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We prove an equivalent relation between Ky Fan-type inequalities and certain
bounds for the differences of means. We also generalize a result of Alzer et al.
(2001).
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1. Introduction. Let P, ,(x) be the generalized weighted power means:
Ppy(x) = (311 wix V", where w; > 0,1 <i<nwith >, w; =1and x =
(X1,X2,-..,Xn). Here, Ppo(x) = [T, x;" denotes the limit of P, , (x) as r — 0%,
which can be proved by noting that if p(r) = In(X, w;x}), then p’(0) =
ln(]_[?:le”) =In(P,0(x)). We write P, for P, , (x) when there is no risk of
confusion.

In this paper, we assume that 0 < x; < x» < - - - < x5,. With any given x, we
associate x’ = (1 —x1,1 —x2,...,1 —x,) and write A, = Py1, Gn = Py, and
Hy, = Py,—1. When 1 —x; = 0 for all i, we define A; = Py (x’) and similarly for
G, and H;,. We also let o, = D1 wi[xi — Ay ]?.

The following counterpart of the arithmetic mean-geometric mean inequal-
ity, due to Ky Fan, was first published by Beckenbach and Bellman [7].

THEOREM 1.1. For x; € (0,1/2],

A, An
< — 1.1
Gh = Gn (L-1)
with equality holding if and only if x1 = - - - = xy.

In this paper, we consider the validity of the following additive Ky Fan-type
inequalities (with x; < x,, < 1):

’ ’
X1 Pn,r_Pn,s Xn
1-x1  Puy—Pngs 1-xn"

(1.2)

Note that by a change of variables x; — 1 — x;, the left-hand side inequality
is equivalent to the right-hand side inequality in (1.2). We can deduce (see [9])
Theorem 1.1 from the case ¥ =1, s =0, and x,, < 1/2 in (1.2), which is a result
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of Alzer [5]. Gao [9] later proved the validity of (1.2) forr =1, -1 <5 < 1, and
Xn <1/2.

What is worth mentioning is a nice result of Mercer [12] who showed that
the validity of ¥ = 1 and s = 0in (1.2) is a consequence of a result of Cartwright
and Field [8] who established the validity of ¥ = 1 and s = 0 for the following
bounds for the differences between power means (» > s):

¥—s ¥—=s

——0n=Pyy—Pps=——
2Xnp

2x; On, (1.3)

where the constant (» —s)/2 is the best possible (see [10]).

We point out that inequalities (1.2) and (1.3) do not hold for all ¥ > s. We refer
the reader to the survey article [2] and the references therein for an account of
Ky Fan’s inequality, and to [4, 5, 10, 11] for other interesting refinements and
extensions of (1.3).

Mercer’s result reveals a close relation between (1.3) and (1.2), and it is our
main goal in the paper to prove that the validities of (1.3) and (1.2) are equiva-
lent for fixed » and s. As a consequence of this result, we give a characterization
of the validity of (1.3) for = 1 or s = 1. A solution of an open problem from
[11] is also given.

Among the numerous sharpenings of Ky Fan’s inequality in the literature,
we have the following inequalities connecting the three classical means (with
w; = 1/n here):

()" A ()" < (An) 14
The right-hand side inequality of (1.4) is due to W. L. Wang and P. F. Wang
[14] and the left-hand side inequality was recently proved by Alzer et al. [6].
It is natural to ask whether we can extend the above inequality to the
weighted case, and using the same idea as in [6], we show that this is indeed
true in Section 5.

2. The main theorem

THEOREM 2.1. For fixedr > s, the following inequalities are equivalent: (i) in-
equality (1.2) for x,, < 1/2; (ii) inequality (1.2); (iii) inequality (1.3).

PROOF. (iii)=(ii) follows from a similar argument as given in [12], (ii)=(i) is
trivial, so it suffices to show that (i)=(iii).

Fix v > s assuming that (1.2) holds for x, < 1/2. Without loss of gener-
ality, we can assume that x; < x;,. For a given x = (x1,x2,...,X5), let y =
(ex1,€x2,...,€xy). We can choose € small so that ex, < 1/2. Now, applying
the right-hand side inequality (1.2) for y, we get

i (P () = Py (0) > T2 (P (3) = P (). @.1)
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Let f(€) = Pp, (V') — Py s(y'), then f'(0) =0 and f"(0) = (¥ —5)0y,. Thus,
by letting € tend to 0, it is easy to verify that the limit of the expression on the
right-hand side of (2.1) is (v — s)0, /2. We can consider the left-hand side of
(1.2) by a similar argument and this completes the proof. O

3. An application of Theorem 2.1
LEMMA 3.1. If inequality (1.3) holds forv > s, then 0 <v +s < 3.
PROOF. Letn =2, and write w; =1-¢q, w2 =q, x1 =1, and x> = 1+t with

t>-1.Let

r-s
2

1

wﬂm—Aﬂz—&m+&;- (3.1

M

D(t;r,s,q) =
1

Fort > 0, D(t;7,s,q) = 0 implies the validity of the left-hand side inequality
of (1.3) while for —1 <t <0, D(t;7,s,q) < 0 implies the validity of the right-
hand side inequality of (1.3).

