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Let B be a Galois algebra with Galois group G, J; = {b € B| bx = g(x)b for all x €
B} for each g € G, and BJ,; = Beg for a central idempotent ey, B, the Boolean
algebra generated by {0,ey4 | g € G}, e a nonzero element in By, and He = {g €
G | eeg = e}. Then, a monomial e is characterized, and the Galois extension Be,
generated by e with Galois group He, is investigated.
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1. Introduction. The Boolean algebra of central idempotents in a commu-
tative Galois algebra plays an important role for the commutative Galois the-
ory (see [1, 3, 6]). Let B be a Galois algebra with Galois group G, C the cen-
ter of B, and Jg = {b € B | bx = g(x)b forall x € B} for each g € G. In
[2], it was shown that BJ,; = Bey, for some idempotent e; of C. Let B, be
the Boolean algebra generated by {0,e; | g € G}. Then in [5], by using By,
the following structure theorem for B was given. There exist {e; € B, | i =
1,2,...,m for some integer m} and some subgroups H; of G such that B =
®> " Be;®Bf where f =1-3Y",¢;, Be; is a central Galois algebra with Ga-
lois group H; for each i = 1,2,...,m, and Bf = Cf which is a Galois algebra
with Galois group induced by and isomorphic with G in case 1 # >, e;. In
[4], let K be a subgroup of G. Then, K is called a nonzero subgroup of G if
[Tkex ek # 0 in B,, and K is called a maximal nonzero subgroup of G if K C K’,
where K’ is anonzero subgroup of G such that [ [;cx ex = [ [xck’ €k, thenK = K'.
We note that any nonzero subgroup is contained in a unique maximal nonzero
subgroup of G. In [4], it was shown that there exists a one-to-one correspon-
dence between the set of nonzero monomials in B, and the set of maximal
nonzero subgroups of G, and that, for a nonzero monomial e in B, such that
H, + {1}, Be is a central Galois algebra with Galois group H, if and only if e
is a minimal nonzero monomial in B,. The purpose of the present paper is to
characterize a monomial e in B, in terms of the maximal nonzero subgroups
of G. Then, the Galois extension Be, generated by a nonzero idempotent e
and by a monomial e with Galois group H,, is investigated, respectively. Let
G(e) ={g € G| g(e) = e} for each e + 0 in B,. We will show that (1) H, is a
normal subgroup of G(e), and (2) Be is a Galois extension of (Be)fe with Ga-
lois group H, and (Be)Me is a Galois extension of (Be)¢(®) with Galois group
G(e)/H,. In particular, when e is a monomial, G(e) = N(H,) (the normalizer
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of H,), and when e is an atom (a minimal nonzero element) of B,, Be is a central
Galois algebra over Ce with Galois group H, and Ce is a commutative Galois
algebra with Galois group G(e)/H,. This generalizes and improves the result
of the components of B in [5, Theorem 3.8] for a Galois algebra.

2. Definitions and notations. Let B be a ring with 1, C the center of B, G
an automorphism group of B of order n for some integer n, and B¢ the set
of elements in B, fixed under each element in G. B is called a Galois extension
of B¢ with Galois group G if there exist elements {a;,b; in B, i = 1,2,...,m}
for some integer m such that >\, a;g(b;) = 01,9 for each g € G. B is called
a Galois algebra over R if B is a Galois extension of R which is contained in
C, and B is called a central Galois extension if B is a Galois extension of C.
In this paper, we assume that B is a Galois algebra with Galois group G. Let
Jg =1b € B | bx = g(x)b for all x € B}. In [2], it was shown that B/, = Bey
for some central idempotent ey of B. We denote (Bg; +, -), the Boolean algebra
generated by {0,e, | g € G}, where e-e’ =ee’ and e+ e’ = e+e’ —ee’ for any
e and ¢’ in B,. An order relation < is defined as usual, that is, e < ¢’ in B,
if e - e’ = e. Throughout, e + ¢’, for e,e’ € B;, means the sum in the Boolean
algebra (Bg;+,-), He ={g € G|l e < ey} foran e # 0 in B,, and a monomial e in
Bsis [[jesey # 0 for some S C G.

3. The Boolean algebra. In this section, we will characterize a monomial e
in B, in terms of the maximal nonzero subgroups of G. We begin with several
lemmas.

