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ON THE INTERLACING PROPERTY AND THE
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Unlike the Nyquist criterion, root locus, and many other stability criteria, the well-
known Routh-Hurwitz criterion is usually introduced as a mechanical algorithm
and no attempt is made whatsoever to explain why or how such an algorithm
works. It is widely believed that simple derivations of this important criterion
are highly requested by the mathematical community. In this paper, we address
this problem and provide a simple proof of the Routh-Hurwitz criterion based on
two generalizations of an interesting property known in stability theory as the
interlacing property. Within the same context, the singularities that may arise in
the Routh-Hurwitz criterion are also dealt with.
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1. Introduction. The problem of root distribution of a polynomial has been

long treated, and it is of virtual importance in diverse mathematical and engi-

neering applications: spectral analysis, numerical computations, control the-

ory, and digital signal processing, to name a few. The first systematic approach

to investigate root distribution of a real polynomial was presented by Sturm

[23]. Then, the stability of a linear continuous-time systems of differential

equations with real coefficients was studied by many authors, and the num-

ber of roots of the characteristic polynomial in the open right-half plane was

obtained by Hermite [10], Routh [21], Hurwitz [12], Marden [19], and Liënard

and Chipart [17]. More recently, Krĕın and Năımark [14], Levinson and Redhef-

fer [16], Lipatov and Sokolov [18], and others had further contributions, which

were still mainly restricted to the real case. Complex systems of differential

equations arise in the study of multidimensional systems [8]. The complex

counterpart of the Routh array was considered in [25], where necessary and

sufficient conditions were given for the asymptotic stability of a system of dif-

ferential equations with complex coefficients. In [25], the extended Routh array

(ERA) was introduced and proved to be the natural extension of the Routh array

to the complex case. In [26], a generalized version of the ERA was proposed

to handle the singularities that may arise in the ERA, and it generalized the

results of [6] restricted to the real case. For the stability of a discrete-time sys-

tem of difference equations, the number of roots outside the unit circle was

determined by Cohn and Schur [5, 22]. For further work on the stability of
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discrete systems, see, for example, [13, 15, 20]. Explicit relationships between

Routh-Hurwitz and Schur-Cohn types of stability were established in [24]. The

concept of Routh-Hurwitz stability was extended to the convex hull of n×n
matrices in [28] with applications to the stability of interval dynamical systems.

The general problem of root distribution of a polynomial in some subregions

of the complex plane, for example, half-planes, circles, sectors, and ellipses,

has been investigated by many authors [2, 3, 4, 7, 9, 11, 27]. The historic Routh

stability criterion remains the backbone of stability analysis in linear systems,

and it has been used to solve a wide range of problems. By far, the most au-

thoritative reference for the Routh-Hurwitz test is Gantmacher [7] where the

proofs depend on Cauchy indices and Sturm chains. However, much research

efforts are still made towards, and many new results are continuously derived

on this subject, not only for the further theoretical development but also for

the establishment of simpler and more easily realizable criteria in practice.

In Section 2 of this paper, we offer two generalizations of the interlacing

property based on the net-accumulated phase of the frequency-response of

a real polynomial. The new results are then applied in Section 3 to derive a

very simple proof of the Routh-Hurwitz stability criterion, something desper-

ately required in standard literature on stability analysis and control theory.

In Section 4, we look at the singularities that may arise in the Routh-Hurwitz

criterion, and we offer appropriate remedies to each case. We end with some

concluding remarks.

2. Generalizations of the interlacing property. In this section, we derive

two generalizations of the interlacing property by first stating a fundamental

relationship between the net-accumulated phase of the frequency-response of

a real polynomial and the difference between the numbers of roots of the poly-

nomial in the open left and open right half-planes and, second, by developing

a procedure for systematically determining the net-accumulated phase. Con-

sider a real polynomial f(z) of degree n with no zeros on the imaginary axis

f(z)= a0+a1z+a2z2+···+anzn. (2.1)

Definition 2.1. Let l and r denote the numbers of roots of f(z) in the

open left and open right half-planes, respectively. Then, the signature of f(z),
denoted as σ(f), is defined by σ(f)= l−r .

