
IJMMS 2003:11, 673–679
PII. S0161171203202210

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

THE BOOLEAN ALGEBRA OF GALOIS ALGEBRAS

George Szeto and Lianyong Xue

Received 8 February 2002

Let B be a Galois algebra with Galois group G, Jg = {b ∈ B | bx = g(x)b for all x ∈
B} for each g ∈ G, and BJg = Beg for a central idempotent eg , Ba the Boolean
algebra generated by {0,eg | g ∈ G}, e a nonzero element in Ba, and He = {g ∈
G | eeg = e}. Then, a monomial e is characterized, and the Galois extension Be,
generated by e with Galois group He, is investigated.
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1. Introduction. The Boolean algebra of central idempotents in a commu-

tative Galois algebra plays an important role for the commutative Galois the-

ory (see [1, 3, 6]). Let B be a Galois algebra with Galois group G, C the cen-

ter of B, and Jg = {b ∈ B | bx = g(x)b for all x ∈ B} for each g ∈ G. In

[2], it was shown that BJg = Beg for some idempotent eg of C . Let Ba be

the Boolean algebra generated by {0,eg | g ∈ G}. Then in [5], by using Ba,

the following structure theorem for B was given. There exist {ei ∈ Ba | i =
1,2, . . . ,m for some integer m} and some subgroups Hi of G such that B =
⊕∑m

i=1Bei⊕Bf where f = 1−∑m
i=1 ei, Bei is a central Galois algebra with Ga-

lois group Hi for each i = 1,2, . . . ,m, and Bf = Cf which is a Galois algebra

with Galois group induced by and isomorphic with G in case 1 ≠
∑m
i=1 ei. In

[4], let K be a subgroup of G. Then, K is called a nonzero subgroup of G if∏
k∈K ek ≠ 0 in Ba, and K is called a maximal nonzero subgroup of G if K ⊂K′,

whereK′ is a nonzero subgroup ofG such that
∏
k∈K ek =

∏
k∈K′ ek, thenK =K′.

We note that any nonzero subgroup is contained in a unique maximal nonzero

subgroup of G. In [4], it was shown that there exists a one-to-one correspon-

dence between the set of nonzero monomials in Ba and the set of maximal

nonzero subgroups of G, and that, for a nonzero monomial e in Ba such that

He ≠ {1}, Be is a central Galois algebra with Galois group He if and only if e
is a minimal nonzero monomial in Ba. The purpose of the present paper is to

characterize a monomial e in Ba in terms of the maximal nonzero subgroups

of G. Then, the Galois extension Be, generated by a nonzero idempotent e
and by a monomial e with Galois group He, is investigated, respectively. Let

G(e) = {g ∈ G | g(e) = e} for each e ≠ 0 in Ba. We will show that (1) He is a

normal subgroup of G(e), and (2) Be is a Galois extension of (Be)He with Ga-

lois group He and (Be)He is a Galois extension of (Be)G(e) with Galois group

G(e)/He. In particular, when e is a monomial, G(e) = N(He) (the normalizer
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ofHe), and when e is an atom (a minimal nonzero element) of Ba, Be is a central

Galois algebra over Ce with Galois group He and Ce is a commutative Galois

algebra with Galois group G(e)/He. This generalizes and improves the result

of the components of B in [5, Theorem 3.8] for a Galois algebra.

2. Definitions and notations. Let B be a ring with 1, C the center of B, G
an automorphism group of B of order n for some integer n, and BG the set

of elements in B, fixed under each element in G. B is called a Galois extension

of BG with Galois group G if there exist elements {ai,bi in B, i = 1,2, . . . ,m}
for some integer m such that

∑m
i=1aig(bi) = δ1,g for each g ∈ G. B is called

a Galois algebra over R if B is a Galois extension of R which is contained in

C , and B is called a central Galois extension if B is a Galois extension of C .

