of the singular selfadjoint boundary con-

ditions is identical to that in the regular case provided that y and py ′ are

replaced by certain Wronskians involving y and two linearly independent so-

lutions of τ[y]= 0.

The relationship between the deficiency index of a symmetric differential

expression (1.1) and its powers τ2,τ3, . . . has recently been studied by Chaud-

huri and Everitt [1], and the relationship between the number of linearly in-

dependent L2(0,∞) solutions of the equations τj[y] = 0 and of the product

equations (τ1τ2 ···τn)y = 0 has been investigated by Everitt and Zettl [4].

These results are an extension of those recently obtained in [3, 15, 16, 18] for

the special case τj = τ for j = 1, . . . ,n, and τ is a real second-order symmetric

differential expression.
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Our objective in this paper is to show that the characterization of the sin-

gular selfadjoint boundary conditions is identical to that in the regular case

provided that y and its quasiderivatives are replaced by sesquilinear forms as-

sociated with the product of Sturm-Liouville differential expressions, involv-

ing y and elements of the maximal domain of the product operators. This

characterization is an extension of those by Everitt and Zettl [4] and those in

[5, 6, 7, 10, 11, 12, 13].

In the regular case, these conditions can be interpreted as linear combina-

tions of the values of the unknown function y and its quasiderivatives at the

endpoints a and b.

In the singular case, these conditions are given in terms of sesquilinear

forms involving y and linearly independent solutions of the product equation

(τ1τ2 ···τn)y = 0 given by Everitt and Zettl in [4].

2. Preliminaries. We begin with a brief summary of adjoint pairs of opera-

tors and products operators (a full treatment may be found in [2, Chapter III]

and [3, 4, 5, 7, 8, 9]).

The domain and range of a linear operator T acting in a Hilbert space H will

be denoted byD(T) andR(T), respectively, andN(T)will denote its null space.

The nullity of T , written nul(T), is the dimension of N(T), and the deficiency

of T , written def(T), is the codimension of R(T) in H; thus, if T is densely

defined and R(T) is closed, then def(T)= nul(T∗). The Fredholm domain of T
is (in the notation of [2]) the open subset�3(T) of C consisting of those values

λ ∈ C which are such that T −λI is a Fredholm operator. Thus, λ ∈ �3(T) if

and only if (T−λI) has a closed range and finite nullity and deficiency, I being

the identity operator on H. The index of (T −λI) is the number ind(T −λI)=
nul(T −λI)−def(T −λI), this being defined for λ∈�3(T).

A closed operator A in a Hilbert space H has property (C) if it has a closed

range and λ= 0 is not an eigenvalue; that is, there is some positive number r
such that ‖Ax‖ ≥ r‖x‖ for all x ∈D(A).

Note that property (C) is equivalent to λ = 0, being a regular type point of

A. This, in turn, is equivalent to the existence of A−1 as a bounded operator

on the range of A (which need not be all of H).

Given two operators A and B, both acting in a Hilbert space H, we wish to

consider the product operator AB. This is defined as follows:

D(AB)= {x ∈D(A) | Bx ∈D(A)}, (AB)x =A(Bx), ∀x ∈D(AB). (2.1)

It may happen in general that D(AB) contains only the null element of H.

However, in the case of many differential operators, the domains of the product

will be dense in H.

The next result gives conditions under which the deficiency of a product is

the sum of the deficiencies of the factors.
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Lemma 2.1 (cf. [4, Theorem A] and [16]). Let A and B be closed operators

with dense domains in a Hilbert space H. Suppose that λ = 0 is a regular type

point for both operators and defA and defB are finite. Then, AB is a closed

operator with dense domain and has λ= 0 as a regular type point, and

defAB = defA+defB. (2.2)

Evidently, Lemma 2.1 extends to the product of any finite number of oper-

ators A1,A2, . . . ,An.