Since n = l+r , it follows that σ(f) and n uniquely determine l and r and

hence the root distribution of f(z). Now, for every frequency s ∈ R, f(js)
is a point in the complex plane. Let g(s) and h(s) be two functions defined

pointwise by g(s) = Re[f (js)] and h(s) = Im[f (js)]. It follows that, for all

s ∈R,

f(js)= g(s)+jh(s). (2.2)
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Furthermore, we recall that, at any given frequency s, the phase angle of

f(js) is given by θ(s) = tan−1[h(s)/g(s)]. If ∆∞0 θ represents the net change

in argument θ(s), as s increases from 0 to ∞, then we can state the following

lemma [7].

Lemma 2.2. Let f(z) be a real polynomial with no imaginary axis roots.

Then, ∆∞0 θ = (π/2)σ(f).
Since θ(s)= tan−1[h(s)/g(s)], then the rate of change of phase, with respect

to frequency, is given by

dθ(s)
ds

= 1
1+h2(s)/g2(s)

(
dh(s)/ds

)
g(s)−(dg(s)/ds)h(s)
g2(s)

=
(
dh(s)/ds

)
g(s)−(dg(s)/ds)h(s)
g2(s)+h2(s)

.
(2.3)

If g(s) and h(s) are known for all values of s, then we can integrate (2.3) to

obtain the net phase accumulation. Since we know that every time the polar

plot f(js) makes a transition from the real axis to the imaginary axis or vice

versa, there can be at most a net phase change of ±(π/2) radians. Therefore,

to calculate the net accumulation of a phase over all frequencies, it is not

necessary to know the precise rate of change of a phase at each and every

frequency. The precise sign of the phase change can be determined by checking

(2.3) at the real or imaginary axis crossing of the f(js) plot. Since at a real or

imaginary axis crossing one of the two terms in the numerator of (2.3) vanishes

and the denominator is always positive, the actual determination of the sign

of the phase change becomes even simpler.

For a given polynomial f(z) of a degree greater than or equal to one, either

the real part or the imaginary part or both of f(js) become infinitely large

as s → ±∞. However, if we want to count the total phase accumulation in

integral multiples of real to imaginary axis crossings or imaginary to real axis

crossings, it is important that the frequency-response plot used approaches

either the real or imaginary axis as s →±∞. To achieve this, we normalize the

plot of f(js) by scaling it with 1/k(s), where k(s)= (1+s2)n/2. Since k(s) does

not have any real roots, this scaling will ensure that the normalized frequency-

response plot fk(js)= gk(s)+jhk(s) intersects either with the real axis or the

imaginary axis at ±∞ while, at the same time, keeping unchanged the finite

frequencies at which the f(js) plot intersects the real and imaginary axes.

The subsequent development of the paper makes extensive use of standard

signum function sgn :R→ {−1,0,1} defined by

sgn[x]=




−1, if x < 0,

0, if x = 0,

1, if x > 0.

(2.4)
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Now, with f(z), g(s), h(s), gk(s), and hk(s) as defined above, let

0= s0 < s1 < s2 < ···< sm−1 (2.5)

be the real, nonnegative distinct finite zeros of hk(s) with odd multiplicities.

Clearly, the zeros of hk(s) of even multiplicities can be skipped while counting

the net phase accumulation because the function hk(s) does not change sign

while passing through a real zero of even multiplicity. Also, define sm =∞.

The following simple facts can now be stated:

(i) if si, si+1 are both zeros of hk(s), then

∆si+1
si θ = π

2

{
sgn

[
gk
(
si
)]−sgn

[
gk
(
si+1

)]}·sgn
[
hk
(
s+i
)]

; (2.6)

(ii) if si is a zero of hk(s) while si+1 is not a zero of hk(s), a situation

possible only when si+1 =∞ is a zero of gk(s) (n odd), then

∆si+1
si θ = π

2
sgn

[
gk
(
si
)]·sgn

[
hk
(
s+i
)]

; (2.7)

(iii) and

sgn
[
hk
(
s+i+1

)]=−sgn
[
hk
(
s+i
)]
, i= 0,1,2, . . . ,m−2. (2.8)

Equation (2.6) is straightforward, while (2.8) simply states thathk(s) changes

sign as it passes through a zero of odd multiplicity. Equation (2.7) follows

directly from (2.3).

The repetitive use of (2.8) leads to

sgn
[
hk
(
s+i
)]= (−)m−1−i ·sgn

[
hk
(
s+m−1

)]
, i= 0,1,2, . . . ,m−1. (2.9)

When (2.9) is substituted into (2.6), we find that if si and si+1 are both zeros

of hk(s), then

∆si+1
si θ = π

2

{
sgn

[
gk
(
si
)]−sgn

[
gk
(
si+1

)]}·(−1)m−1−i sgn
[
hk
(
s+m−1

)]
. (2.10)

Based on the above facts, the following theorem concerning σ(f) can now

be given.