In this paper, we assume that B is a Galois algebra with Galois group G. Let

Jg = {b ∈ B | bx = g(x)b for all x ∈ B}. In [2], it was shown that BJg = Beg
for some central idempotent eg of B. We denote (Ba;�,·), the Boolean algebra

generated by {0,eg | g ∈ G}, where e ·e′ = ee′ and e�e′ = e+e′ −ee′ for any

e and e′ in Ba. An order relation ≤ is defined as usual, that is, e ≤ e′ in Ba
if e · e′ = e. Throughout, e+ e′, for e,e′ ∈ Ba, means the sum in the Boolean

algebra (Ba;�,·), He = {g ∈G | e≤ eg} for an e≠ 0 in Ba, and a monomial e in

Ba is
∏
g∈S eg ≠ 0 for some S ⊂G.

3. The Boolean algebra. In this section, we will characterize a monomial e
in Ba in terms of the maximal nonzero subgroups of G. We begin with several

lemmas.

Lemma 3.1. Let {ei,f | i= 1,2, . . . ,m} be given in [5, Theorem 3.8]. Then,

(1) {ei,f | i = 1,2, . . . ,m} is the set of all minimal elements of Ba in case

f ≠ 0,

(2) for each e≠ 0 in Ba, there exists a unique subset Ze of the set {1,2, . . . ,m}
such that e=∑i∈Ze ei or e=∑i∈Ze ei+f .

Proof. (1) By the proof of [5, Theorem 3.8], either ei =
∏
g∈Hi eg , where

Hi is a maximum subset (subgroup) of G such that
∏
g∈Hi eg ≠ 0, or ei = (1−∑t

j=1 ej)
∏
g∈Hi eg for some t < i, where Hi is a maximum subset (subgroup) of

G such that (1−∑t
j=1 ej)

∏
g∈Hi eg ≠ 0; so, either ei is a minimal element of Ba

or ei is a minimal element of (1−∑t
j=1 ej)Ba. Noting that any minimal element

in (1−∑t
j=1 ej)Ba is also a minimal element in Ba, we conclude that each ei is a

minimal element in Ba. Next, we show that f is also a minimal element of Ba in

case f ≠ 0. In fact, by the proof of [5, Theorem 3.8], egf = 0 for any g ≠ 1 in G;

so, for any e ∈ Ba, ef = 0 or ef = f . This implies that f is a minimal element

of Ba in case f ≠ 0. Moreover,
∑m
i=1 ei+f = 1; so, {ei,f | i = 1,2, . . . ,m} is the

set of all minimal elements of Ba in case f ≠ 0.

(2) Since 1=∑m
i=1 ei+f , a sum of all minimal elements of Ba, the statement

is immediate.
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Lemma 3.2. Let e be a nonzero element in Ba. Then,

(1) there exists a monomial e′ of Ba such that e≤ e′ and He =He′ ,
(2) He is a maximal nonzero subgroup of G.

Proof. (1) For any nonzero element e in Ba, let e′ = ∏
g∈He eg . We claim

that e ≤ e′ and He =He′ . In fact, for any h ∈He, e ≤ eh; so, e ≤∏h∈He eh = e′.
Moreover, for any h ∈ He, eh ≥

∏
g∈He eg = e′; so, h ∈ He′ . Hence, He ⊂ He′ .

On the other hand, for any h ∈ He′ , eh ≥ e′ =
∏
g∈He eg ≥ e; so, h ∈ He. Thus,

He′ ⊂He. Therefore, He =He′ .
(2) By [4, Theorem 3.2], He′ is a maximal nonzero subgroup of G for e′ is a

monomial. Hence, He (=He′) is a maximal nonzero subgroup of G.

Next is an expression of He for a nonzero e∈ Ba.

Theorem 3.3. For any e ≠ 0 in Ba, He =∩i∈ZeHei or H1, where e =∑i∈Ze ei
or e=∑i∈Ze ei+f as given in Lemma 3.1(2).