Let the interval I have endpoints a and b (−∞≤ a< b ≤∞), and letw : I →R
be a nonnegative weight function with w ∈ L1

loc(I) and w(x) > 0 (for almost

all x ∈ I). Then, H = L2
w(I) denotes the Hilbert function space of equivalence

classes of Lebesgue measurable functions such that
∫
I w|f |2 < ∞; the inner-

product is defined by

(f ,g) :=
∫
I
w(x)f(x)g(x)dx

(
f ,g ∈ L2

w(I)
)
. (2.3)

We will consider the Sturm-Liouville differential equation of the form

τ[y]=−(py ′)′ +qy = λwy on I, (2.4)

where the real-valued Lebesgue measurable functionsp, q, andw from I intoR
are satisfying conditions (1.2), which are taken to hold throughout this paper.

Under these assumptions, τ is interpreted as a quasidifferential expression, u
is a solution of (2.4) ifu andpu′ are in ACloc(a,b), the space of functions which

are absolutely continuous on compact subsets of (a,b), and (2.4) is satisfied

almost everywhere on (a,b). Also, pu′ = u[1] is called the quasi-derivative

of u.

Equation (2.4) is said to be regular at the left endpoint a ∈ R if, for all

X ∈ (a,b),

a∈R; p−1,q,w ∈ L1[a,X]; (2.5)

otherwise, (2.4) is said to be singular at a. If (2.4) is regular at both endpoints

a and b, then it is said to be regular; in this case we have

a,b ∈R; p−1,q,w ∈ L1(a,b). (2.6)

We will be concerned with the second-order symmetric differential expres-

sion on I and when both endpoints a and b may be either regular or singular

endpoints of (2.4). Note that, in view of (1.2), an endpoint of I is regular for

(2.4) if and only if it is regular for the equation

τ+[z]= λwz (λ∈ C) on I, (2.7)
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where τ+ is the formal, or Lagrangian, adjoint of τ given by

τ+[z]=−(pz′)′ +qz on I. (2.8)

The maximal domain D(τ), defined by

D(τ) := {f : f ,pf ′ ∈ACloc(I), w−1τ[f]∈ L2
w(a,b)

}
, (2.9)

is a subspace of L2
w(a,b). The maximal operator T(τ) is defined by

T(τ)y :=w−1τ[y]
(
y ∈D(τ)). (2.10)

It is well known that D(τ) is dense in L2
w(a,b), see [7, 8, 9, 10].

In the regular problem, the minimal operator T0(τ) is the restriction of

w−1τ[u] to the subspace

D0(τ) := {y :y ∈D(τ), y[r−1](a)=y[r−1](b)= 0, r = 1,2
}
. (2.11)

The subspace D0(τ) is dense and closed in L2
w(a,b), see [2, 13, 17].

In the singular problem, we first introduce the operator T ′0(τ), T
′
0(τ) being

the restriction of w−1τ[·] to the subspace

D′0(τ) := {y :y ∈D(τ), suppy ⊂ (a,b)}. (2.12)

This operator is densely defined and closable in L2
w(a,b), and we defined the

minimal operator T0(τ) to be its closure (see [2, 13] and [17, Section 5]). We

denote the domain of T0(τ) by D0(τ). It can be shown that

y ∈D0(τ) �⇒y[r−1](a)= 0, (r = 1,2), (2.13)

whenever we assumea to be a regular endpoint and b to be a singular endpoint.

For f ,g ∈D(τ) and α,β∈ I, Green’s formula is given by

∫ β
α

{
τ[f]g−fτ[g]}dx = [f ,g](β)−[f ,g](α), (2.14)

where

[f ,g] := fg[1]−f [1]g, f ,g ∈ D(τ). (2.15)

For f ,g ∈D(τ), the limits limα→a+[f ,g](α) and limβ→b−[f ,g](β) exist and

are finite. These are denoted by [f ,g](a) and [f ,g](b), respectively.