LEMMA 3.1. Let{e;, f|i=1,2,...,m} be given in[5, Theorem 3.8]. Then,

(1) {e;, f 1i=1,2,...,m} is the set of all minimal elements of B, in case
f#0,

(2) foreache # 0 in B,, there exists a unique subset Z, of the set {1,2,...,m}
suchthate =Y cz,e; ore= Y cz ei+f.

PROOEF. (1) By the proof of [5, Theorem 3.8], either e; = [[,cy, g, Where
H; is a maximum subset (subgroup) of G such that ngHi eg+0,0re;=(1-
23:1 ej) ngHi ey for some t < i, where H; is a maximum subset (subgroup) of
G such that (1 - Z§:1 ej) ngHi ey = 0; so, either e; is a minimal element of B,
or e; is a minimal element of (1 — 2321 e;)B,. Noting that any minimal element
in(1- 25':1 ej)Bg is also a minimal element in B,, we conclude that each e; is a
minimal element in B,. Next, we show that f is also a minimal element of B, in
case f # 0. In fact, by the proof of [5, Theorem 3.8], e, f = 0 for any g # 1 in G;
so, for any e € B,, ef =0 or ef = f. This implies that f is a minimal element
of B, in case f = 0. Moreover, > /", e; + f = 1; s0, {e;, f | i = 1,2,...,m} is the
set of all minimal elements of B, in case f + 0.

(2) Since 1 = X", e; + f, a sum of all minimal elements of B,, the statement
is immediate. |
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LEMMA 3.2. Lete be a nonzero element in B,. Then,
(1) there exists a monomial e’ of B, such thate < e’ and H, = H,',
(2) H, is a maximal nonzero subgroup of G.

PROOF. (1) For any nonzero element e in B,, let ¢’ = ngHe ey. We claim
that e < e’ and He = He'. In fact, for any h € He, e < ep; 50, e < [[pep, en = €.
Moreover, for any h € H,, e, > ngH(, eg =¢€’;s0, h € Hr. Hence, H, C H,'.
On the other hand, for any h € Hy', ep = €' = [[jep, €4 = €; 50, h € H,. Thus,
H, C H,. Therefore, H, = H,.

(2) By [4, Theorem 3.2], H,' is a maximal nonzero subgroup of G for e’ is a
monomial. Hence, H, (= H,/) is a maximal nonzero subgroup of G. O

Next is an expression of H, for a nonzero e € B,.

THEOREM 3.3. For anye #0 in By, H, = Njcz,H,, or Hi, wheree = 3.7, e;
ore=72cz e+ f asgivenin Lemma 3.1(2).

PROOF. We first show thatfore = e’ +e" forsomee’,e’’ + 0inB;, H, = Ho N
H,.Infact, sincee > ¢’ and e > ¢”’, we have H, C H,» N H,». Conversely, for any
ge€HsNHy, ey =€ and ey = e”'; 50, e5 = e’ +e”" =e. Hence, g € H,; so, He =
H, N H,r. Therefore, by induction, if e = > ;c, e;, then H, = Njcz, He;. Now,
by Lemma 3.1, for any e # 0 in B, e = X;c7, €; Or e = > ;7 e; + f. Similarly, if
e = Zieze e +f, then H, = H(Zieze e +f = (miEZeHel’) ﬂHf. But, for g € G such
that e; = 1, egf = 0; so, Hf = H;. Therefore, Ho = (Niez He;) N Hi = Hy for
H; c H,, for each i. O

We observe that there exist some e + 0 such that H, = Njcz, H,; and H, C Hej
for some j ¢ Z,, and that not all e # 0 are monomials. Next, we identify which
element e # 0 in B, is a monomial. Two characterizations are given. We begin
with a definition.

DEFINITION 3.4. An e + 0 in B, is called a maximal G-element if H, + H;
and, for any e’ € B, such thate <e¢’ and H, = H,/, e =¢’'.

LEMMA 3.5. (1) Ife # 0 such thatef =0, thene = X ;c7, e;.
(2) If e is a monomial, e = [[ e ey for some S C G, thene=1ore =X icz, e;.

PROOF. (1) By Lemma3.1,e=>cz,e;0re= e+ f.lf e+ e,
thene=2c7,e;+fand f # 0. But then, f = (X;cz, ei +f)f =ef =0. This is
a contradiction. Hence, e = >;c7, e;.