Proof. We first show that for e= e′+e′′ for some e′,e′′ ≠ 0 in Ba,He =He′ ∩
He′′ . In fact, since e≥ e′ and e≥ e′′, we haveHe ⊂He′ ∩He′′ . Conversely, for any

g ∈He′ ∩He′′ , eg ≥ e′ and eg ≥ e′′; so, eg ≥ e′ +e′′ = e. Hence, g ∈He; so, He =
He′ ∩He′′ . Therefore, by induction, if e = ∑

i∈Ze ei, then He = ∩i∈ZeHei . Now,

by Lemma 3.1, for any e ≠ 0 in Ba, e =∑i∈Ze ei or e =∑i∈Ze ei+f . Similarly, if

e =∑i∈Ze ei+f , then He =H(∑i∈Ze ei)+f = (∩i∈ZeHei)∩Hf . But, for g ∈ G such

that eg ≠ 1, egf = 0; so, Hf = H1. Therefore, He = (∩i∈ZeHei)∩H1 = H1 for

H1 ⊂Hei for each i.

We observe that there exist some e≠ 0 such thatHe =∩i∈ZeHei andHe ⊂Hej
for some j 	∈ Ze, and that not all e≠ 0 are monomials. Next, we identify which

element e ≠ 0 in Ba is a monomial. Two characterizations are given. We begin

with a definition.

Definition 3.4. An e ≠ 0 in Ba is called a maximal G-element if He ≠ H1

and, for any e′ ∈ Ba such that e≤ e′ and He =He′ , e= e′.
Lemma 3.5. (1) If e≠ 0 such that ef = 0, then e=∑i∈Ze ei.
(2) If e is a monomial, e=∏g∈S eg for some S ⊂G, then e= 1 or e=∑i∈Ze ei.

Proof. (1) By Lemma 3.1, e = ∑
i∈Ze ei or e = ∑

i∈Ze ei+ f . If e ≠
∑
i∈Ze ei,

then e =∑i∈Ze ei+f and f ≠ 0. But then, f = (∑i∈Ze ei+f)f = ef = 0. This is

a contradiction. Hence, e=∑i∈Ze ei.
(2) In case e = 1, we are done. In case e ≠ 1. Since egf = 0 for each g ∈ G

such that eg ≠ 1, ef =∏g∈S egf = 0. Thus, by (1), e=∑i∈Ze ei.

Theorem 3.6. Keeping the notations of Lemma 3.1 for any e ≠ 0,1 in Ba,

the following statements are equivalent:

(1) e=∏g∈S eg for some S ⊂G, a monomial in Ba;

(2) e is a maximal G-element in Ba;
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(3) e = ∑
i∈Ze ei where {ei | i ∈ Ze} are all atoms such that He ⊂ Hei and

He ≠H1.

Proof. (1)⇒(2). Since e is a monomial and e≠ 1, e=∏g∈He eg where eg ≠ 1

for some g ∈He. Thus, He ≠H1. Next, for any e′ such that e≤ e′ and He =He′ ,

e≤ e′ ≤
∏
g∈He′

eg =
∏
g∈He

eg = e. (3.1)

Hence, e= e′. This implies that e is a maximal G-element in Ba.

(2)⇒(1). Let e be a maximalG-element and e′ =∏g∈He eg . Then, by Lemma 3.2,

e ≤ e′ and He =He′ . But e is a maximal G-element; so, e = e′ which is a mono-

mial.

(1)⇒(3). By Lemma 3.5, e =∑i∈Ze ei. Now, let ej be an atom such that He ⊂
Hej . Then, ej ≤

∏
g∈Hej eg ≤

∏
g∈He eg . But, by hypothesis, e is a monomial;

so, e =∏g∈He eg . Hence, ej ≤ e. This implies that ej is a term in e. Thus, e =∑
i∈Ze ei where {ei | i ∈ Ze} are all atoms such that He ⊂ Hei . Moreover, since

e = ∏
g∈S eg ≠ 1, there exists g ∈ G such that e ≤ eg ≠ 1. Thus, g ∈ He and

g 	∈H1. Therefore, He ≠H1.