For f ,g ∈ACloc(a,b), let

W(f ,g)= fpg′ −gpf ′. (2.16)
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Choose two solutions θ and φ of τ[u]= 0 satisfying

W(θ,φ)(x)= 1 ∀x ∈ I. (2.17)

Clearly such θ and φ exist, that is, they can be determined by the initial con-

ditions θ(c)= 1, (pθ′)(c)= 1, φ(c)= 0, (pφ′)(c)= 1 for all c in I.
Note that the sesquilinear form [f ,g] in (2.15) can be written as

[f ,g]= fpg′ −gpf ′ = (g,pg′)
(

0 −1

1 0

)(
f
pf ′

)
. (2.18)

From (2.16) and (2.17), we get

(
0 −1

1 0

)
=−

(
0 −1

1 0

)(
θ φ
pθ′ pφ′

)(
0 −1

1 0

)(
θ pθ′

φ pφ′

)(
0 −1

1 0

)
, (2.19)

and hence the sesquilinear form in (2.18) can also be written as

[
f ,g

]= (W(g,θ),W(g,φ))
(

0 −1

1 0

)(
W(f ,θ)
W(f ,φ)

)

=W(g,φ)W(f ,θ)−W(g,θ)W(f ,φ)

= det

(
W(f ,θ) W(f ,φ)
W(g,θ) W(g,φ)

)
,

(2.20)

see [7, 10].

Lemma 2.2. If, for sum λ0 ∈ C, there are two linearly independent solutions

of τ[y]= λ0wy in L2
w(a,b), then all solutions of τ[y]= λwy are in L2

w(a,b)
for all λ∈C, see [2, Chapter 3] for more details.

Theorem 2.3 (cf. [2, Theorem 3.10.1]). Let f ∈ L1
loc(a,b), and suppose that

conditions (1.2) are satisfied. Then, given any complex numbers c0 and c1 and

any x0 ∈ (a,b), there exists a unique solution of τ[φ]= f in (a,b) which satis-

fies φ(x0)= c0 and φ[1](x0)= c1.

A simple consequence of Theorem 2.3 is that the solutions of (2.4) form

a two-dimensional vector space over C. If (α0,α1) and (β0,β1) are linearly

independent vectors in C2, then the solutions φ1(·,λ) and φ2(·,λ) of (2.4),

which satisfyφ1(x0,λ)=α0,φ[1]1 (x0,λ)=α1,φ2(x0,λ)= β0 andφ[1]2 (x0,λ)=
β1 for some x0 ∈ (a,b), form a basis for the space of the solutions of (2.4).

Note that an important distinction between a regular endpoint and a singular

endpoint is the fact that, at a regular endpoint x0, all initial-value problems

φ(x0,λ)= c0, φ[1](x0,λ)= c1 and c0,c1 ∈ C have unique solutions. This is not

true when x0 is a singular endpoint (see [2, 9]).

In the case that a and b are singular endpoints, and for any α and β in the

open interval (a,b) and any λ∈ C, conditions (1.2) imply that any solution φ
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of (2.4) is in L2
w(a,b), (see [9, 10, 14]). However, it is possible that such a φ

does not belong to L2
w(a,b). If φ is in L2

w(a,b), for some β∈ (a,b), then this

is true for all β in (a,b). If all solutions of (2.4) are in L2
w(a,β), for some β in

(a,b), then we say that τ[·] is in the limit-circle case at a, or, simply, that a is

LC. Otherwise, τ[·] is in the limit-point case at a or a is LP. Similarly, b is LC

means that all solutions of (2.4) are in L2
w(α,b), a < α < b. This classification

is independent of λ in (2.4), (see [7, 10, 13, 18]). Otherwise, b is LP. The limit-

point, limit-circle terms are used for historical reasons.

The classification of the selfadjoint extensions of T0(τ) depends, in an es-

sential way, on the deficiency index of T0(τ). We briefly recall the definition of

this notion for abstract symmetric operators in a separable Hilbert space.

A linear operator A from a Hilbert space H into H is said to be symmetric if

its domain D(A) is dense in H and (Af ,g) = (f ,Ag) for all f ,g ∈D(A). Any

such operator has associated with it a pair (d+,d−), where each of d+, d− is a

nonnegative or +∞. The extended integers are called the deficiency indices of

A, and we have the following.