(2) In case e = 1, we are done. In case e # 1. Since e, f = 0 for each g € G
such that e, # 1, ef = [[yeseyf = 0. Thus, by (1), e = 3,7, €. O

THEOREM 3.6. Keeping the notations of Lemma 3.1 for any e + 0,1 in B,
the following statements are equivalent:

(1) e=[lgeseg for some S C G, a monomial in Ba;

(2) e is a maximal G-element in B,;



676 G. SZETO AND L. XUE

(3) e = Xicz,ei where {e; | i € Z,} are all atoms such that H, C He; and
H, + H;.

PROOF. (1)=(2).Since e is amonomialande #1,e = ngHe ey whereeg # 1
for some g € H,. Thus, H, + H;. Next, for any e’ such thate < e’ and H, = H.,

e<e' < [[ eg=]]es=e. (3.1)

gEH, gEH,

Hence, e = ¢’. This implies that e is a maximal G-element in B,.

(2)=(1).Let e be amaximal G-element and e’ = ngHe eg. Then, by Lemma 3.2,
e <e' and H, = H,-. But e is a maximal G-element; so, e = ¢’ which is a mono-
mial.

(1)=(3). By Lemma 3.5, e = > ;c7, e;. Now, let e be an atom such that H, C
He;. Then, e; < HQEHei ey < [lyen, eg- But, by hypothesis, e is a monomial;
S0, e = ngHE egy. Hence, e; < e. This implies that e; is a term in e. Thus, e =
Dlicz, ei where {e; | i € Z,} are all atoms such that H, c H,,. Moreover, since
e= ]_[gegeg + 1, there exists g € G such that e < ey # 1. Thus, g € H, and
g & H,. Therefore, H, + H;.

3)=(1). Let &’ = ngHe ey. Then, by Lemma 3.2, e < ¢’ and H, = H,. Since
H, + Hy, H, + H;. Also, since e’ is amonomial, ¢’ = Zjeze, e; by Lemma 3.5(2).
Now, suppose that e # e’. Then, thereis a j € Z, but j ¢ Z,, thatis, e; is a term
ofe’ = ZjeZer ejbutnotatermofe = > ;c, e;. But then, Ho = Hy = Njez, H,; C
H, ; such that j ¢ Z,. This contradicts the hypothesis that e = >, 7, €i where
{e; | i€ Z.} are all atoms such that H, C H,,. Thus, e = ¢’ which is a monomial
in B,. O

4. Galois extensions. In [5], it was shown that Be is a central Galois algebra
with Galois group H, for any atom e # f of B,. Also, for any e # 0 in B,
Be is a Galois extension of (Be)¢® with Galois group G(e)|g. = G(e) where
G(e) ={g € G| g(e) = e} (see [5, Lemma 3.7]). In this section, we are going
to show that, for any e + 0 in B, (not necessary an atom), (1) H, is a normal
subgroup of G(e), and (2) Be is a Galois extension of (Be)fe with Galois group
H, and (Be)" is a Galois extension of (Be)¢(®) with Galois group G (e)/H,. This
generalizes and improves the result for Be when e is an atom of B, as given in
[5, Theorem 3.8]. In particular, for a monomial e, G(e) = N(H, ), the normalizer
of H, in G.

LEMMA 4.1. Lete + 0 in B,. Then, H, is a normal subgroup of G(e) where
Gle)={geGlgle) =e}.

PROOF. We first claim that H, C G(e).In fact, by Lemma 3.1, for any e + 0 in
Bg, there exists a unique subset Z, of the set {1,2,...,m} such thate = >;c, e;
or e = >;cz e+ f where e; are given in Lemma 3.1. Moreover, for each i,
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e; = HhEHei epore = (1- Zﬁ-:lel,-)]_[geHei ey for some t < i. Noting that g
permutes the set {e; | i =1,2,...,t} for each g € G by the proof of [5, Theorem
3.8], we have, for each g € G,

g(ei)=g< I eh> =[] egng-1 2 ] egene,1 =egeie, 1 4.1)

heHei heHei heHei

or

g(ei)=g<<1—ilej) [ eh) = (1—ilej> [T egng-t

J heHei J heHgi
t
= (1— Zej) [T egeney 4.2)
j=1 heH,,

t
:eg((l—zej) I eh)eg1 =egeie, 1.