(3)⇒(1). Let e′ =∏g∈He eg . Then, by Lemma 3.2, e ≤ e′ and He = He′ . Since

He ≠H1,He′ ≠H1. Also, since e′ is a monomial, e′ =∑j∈Ze′ ej by Lemma 3.5(2).

Now, suppose that e≠ e′. Then, there is a j ∈ Ze′ but j 	∈ Ze, that is, ej is a term

of e′ =∑j∈Ze′ ej but not a term of e=∑i∈Ze ei. But then,He =He′ = ∩j∈Ze′Hej ⊂
Hej such that j 	∈ Ze. This contradicts the hypothesis that e =∑i∈Ze ei where

{ei | i∈ Ze} are all atoms such that He ⊂Hei . Thus, e= e′ which is a monomial

in Ba.

4. Galois extensions. In [5], it was shown that Be is a central Galois algebra

with Galois group He for any atom e ≠ f of Ba. Also, for any e ≠ 0 in Ba,

Be is a Galois extension of (Be)G(e) with Galois group G(e)|Be � G(e) where

G(e) = {g ∈ G | g(e) = e} (see [5, Lemma 3.7]). In this section, we are going

to show that, for any e ≠ 0 in Ba (not necessary an atom), (1) He is a normal

subgroup of G(e), and (2) Be is a Galois extension of (Be)He with Galois group

He and (Be)He is a Galois extension of (Be)G(e) with Galois groupG(e)/He. This

generalizes and improves the result for Be when e is an atom of Ba as given in

[5, Theorem 3.8]. In particular, for a monomial e,G(e)=N(He), the normalizer

of He in G.

Lemma 4.1. Let e ≠ 0 in Ba. Then, He is a normal subgroup of G(e) where

G(e)= {g ∈G | g(e)= e}.
Proof. We first claim thatHe ⊂G(e). In fact, by Lemma 3.1, for any e≠ 0 in

Ba, there exists a unique subset Ze of the set {1,2, . . . ,m} such that e=∑i∈Ze ei
or e = ∑

i∈Ze ei + f where ei are given in Lemma 3.1. Moreover, for each i,
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ei =
∏
h∈Hei eh or ei = (1−

∑t
j=1 ej)

∏
g∈Hei eg for some t < i. Noting that g

permutes the set {ei | i= 1,2, . . . , t} for each g ∈G by the proof of [5, Theorem

3.8], we have, for each g ∈G,

g
(
ei
)= g

( ∏
h∈Hei

eh

)
=

∏
h∈Hei

eghg−1 ≥
∏
h∈Hei

egeheg−1 = egeieg−1 (4.1)

or

g
(
ei
)= g

((
1−

t∑
j=1

ej

) ∏
h∈Hei

eh

)
=
(

1−
t∑
j=1

ej

) ∏
h∈Hei

eghg−1

≥
(

1−
t∑
j=1

ej

) ∏
h∈Hei

egeheg−1

= eg
((

1−
t∑
j=1

ej

) ∏
h∈Hei

eh

)
eg−1 = egeieg−1 .

(4.2)

Now, in case e=∑i∈Ze ei, for any h∈He,

e= eheeh−1 =
∑
i∈Ze

eheieh−1 ≤
∑
i∈Ze

h
(
ei
)= h(e). (4.3)

Thus, h(e) = e using Lemma 3.1(2). Noting that g permutes the set {ei | i =
1,2, . . . ,m} for each g ∈ G, we have g(f) = f for each g ∈ G. Thus, we have

h(e) = e for each h ∈ He in case e =∑i∈Ze ei+f . This proves that He ⊂ G(e).
Next, we show that He is a normal subgroup of G(e). Since for each g ∈ G,

g(ei) is also an atom, g(e)= e (i.e., g ∈G(e)) implies that g permutes the set

{ei | i∈ Ze}. Therefore, for each i∈ Ze, g(ei)= ej and gHeig
−1 =Hej for some

j ∈ Ze. But, by Theorem 3.3, He = ∩i∈ZeHei (or He = H1 which is normal); so,

for any g ∈G(e), gHeg−1 = g(∩i∈ZeHei)g−1 =∩i∈ZegHeig−1 =∩j∈ZeHej =He.
Therefore, He is a normal subgroup of G(e).