For λ∈ C, the set of complex numbers, let Rλ denote the range of T0(τ)−λI,
Nλ = R⊥λ and let

N+ =Ni, N− =N−i, i=
√
−1, (2.21)

d+ = dimension of N+ and d− = dimension of N−. The spaces N+ and N− are

called the deficiency spaces of T0(τ), and d+ and d− are called the deficiency

indices of T0(τ). These are related to (2.4) as follows:

Nλ =
{
f ∈D[T∗0 (τ)] | [T∗0 (τ)]f = [T(τ)]f =w−1τ[f]= λf}. (2.22)

Thus, N+ and N− consist of the solutions of (2.4) which lie in the space H =
L2
w(I) for λ = +i and λ = −i, respectively. Hence, d+ and d− are the number

of linearly independent solutions of (2.4) which are in the space H for λ = +i
and λ=−i, respectively. It is clear for a symmetric differential operator T0(τ)
that

0≤ d+ = d− ≤ 2. (2.23)

We denote the common value by d and call d the deficiency index of τ on I.
From the above discussion, we see that there are only three possibilities for d:

d= 0,1,2.

Note that, in the literature, the maximal and minimal deficiency cases are

often referred to as the limit-circle and limit-point cases. Strictly, these latter

terms are only suitable for the now classical second-order differential expres-

sions; in this case the terminology was originally introduced by Hermann Weyl.

The term limit-point does give an acceptable description of the minimal defi-

ciency case for real, and hence even-order, symmetric expressions.

Now, we recall the following results.
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For any λ ∈ C\R and for a symmetric differential operator T0(τ), we, from

the general theory, have

D(τ)=D0(τ)+N++N−, (2.24)

where D0(τ), N+, and N− are linearly independent subspaces and the sum is

direct (which we indicate with the symbol +), see [2, 5, 7, 13].

Any selfadjoint extension S of the symmetric differential operator T0(τ)
satisfies

T0(τ)⊂ S = S∗ ⊂ T∗0 (τ) (2.25)

and hence is completely determined by specifying its domain D(S),

D
[
T0(τ)

]⊂D(S)⊂D[T∗0 (τ)]. (2.26)

This can be proved using formula (2.23) (see [1, 2, 5, 7, 13]).

Theorem 2.4. The operator T0(τ) is a closed symmetric operator from H
into H and

T∗0 (τ)= T(τ), T∗(τ)= T0(τ), D0(τ)= domain of T∗(τ). (2.27)

Proof. See [7, 10] and [13, Section 17.4].

Some of the basic facts are summarized in the following theorem.

Theorem 2.5 (cf. [10, Proposition 1]). (a) D0(τ) = {f ∈ D(τ) : [f ,g](b)−
[f ,g](a)= 0 for all g ∈D(τ)}.

(b) If τ[·] is in the limit-point case at an endpoint c, then [f ,g](c)= 0 for all

f ,g ∈D[T(τ)], c = a or c = b.

(c) If an endpoint c is regular, then, for any solution u, u and u[1] are con-

tinuous at c.

(d) If a and b are both regular endpoints, then, for any α, β, γ, and δ in C,

there exists a function f in D(τ) such that

f(a)=α, f [1](a)= β,
f(b)= γ, f [1](b)= δ. (2.28)

(e) If a is regular and b is singular, then a function f from D[T(τ)] is in

D[T0(τ)] if and only if the following conditions are satisfied:

(i) f(a)= 0 and f [1](a)= 0,

(ii) [f ,g](b)= 0 for all f ,g ∈DT(τ).
The analogous results hold whena is singular and b is regular, see also [6, 9, 10].
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Lemma 2.6 (cf. [7] and [10, Lemma 2]). Given α, β, γ, and δ in C, then there

exists a Ψ ∈D[T(τ)]\D[T0(τ)] such that

W(Ψ ,θ)(a)=α, W(Ψ ,φ)(a)= β,
W(Ψ ,θ)(b)= γ, W(Ψ ,φ)(b)= δ. (2.29)

Furthermore, Ψ can be taken to be a linear combination of θ and φ near each

endpoint.

3. Some technical lemmas. The proof of general theorem will be based on

the results in this section. We start by listing some properties and results of

Sturm-Liouville differential expressions τ1,τ2, . . . ,τn, each of order two. For

proofs, the reader is referred to [4, 7, 8, 9, 15, 16, 18].