Theorem 2.3. Let f(z) be a given real polynomial of degree n with no roots

on the imaginary axis, that is, the normalized plot fk(js) does not pass through

the origin. Let 0 = s0 < s1 < s2 < ··· < sm−1 be the real nonnegative distinct
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finite zeros of hk(s) with odd multiplicities. Let sm =∞. Then,

σ(f)=




{
sgn

[
gk
(
s0
)]−2sgn

[
gk
(
s1
)]+2sgn

[
gk
(
s2
)]+···

+(−1)m−12sgn
[
gk
(
sm−1

)]+(−1)m sgn[gk
(
sm
)]}

·(−1)m−1 sgn
[
h(∞)], if n is even,{

sgn
[
gk
(
s0
)]−2sgn

[
gk
(
s1
)]+2sgn

[
gk
(
s2
)]+···

+(−1)m−12sgn
[
gk
(
sm−1

)]}·(−1)m−1 sgn
[
h(∞)], if n is odd.

(2.11)

Proof. Suppose first that n is even. Then, sm =∞ is a zero of hk(s). Since

sgn[hk(s+m−1)] = sgn[h(∞)], the first expression in (2.11) is obtained by re-

peatedly using (2.10) to determine ∆∞0 θ and then applying Lemma 2.2.

When n is odd, sm = ∞ is not a zero of hk(s). Therefore, using (2.7) and

(2.10), we get

∆∞0 θ =
m−2∑
i=0

∆si+1
si θ+∆∞m−1θ

=
m−2∑
i=0

π
2

{
sgn

[
gk
(
si
)]−sgn

[
gk
(
si+1

)]}·(−1)m−1−i sgn
[
hk
(
s+m−1

)]

+ π
2

sgn
[
gk
(
sm−1

)]·sgn
[
hk
(
s+m−1

)]
.

(2.12)

Since sgn[hk(s+m−1)]= sgn[h(∞)], the desired expression follows by apply-

ing Lemma 2.2.

Now, we state a result similar to Theorem 2.3 where the signature σ(f) of

a real polynomial f(z) is to be determined using the values of the frequencies

such that fk(js) crosses the imaginary axis.

Theorem 2.4. Let f(z) be a given real polynomial of degree n with no roots

on the imaginary axis. Let 0 < s1 < s2 < ··· < sm−1 be the real nonnegative

distinct finite zeros of gk(s) with odd multiplicities. Let sm =∞. Then,

σ(f)=




−{2sgn
[
hk
(
s1
)]−2sgn

[
hk
(
s2
)]+···

+(−1)m−22sgn
[
hk
(
sm−1

)]}·(−1)m sgn
[
g(∞)], if n is even,

−{2sgn
[
hk
(
s1
)]−2sgn

[
hk
(
s2
)]+···

+(−1)m−22sgn
[
hk
(
sm−1

)]+(−1)m−1 sgn
[
hk
(
sm
)]}

·(−1)m sgn
[
g(∞)], if n is odd.

(2.13)

The proof follows along the same lines as that of Theorem 2.3.
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3. The Routh-Hurwitz stability criterion. In this section, we offer a very

simple proof of the Routh-Hurwitz stability criterion based on Theorems 2.3

and 2.4. Consider a real polynomial f(z) of degree n,

f(z)= a0+a1z+a2z2+···+anzn, an ≠ 0, (3.1)

and let

f(z)= fe(z)+fo(z), (3.2)

where fe(z) and fo(z) are the polynomials made up of the terms in f(z) con-

sisting of the even and odd powers of z, respectively. To avoid singularities

of the first or the second kind [7] in the Routh array, we make the following

assumptions:

(1) an−1 ≠ 0;

(2) fe(z) and fo(z) are coprime.

In order to generate the Routh algorithm, we start with the polynomial f(z)
and construct a polynomial f1(z) of order n−1 in the following way.

If n is even, then

f1(z)=
[
fe(z)− an

an−1
·z ·fo(z)

]
+fo(z), (3.3)

and if n is odd, then

f1(z)=
[
fo(z)− an

an−1
·z ·fe(z)

]
+fe(z). (3.4)

The next theorem expresses a relationship between the signatures of f(z)
and f1(z), respectively.