Theorem 4.2. Let e be a nonzero element in Ba. Then,

(1) Be is a Galois extension of (Be)G(e) with Galois group G(e),
(2) Be is a Galois extension of (Be)He with Galois group He and (Be)He is a

Galois extension of (Be)G(e) with Galois group G(e)/He.

Proof. (1) Since B is a Galois algebra with Galois group G, B is a Galois

extension with Galois group G(e). But g(e) = e for each g ∈ G(e); so, by [5,

Lemma 3.7], Be is a Galois extension of (Be)G(e) with Galois group G(e).
(2) Clearly, Be is a Galois extension of (Be)He with Galois groupHe by part (1).

Next, we claim that |He|, the order of He, is a unit in Be. In fact, by [5, Theorem

3.8], for each atom ei of Ba, Bei is a central Galois algebra over Cei with Galois

groupHei ; so, |Hei |, the order ofHei , is a unit in Bei (see [2, Corollary 3]). Hence,

|He| (= |∩Hei |) is a unit in Be if e=∑i∈Ze ei. If e=∑i∈Ze ei+f and f ≠ 0, then

He = H1 = {g ∈ G | eg = 1} = {g ∈ G | g(c) = c for each c ∈ C}. Hence, by
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[2, Proposition 5], |He| is a unit in B. Thus, (Be)He is a Galois extension of

(Be)G(e) with Galois group G(e)/He for He is a normal subgroup of G(e) by

Lemma 4.1.

Lemma 4.1 shows that, for any nonzero element e in Ba, G(e) is contained

in (not necessarily equal to) the normalizer N(He) of He in G. Next, we want to

show that G(e)=N(He) when e is a monomial. Consequently, for any nonzero

element e in Ba, Be is embedded in a Galois extension Be′ of (Be′)He with the

same Galois groupHe, and (Be′)He is a Galois extension of (Be′)G(e′) with Galois

group G(e′)/He such that G(e′)=N(He) for some monomial e′ in Ba.

Lemma 4.3. Let e be a nonzero element in Ba. Then, there exists a monomial

e′ in Ba such that e ≤ e′, He =He′ , and N(He) = G(e′) where G(e′) = {g ∈ G |
g(e′)= e′} and N(He) is the normalizer of He in G.

Proof. By Lemma 3.2, there exists a monomial e′ in Ba such that e≤ e′ and

He = He′ ; so, it suffices to show that N(He) = G(e′). For any g ∈ N(He), g ∈
N(He′); so, by Theorem 3.3,He′=gHe′g−1=g(∩i∈Ze′Hei)g−1=∩i∈Ze′gHeig−1=
∩i∈Ze′Hg(ei) =H∑

i∈Ze′ g(ei)
=Hg(e′). Noting that e′ is a monomial, we haveg(e′)=

e′ by Lemma 3.2, that is, g ∈ G(e′). This implies that N(He) ⊂ G(e′). Con-

versely, G(e′) ⊂ N(He′) by Lemma 4.1. But He = He′ ; so, G(e′) ⊂ N(He′) =
N(He). Therefore, N(He)=G(e′).

Theorem 4.4. Let e be a nonzero element in Ba. Then, there exists a mono-

mial e′ in Ba such that Be is embedded in Be′, Be′ is a Galois extension of (Be′)He

with Galois groupHe, and (Be′)He is a Galois extension of (Be′)N(He) with Galois

group N(He)/He.

Proof. By Lemma 4.3, there exists a monomial e′ in Ba such that e ≤ e′,
He is a normal subgroup of G(e′), and N(He) = G(e′). Hence, Be ⊂ Be′. But

Be′ is a Galois extension of (Be′)He′ with Galois group He′ and (Be′)He′ is a

Galois extension of (Be′)G(e′) with Galois group G(e′)/He′ by Theorem 4.2; so,

Theorem 4.4 holds.
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