(
τ1+τ2

)+ = τ+1 +τ+2 ,(
τ1τ2

)+ = τ+2 τ+1 , (λτ)+ = λτ+ for λ a complex number.
(3.1)

A consequence of properties (3.1) is that if τ+ = τ then P(τ)+ = P(τ+) for

P any polynomial with complex coefficients. Also, we note that the leading

coefficients of a product is the product of the leading coefficients. Hence, the

product of regular differential expressions is regular.

Lemma 3.1 (cf. [4, Theorem 1]). Suppose that τj is a regular differential

expression on the interval [a,b] such that the minimal operator T0(τj) has

property (C) for j = 1,2, . . . ,n. Then,

(i) the product operator
∏n
j=1[T0(τj)] is closed and have dense domain,

property (C), and

def

[ n∏
j=1

T0
(
τj
)]= n∑

j=1

def
[
T0
(
τj
)]

; (3.2)

(ii) the operators T0(τ1τ2 ···τn) and
∏n
j=1[T0(τj)] are not equal in general,

that is,

[
T0
(
τ1τ2 ···τn

)]⊆ n∏
j=1

[
T0
(
τj
)]
. (3.3)

For symmetric differential operator T0(τj), which satisfies property (C), and

by (2.23), (3.2) is constant on [0,2n]. In the problem with one singular endpoint,

this constant is in [n,2n], while in the regular problem, it is equal to 2n, see [2].
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Lemma 3.2 (cf. [4, Theorem 2]). Let τ1,τ2, . . . ,τn be regular differential ex-

pressions on [a,b]. Suppose that T0(τj) satisfies property (C) for j = 1,2, . . . ,n.

Then,

T0
(
τ1τ2 ···τn

)= n∏
j=1

T0
(
τj
)

(3.4)

if and only if the following partial-separation condition is satisfied:

{
f ∈ L2

w(a,b), f [s−1] ∈ACloc[a,b),

where s is the order of product expression
(
τ1τ2 ···τn

)
and

(
τ1τ2 ···τn

)+f ∈ L2
w(a,b), together imply that( k∏

j=1

(
τ+j
))
f ∈ L2

w(a,b), k= 1, . . . ,n−1

}
.

(3.5)

Therefore, (3.4) and (3.5) are equivalent.

We will say that the product (τ1τ2 ···τn) is a partially separated expression

in L2
w(a,b) whenever property (3.5) holds.

Lemma 3.3. Let τj be a regular differential expression on [a,b] for j =
1, . . . ,n. If all the solutions of the differential equation (τj)u= 0 and (τ+j )z = 0

on [a,b] are in L2
w(a,b) for j = 1, . . . ,n, then all the solutions of (τ1τ2 ···τn)y =

0 and (τ1τ2 ···τn)+z = 0 are in L2
w(a,b).

Proof. Let 2 = order of τj , for j = 1, . . . ,n. Then, def[T0(τj)] = 2. Hence,

T0(τj) has property (C). By Lemma 3.1, we have

def
[
T0
(
τ1τ2 ···τn

)]≥ def

[ n∏
j=1

T0
(
τj
)]= 2n= order of

(
τ1τ2 ···τn

)
. (3.6)

Thus, def[T0(τ1τ2 ···τn)] = order of (τ1τ2 ···τn), and, consequently, all

the solutions of (
∏n
j=1τj)y = 0 are in L2

w(a,b); we refer to [4] for more details.

The special case of Lemma 3.3 when τj = τ for j = 1,2, . . . ,n and τ is sym-

metric was established in [16]. In this case, it is easy to see that the con-

verse also holds. If all the solutions of τny = 0 are in L2
w(a,b), then all the

solutions of τy = 0 must be in L2
w(a,b). In general, if all the solutions of

(τ1τ2 ···τn)y = 0 are in L2
w(a,b), then all the solutions of τny = 0 are in

L2
w(a,b) since these also are solutions of (τ1τ2 ···τn)y = 0. If all the solu-

tions of the adjoints equation (τ1τ2 ···τn)+z = 0 are also in L2
n(0,b), then it

follows similarly that all the solutions of τ+1 z = 0 are in L2
n(a,b). So, for n= 2

in particular, we have established the following corollary.
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Corollary 3.4. Suppose that τ1, τ2, and τ1τ2 are all regular symmetric

expressions on [a,b). Then, the product is in the maximal deficiency case at b
if and only if both τ1 and τ2 are in the maximal deficiency case at b (i.e., if τ1

and τ2 are in the classical limit-circle case at b, then the fourth-order expression

τ1τ2 is in the limit-circle case at b; that is, d+ = d− = 4); see [4, Corollary 2] for

more details.