Theorem 3.1. If f(z) and f1(z) are as already defined, then

σ(f)−σ(f1
)=




1, if anan−1 > 0,

−1, if anan−1 < 0.
(3.5)

Proof. Suppose that

f(js)= g(s)+jh(s). (3.6)

Consider first the case when n is even. Then, from (3.3),

f1(js)=
[
g(s)+ an

an−1
sh(s)

]
+jh(s). (3.7)

From (3.6) and (3.7), it follows that the finite zeros of hk(s) are the same for

both f(js) and f1(js). Also, at these frequencies, both f(js) and f1(js) have
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the same real part so that sgn[gk(s)] is also identical for both these polynomi-

als at these frequencies. Therefore, when we subtract the second expression

on the right-hand side of (2.11) from the first one, we get

σ(f)−σ(f1
)=−sgn

[
gk(∞)

]·sgn
[
h(∞)]. (3.8)

Now, when s is positive and large, we get

g(s)� (−1)n/2ansn, (3.9)

while

h(s)� (−1)(n−2)/2an−1sn−1 (3.10)

so that

sgn
[
gk(∞)

]·sgn
[
h(∞)]=−sgn

[
anan−1

]
. (3.11)

Hence,

σ(f)−σ(f1
)=




1, if anan−1 > 0,
−1, if anan−1 < 0.

(3.12)

When n is odd, we conclude from (3.4) that

f1(js)= g(s)+j
[
h(s)− an

an−1
sg(s)

]
. (3.13)

From (3.6) and (3.13), it follows that the finite zeros of gk(s) are the same

for both f(js) and f1(js). Also, at these frequencies, both f(js) and f1(js)
have the same imaginary part so that sgn[hk(s)] is also identical for both these

polynomials at these frequencies. Therefore, from (2.13), we get

σ(f)−σ(f1
)=−(−1)m−1(−1)m sgn

[
hk(∞)

]·sgn
[
g(∞)]

= sgn
[
g(∞)]·sgn

[
hk(∞)

]
.

(3.14)

Now, when s is positive and large, we get

g(s)� (−1)(n−1)/2an−1sn−1,

h(s)� (−1)(n−1)/2ansn,
(3.15)

so that

sgn
[
g(∞)]·sgn

[
hk(∞)

]=−sgn
[
anan−1

]
. (3.16)

Hence,

σ(f)−σ(f1
)=




1, if anan−1 > 0,
−1, if anan−1 < 0,

(3.17)

and the proof is complete.
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The following is a corollary of Theorem 3.1.

Corollary 3.2. Let f(z) be a given real polynomial and let f1(z) be defined

by either (3.3) or (3.4), depending on the parity ofn. Let l, l1 denote the numbers

of open left half-plane zeros of f(z), f1(z), and let r , r1 denote the numbers of

open right half-plane zeros of f(z), f1(z). Then,

l1 = l−1, r1 = r , if anan−1 > 0,

l1 = l, r1 = r −1, if anan−1 < 0.
(3.18)

Proof. We know that σ(f) = l−r and σ(f1) = l1−r1. Then, by Theorem

3.1, we have

l−r −l1+r1 =



1, if anan−1 > 0,

−1, if anan−1 < 0.
(3.19)

Also,

l+r −(l1+r1
)= 1. (3.20)

Adding (3.19) and (3.20) leads to

l−l1 =



1, if anan−1 > 0,

0, if anan−1 < 0.
(3.21)

Subtracting (3.19) and (3.20), we get

r −r1 =



0, if anan−1 > 0,

1, if anan−1 < 0.
(3.22)

The desired result follows from (3.21) and (3.22).

For a given real polynomial f(z), Routh’s algorithm is equivalent to reduc-

ing the degree of f(z) by one at a time using (3.3) and (3.4) alternately. This

has been clearly articulated in [1, 2, 16, 25]. The Sturm sequence calculation

in [7] is equivalent to the alternate application of (3.3) and (3.4). Therefore,

Corollary 3.2 leads to the immediate conclusion that f(z) is Hurwitz if and

only if the leading coefficients of all the polynomials that result from alter-

nately applying (3.3) and (3.4) to f(z) are of the same sign. Moreover, it is

also evident that the number of open right half-plane zeros of f(z) is equal

to the number of sign changes in the leading coefficients of the successive

polynomials. Clearly, this is the Routh-Hurwitz criterion.