j=1 heHgi
Now, in case e = > ;. e;, for any h € H,,

e=epee,-1= > epeiep1 < > hie;) =h(e). 4.3)

i€Ze i€Ze

Thus, h(e) = e using Lemma 3.1(2). Noting that g permutes the set {e; | i =
1,2,...,m} for each g € G, we have g(f) = f for each g € G. Thus, we have
h(e) = e for each h € H, in case e = };c, e; + f. This proves that H, C G(e).
Next, we show that H, is a normal subgroup of G(e). Since for each g € G,
g(e;) is also an atom, g(e) = e (i.e., g € G(e)) implies that g permutes the set
{ei | i€ Z.}. Therefore, for each i € Z,, g(e;) = e; and gHel.g‘1 = Hej for some
J € Z.. But, by Theorem 3.3, He = Njez,He, (or H, = Hy; which is normal); so,
for any g € G(e), gHeg ™! = g(Nicz,He,)) g™ = Nicz, gHe, g7 = Njez,He; = He.
Therefore, H, is a normal subgroup of G(e). |

THEOREM 4.2. Let e be a nonzero element in B,. Then,

(1) Be is a Galois extension of (Be)®® with Galois group G(e),

(2) Be is a Galois extension of (Be)He with Galois group H, and (Be)"e is a
Galois extension of (Be)¢(© with Galois group G(e)/H..

PRrROOF. (1) Since B is a Galois algebra with Galois group G, B is a Galois
extension with Galois group G(e). But g(e) = e for each g € G(e); so, by [5,
Lemma 3.7], Be is a Galois extension of (Be)“(® with Galois group G(e).

(2) Clearly, Be is a Galois extension of (Be)He with Galois group H, by part (1).
Next, we claim that |H,|, the order of H,, is a unit in Be. In fact, by [5, Theorem
3.8], for each atom e; of B,, Be; is a central Galois algebra over Ce; with Galois
group H,; so, |H,,|, the order of H,,, is a unitin Be; (see [2, Corollary 3]). Hence,
|[Hel (= NH,,|)isaunitinBeif e = 3 ;c7,e;. If e =37, e+ f and f # 0, then
Ho=H ={geGle;=1} ={g € G| g(c) = cforeach c € C}. Hence, by
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[2, Proposition 5], |H.| is a unit in B. Thus, (Be)He is a Galois extension of
(Be)©© with Galois group G(e)/H, for H, is a normal subgroup of G(e) by
Lemma 4.1. O

Lemma 4.1 shows that, for any nonzero element e in B;, G(e) is contained
in (not necessarily equal to) the normalizer N (H,) of H, in G. Next, we want to
show that G(e) = N(H,) when e is a monomial. Consequently, for any nonzero
element e in B,, Be is embedded in a Galois extension Be’ of (Be’)He with the
same Galois group H,, and (Be’)He is a Galois extension of (Be’)¢(¢") with Galois
group G(e')/H, such that G(e') = N(H,) for some monomial e’ in B,.

LEMMA 4.3. Lete be a nonzero element in B,. Then, there exists a monomial
e’ in B, such thate <e', H, = Hy, and N(H,) = G(e’) where G(e') = {g € G |
g(e')=e'} and N(H,) is the normalizer of H, in G.

PROOF. ByLemma 3.2, there exists a monomial e’ in B, such thate < e’ and
H, = H,; so, it suffices to show that N(H,) = G(e’). Forany g € N(H,), g €
N(H,); 80, by Theorem 3.3, Ho =gHy g ™' = g(Nicz, He )9 ™' = Nicz, gHe, 9 7' =
Niez, Hgtep) =Hs 5 , gtey) = Hg(er)- Noting that e’ is amonomial, we have g (e') =
e’ by Lemma 3.2, tilat is, g € G(e'). This implies that N(H,) C G(e’). Con-
versely, G(e’) € N(H,/) by Lemma 4.1. But H, = H,’; so, G(e') C N(H,) =
N(H,). Therefore, N(H,) = G(e'). O

THEOREM 4.4. Let e be a nonzero element in B,. Then, there exists a mono-
mial e’ in B, such that Be is embedded in Be’, Be’ is a Galois extension of (Be’)He
with Galois group H,, and (Be’ )" is a Galois extension of (Be’)NHe) with Galois
group N(H,)/H,.

PROOF. By Lemma 4.3, there exists a monomial e’ in B, such that e < ¢’,
H, is a normal subgroup of G(e’), and N(H,) = G(e’). Hence, Be C Be'. But
Be’ is a Galois extension of (Be’)He’ with Galois group H. and (Be’)He' is a
Galois extension of (Be’)¢(©") with Galois group G(e')/H, by Theorem 4.2; so,
Theorem 4.4 holds. O
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