In connection with the application of Lemma 3.1 to get information about

the deficiency indices of symmetric differential expressions, we note that the

product of symmetric expressions is not symmetric in general. However, any

power of a symmetric expression is symmetric and so is called symmetric such

as τ1τ2τ1, τ1τ2τ3τ2τ1, and so forth, of symmetric expressions are symmetric.

Remark 3.5. In the case of product operators, the sesquilinear (bilinear)

form [f ,g] can be written similar to that in (2.15) and (2.20) as follows: for

f ,g ∈D(τ1τ2 ···τn),

[f ,g](x)

=
n∑
k=1

(−1)(k−1)(f [k−1]g[2n−k]−f [2n−k]g[k−1])(x)
= (g,g[1], . . . ,g[2n−1])J2n×2n

(
f ,f [1], . . . ,f [2n−1])T(x)

= ([g,φ1
]
,
[
g,φ2

]
, . . . ,

[
g,φ2n

])
J2n×2n

([
f ,φ1

]
,
[
f ,φ2

]
, . . . ,

[
f ,φ2n

])T(x),
(3.7)

T for transposed matrix, where f [2n−k], k = 1, . . . ,2n, are the quasiderivatives

of f , J2n×2n = ((−1)rδr,2n+1−s) (1≤ r ,s ≤ 2n) and φ1,φ2, . . . ,φ2n are linearly

independent solutions of the equation [Πnj=1(τj)]u= 0. We refer to [7, 10, 11]

for more details.

The next result is a straightforward extension of [13, Section 18.1, Theorem

4], see also [2, 6, 7].

Theorem 3.6. If the operator S with D(S) is a selfadjoint extension of the

minimal operator T0(τ1τ2 ···τn)=
∏n
j=1[T0(τj)] with def[

∏n
j=1T0(τj)]= d∈

[0,2n], then there exist Ψ1, . . . ,Ψd in D(S) ⊂ D[T(τ1τ2 ···τn)] satisfying the

following conditions:

(i) Ψ1, . . . ,Ψd are linearly independent modulo D[T0(τ1τ2 ···τn)];
(ii) the sesquilinear form

[
Ψj,Ψk

]b
a = 0, j,k= 1, . . . ,d; (3.8)

(iii) D(S) consists precisely of those y in D[T(τ1τ2 ···τn)] which satisfy

[
y,Ψj

]b
a = 0, j = 1, . . . ,d. (3.9)
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Conversely, given Ψ1, . . . ,Ψd in D[T(τ1τ2 ···τn)] which satisfy (i) and (ii), the

set D(S) defined by (iii) is a selfadjoint domain.

Proof. The proof is entirely similar to that in [13, Theorem 18.1.4] and

therefore omitted.

Remark 3.7. It is well known from Naimark [13] that no boundary condition

is needed for a limit-point endpoint in order to get a selfadjoint realization of∏n
j=1(τj)u= 0. If both endpoints are LP, then no boundary conditions are nec-

essary and hence the minimal (maximal) operator associated with
∏n
j=1(τj) in

L2
w(a,b) is itself selfadjoint and has no proper selfadjoint extensions (restric-

tions). On the other hand, a boundary condition is needed for each limit-circle

endpoint.

The selfadjoint extensions are determined by boundary conditions imposed

at the endpoints of the interval I. The type of these boundary conditions de-

pends on the nature of the problem in the interval I.