4. Singularities in the Routh-Hurwitz criterion. The generation of the

Routh-Hurwitz criterion in the last section dealt only with the regular case,

that is, the case in which the degree of f(z) can be successively reduced by
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the alternate application of (3.3) and (3.4) until we finally reach a zero-order

polynomial. However, this process would terminate prematurely if, while ap-

plying (3.3) or (3.4), we encounter an−1 = 0. This is what we call singular cases

in the Routh-Hurwitz criterion, which we deal with in this section.

We start with a given real polynomial f0(z) of degree n,

f0(z)= a0
0+a0

1z+a0
2z

2+···+a0
nzn. (4.1)

Suppose that, by using (3.3) and (3.4) alternately, we obtain a sequence of

polynomials {f0(z),f1(z),f2(z), . . . ,fm(z)}, where the leading coefficient of

each fi(z), i= 0,1,2, . . . ,m is nonzero. Let

fm(z)= am0 +am1 z+am2 z2+···+amn−m−1z
n−m−1+amn−mzn−m, (4.2)

where amn−m ≠ 0. So, if amn−m−1 = 0, then, clearly, the Routh’s algorithm comes

to a halt because, in the next step of the Routh’s algorithm, we need to divide

by amn−m−1, which is now equals zero. To deal with this singularity, we consider

three different cases that may occur.

Case 4.1. We have amn−m−1 = 0, but there exists at least one k, k= 3,5,7, . . .
such that amn−m−k ≠ 0, that is, if the first element in any row of the Routh table

vanishes, then there is at least one nonzero element in that row. If f0(z) has

no imaginary zeros, then we can proceed as follows. Replace amn−m−1 = 0 by a

small nonzero number ε of arbitrary sign and then proceed with the Routh’s

algorithm. If another singularity is encountered later, then introduce another

parameter to replace the new zero element, and so on.

The replacement of amn−m−1 = 0 by ε leads to the modification of the original

polynomial f0(z). Using (3.3) and (3.4) for amn−m−1 = ε, we can work our way

backward to obtain the modified polynomial f0(z,ε) whose coefficients are

rational functions of ε. Since f0(z) has no roots on the imaginary axis, it follows

by continuity that, when ε is small enough, σ(f0(z))= σ(f0(z,ε)). It is for this

specific reason that the above modification can be used to handle a singularity

of this type and still allow to count the number of open right half-plane zeros.

Case 4.2. Suppose amn−m−k = 0, for k= 1,3,5,7, . . . , that is, all the elements

in one row of the Routh array are zeros. It follows that f0(z) must have at

least one pair of complex conjugate zeros symmetrically distributed about the

origin. This includes the case of purely imaginary zeros and the case of purely

real zeros having opposite signs.

To deal with this kind of singularity, we can simply replace f0(z) by f0(z−ε),
where ε is a sufficiently small positive number, and then continue with Routh’s

algorithm. The net result is that the number of closed right half-plane zeros

of f0(z) equals the number of sign changes in the leading coefficients of the

successive polynomials.
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Case 4.3. It is possible that Cases 4.1 and 4.2 occur at different stages in the

same problem when proceeding with Routh’s algorithm. Again, we can replace

f0(z) by f0(z− ε), where ε is a sufficiently small positive number, and then

continue with Routh’s algorithm. Alternatively, we can factor out the imaginary

axis zeros as in [7] and then apply Routh’s algorithm to the new polynomial.

Remark 4.4. The derivation of the Routh-Hurwitz criterion in [7] is carried

out using the Cauchy index which ignores the imaginary axis roots. Therefore,

in [7], it is possible to deal with the singular cases and obtain a count of the

number of open right half-plane zeros by conveniently modifying Routh’s algo-

rithm. However, the modifications proposed here allow us to count the number

of closed right half-plane roots when the original polynomial has roots on the

imaginary axis.

5. Conclusion. In this paper, we provided generalized versions of the in-

terlacing property, leading to a simple proof of the Routh-Hurwitz criterion

and recovering the unstable zero-counting capability of Routh’s algorithm. As

mentioned earlier, such simple derivations are highly needed to make the proof

of the Routh-Hurwitz criterion accessible to as many audience as possible on

the mathematical stage. It is also expected that the generalizations of the in-

terlacing property presented here are likely to have far reaching implications

on some long standing stability problems. Such concerns are currently under

investigation and will be addressed in a future work.
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