Theorem 3.8. Let τ1,τ2, . . . ,τn be a regular symmetric differential ex-

pressions on [a,b], then the domain D(S) of selfadjoint extension S of

T0(τ1τ2 ···τn) =
∏n
j=1[T0(τj)] with def[

∏n
j=1T0(τj)] = 2n is the set of func-

tions y ∈D[T(τ1τ2 ···τn)] which are such that

MY(a)+NY(b)= 0, (3.10)

where

M = (αjk)1≤j,k≤2n, N = (βjk)1≤j,k≤2n (3.11)

are 2n×2n matrices over C, Y(·) = (y,y[1], . . . ,y[2n−1])T(·),T for transposed

matrix, and αjk and βjk are complex numbers satisfying

MJM∗ =NJN∗, J2n×2n = (−1)rδr,2n···+1−s (1≤ r ,s ≤ 2n). (3.12)

Conversely, if S is a selfadjoint extension of T0(τ1τ2 ···τn), then there exist

2n×2n matrices M and N over C such that conditions (3.10) and (3.12) are

satisfied andD(S) is the set of functionsy ∈D[T(τ1τ2 ···τn)] satisfying (3.10).

Proof. Let the boundary conditions (3.10) and (3.12) be given. By Theorem

2.5, there are functions Ψ1, . . . ,Ψ2n in D[T(τ1τ2 ···τn)] which satisfy the con-

ditions

Ψ [2n−k]j (a)= (−1)kαjk, Ψ [2n−k]j (b)= (−1)(k−1)βjk, j,k= 1, . . . ,2n. (3.13)

Given (3.13), it is not difficult to show that (3.12) and (3.10) can be restated

in forms (3.8) and (3.9), respectively. It then follows from Theorem 3.6 that the

domain determined by (3.10) and (3.12) is the domain of selfadjoint extension

of T0(τ1τ2 ···τn).
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Conversely, if S is a selfadjoint extension of T0(τ1τ2···τn), then, by Theorem

3.6, D(S) is determined by the functions Ψ1, . . . ,Ψ2n in D[T(τ1τ2 ···τn)] sat-

isfying (3.8) and (3.9). If αjk and βjk, 1 ≤ j, k ≤ 2n are then defined by (3.13),

it is clear that D(S) is determined by (3.10) and (3.12), see [7, 8, 13] for more

details.

In the following cases, the selfadjoint extension S of T0(τ1τ2 ···τn) is de-

termined by boundary conditions in terms of certain Wronskians (sesquilin-

ear forms) involving y and 2n linearly independent solutions of the equation

(
∏n
j=1τj)u= 0 at the singular endpoints.

Case (i). Assume that both endpoints a and b are singular LC. By (3.7), (3.8),

and Lemma 2.6, if we put

[
Ψ j,φk

]
(a)= (−1)kαjk,

[
Ψ j,φk

]
(a)(b)= (−1)(k−1)βjk, j,k= 1, . . . ,2n,

(3.14)

then the boundary conditions of the function y ∈D[T(τ1τ2 ···τn)] have the

same form (3.10), where M , N satisfy (3.11) and (3.12), and Y(·) = ([y,φ1],
. . . ,[y,φ2n])T(·).

Case (ii). (a) Assume that the left endpoint a is regular and the right end-

point b is singular LC. Then, the boundary conditions of the functions y ∈
D[T(τ1τ2 ···τn)] in this case are given by (3.10), where

Y(a)= (y,y[1], . . . ,y[2n−1])T(a),

Y(b)= ([y,φ1
]
, . . . ,

[
y,φ2n

])T(b),
(3.15)

and the matrices M and N satisfy (3.12).

(b) If the left endpoint a is singular LC and the right endpoint b is regular,

then let

Y(a)= ([y,φ1
]
, . . . ,

[
y,φ2n

])T(a),

Y(b)= (y,y[1], . . . ,y[2n−1])T(b),
(3.16)

and the rest is the same as in (a).

Case (iii). Assume that one endpoint is LP endpoint and the other is either

regular or singular LC endpoint, then we have

(a) suppose a is LP. Then, the boundary conditions in this case on the func-

tions y ∈D[T(τ1τ2 ···τn)] are (3.10) with M = 0; that is,

NY(b)= 0, (3.17)

where

Y(b)= (y,y[1], . . . ,y[2n−1])T(b), if b is regular,

Y (b)= ([y,φ1], . . . ,
[
y,φ2n

])T(b), if b is singular and LC;
(3.18)
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(b) if b is LP, then it suffices to reverse the roles of a and b in (a).

Case (iv). If both endpoints a and b are LP, then no boundary conditions

are necessary, see Remark 3.7.

4. Discussion. In this section, we show how Cases (i), (ii), (iii), and (iv) follow

from the sesquilinear form (3.7), Lemma 2.6, and Theorem 3.6. The casesd= 0,

n, 2n are considered separately.

Case 1 (d= 0). In this case, both endpoints are LP endpoints and the mini-

mal operator T0(τ1τ2 ···τn) is itself selfadjoint and has no proper selfadjoint

extensions.

Case 2 (d = n). In this case, one endpoint must be LP and the other either

regular or LC endpoint.

(2a) Assume that a is LP and b is regular. In this case, condition (iii) of

Theorem 3.6 becomes

[
y,Ψj

]b
a =

[
y,Ψj

]
(b)

=
n∑
k=1

(−1)(k−1)[y[k−1]Ψ [2n−k]j −y[2n−k]Ψ [k−1]
j

]
(b)

= 0, j = 1, . . . ,n.

(4.1)

If b is regular, then Ψj(b),Ψ
[1]
j (b), . . . ,Ψ [2n−1]

j (b) can take an arbitrary values

and so (3.10) can be rewritten as

NY(b)= 0, (4.2)

where N = (βjk)1≤j≤n,1≤k≤2n and Y(b)= (y,y[1], . . . ,y[2n−1])T(b).
From Theorem 3.6(i), it follows that not all of βj,1, . . . ,βj,2n can be zero since

this would imply, by Theorem 3.6, that Ψj ∈ D0(τ1τ2 ···τn) and j = 1, . . . ,n.

condition (ii) becomes

NJ2n×2nN∗ = 0, J2n×2n = (−1)rδr,2n···+1−s (1≤ r ,s ≤ 2n). (4.3)

Hence, the selfadjoint boundary conditions are of the form (4.2) with real

βj,1, . . . ,βj,2n, not all zero j = 1, . . . ,n.

We have similar result if a is regular and b is LP.

(2b) Assume that a is LP and b is LC. In this case, condition (iii) becomes

(4.1), which is equivalent to

([
Ψ j ,φ1

]
, . . . ,

[
Ψ j,φ2n

])
J2n×2n

([
y,φ1

]
, . . . ,

[
y,φ2n

])T = 0, j = 1, . . . ,n. (4.4)

Set

[
Ψ j ,φk

]
(b)= (−1)(k−1)βjk, j = 1, . . . ,n; k= 1, . . . ,2n. (4.5)
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Then, the selfadjoint boundary conditions (iii) can be expressed as

NY(b)= 0, (4.6)

where N = (βjk)1≤j≤n,1≤k≤2n and Y(b)= ([y,φ1], . . . ,[y,φ2n
]
)T(b). Again, by

Theorem 3.6(i), βj,1, . . . ,βj,2n, j = 1, . . . ,n are real and not all zero.

Similarly, for the case when a is LC and b is LP.

Remark 4.1. Assume that a is LP. Comparing (4.6) with (4.2), note that

when y[k−1](b) is replaced by [y,φk](b), k= 1, . . . ,2n, then the singular case

when b is LC is an exact parallel to the case when b is regular.

Case 3 (d= 2n). In this case, each endpoint is either regular or LC. By (3.10),

(3.13) and proceeding as in Case 2, we find that condition (iii) is equivalent to

the equations

2n∑
k=1

αjk
[
y,φk

]
(a)+

2n∑
k=1

βjk
[
y,φk

]
(b)= 0, j = 1, . . . ,2n. (4.7)

Theorem 3.6(i) guarantees the linear independence of 2n equations in (4.7),

and condition (ii) reduces to the following conditions:

n∑
s=1

αjsαk,2n−s+1−
n∑
s=1

αj,2n−s+1αks

=
n∑
s=1

βjsβk,2n−s+1−
n∑
s=1

βj,2n−s+1βks, j,k= 1, . . . ,2n.

(4.8)

We refer to [5, 6, 7, 10] for more details.

Remark 4.2. It remains an open question as to characterize the singular

non selfadjoint boundary conditions provided that y and its quasiderivatives

are replaced by certain Wronskians (sesquilinear form) associated with non-

symmetric differential expressions involving y and elements of the maximal

domain.
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