Using the Taylor series expansion of D(t;7,s,q) around t = 0, it is readily
seen that D(0;7,s,q) = DY (0;v,s,q) = D@ (0;7,s,q) = 0. Thus, by the La-
grangian remainder term of the Taylor expansion,

(3) .
D(t;v,s,q) = Wﬁ (3.2)
with 0 < 0 < 1.
Since
tlirg1+D‘3)(9t;r,s,q) =D (0;7,s,4), (3.3)

a necessary condition for (1.3) to hold is D (0;7,s,q) = 0 for 0 < g < 1. The
calculation yields

D®(0;7,5,q) = (r—=5)q(q—-1)((3-2r =25)g— (3—-7—5)). (3.4)

It is easy to check that this is equivalent to 0 < v +s < 3. O

THEOREM 3.2. Letv > s. If v = 1, inequality (1.3) holds if and only if —1 <
s < 1.If s =1, inequality (1.3) holds if and only if 1 <v < 2.

PROOF. A result of Gao [9] shows the validity of (1.2) forr =1, -1 <s <1,
Xn < 1/2, and a similar result of his [10] shows the validity of (1.2) for s =1,
1<r <2, xy, <1/2.Thus, it follows from Theorem 2.1 that (1.3) holds for » =
1,-1<s<1,and s =1, 1< v < 2. This proves the “if” part of the statement,
and the “only if” part follows from the previous lemma. ]
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We note here that a special case of Theorem 3.2 answers an open problem
of Mercer [11], namely, we have shown that

1 1
—Oopn=>A,—-H, > —o0y,. (3.5)
X1 Xn

4. Two lemmas

LEMMA 4.1. Letx, b, u, and v be real numbers withO <x <b,u>1,v >0,
andu+v > 2, then f(u,v,x,b) <0, where

u+v-1 1 1 u+v-2

fuv,x,b) = ux+vbh  x2(u/x+v/b) x b2(u+v)?

vix-b) (4.1)

with equality holding if and only if x =b orv =0o0oru=v = 1.

PROOF. Let x <b,u>1,and v > 1. We have

Fuv,x.b) :v(b—x)<— (u-1)b+(w-1)x (u71)+(v71))

x(bv +ux)(bu+vx) b2(u+v)?2

%[((u—l) FW=1))x—u-1b-(v-1)x] (42
- v(u-1)(b-x)?
T xb2(u+v)? <0

since b2 (u+v)? > (bv +ux)(bu+vx). Thus, we conclude that f(u,v,x,b) <
OforO<x<b,u=1,v=0,andu+v = 2. O

LEMMA 4.2. Let x, a, b, u, v, and s be real numbers with 0 < x <a < b,
u>l,v=1l,u+v=>3,and0 <s <v, then

u+v-1 + 1 _l
ux+sa+w-s)b x2(u/x+s/a+(wv-s)/b) x
(4.3)
u+v-2

T Pusv Sx @ W= (x=b)) <0

with equality holding if and only if one of the following cases is true: (1) x = a =
b;(2)s=0andx =b;(3)s=v and x = a.

PROOF. Let M = {(s,a) € R?|0 <s <v, x <a < b}. Furthermore, we define
H(s,a) as the expression on the left-hand side of (4.3), where (s,a) € M. It
suffices to show that H(s,a) < 0. We denote the absolute minimum of H by
m = (Sp,ao). If m is an interior point of M, then we obtain

o_loH 1 oH b-a

= = >0
sda a-b s |sa-tpan x*ab(u/x+s/a+ (v —s)/b)’
(4.4)
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Hence, m is a boundary point of M, so we get
m € {(s0,x), (s0,0), (0,a0), (v,a0)}. (4.5)
Using Lemma 4.1, we obtain

H(so,x) = f(u+so,v—50,x,b) <0,
H(so,b) = H(0,a0) = f(u,v,x,b) <0,

v(u+v-2)(ap—x)(b*-a3)
aib?(u+v)?2

(4.6)
<0.

H(v,a0) = f(u,v,x,a9) -

Thus, we get that if (s,a) € M, then H(s,a) < 0. The conditions for equality
can be easily checked using Lemma 4.1. O

5. A sharpening of Ky Fan’s inequality. In this section, we prove the fol-
lowing theorem.

THEOREM 5.1. For0<x; <---<Xxp,q=min{w;},

1-2 1-2
Zqonz (1-9)InA, +qInH,, —InG,, > —Zq()'n, (5.1)
2X1 2X7n
1-2 1-2
Zq on=>InG,—qlnA,—(1-qg)InH, > Zq On (5.2)
2x1 2Xn
with equality holding if and only if g = 1/2 or x, = - - - = Xp,.

PROOF. The proof uses the ideas in [6]. We prove the right-hand side in-
equality of (5.1); the proofs for other inequalities are similar. Fix 0 < x = x7,
xn = b with x1 < x,,, n > 2; we define
1-2¢g

——5 O, (5.3)
n

fn(xnal;I) =(1-qg)nA,+qlnH, -InG, - ox

where we regard A,, G,, and H,, as functions of x,, = (x1,...,x5).
We then have
1 ofn 1-q qH, 1 1-2¢q

— 2 + - —Ay). 4
w1 6x1 An X% X1 X% (XI n) (5 )

gn(Xz,...,Xn_]) =

We want to show that g, < 0. Let D = {(x2,...,Xp-1) ER" 2 |0 < x < xp <
- <Xxp-1 <b}.Leta=(ay,...,an-1) € D be the point in which the absolute
minimum of g, is reached. Next, we show that

a=(x,...,x,a,...,a,b,....,.b) withx<a<b, (5.5)

where the numbers x, a, and b appear 7, s, and t times, respectively, with
r,s,t>0andr+s+t=n-2.
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Suppose not, this implies that two components of a have different values
and are interior points of D. We denote these values by a, and a;. Partial
differentiation leads to

%+C=O (5.6)

i

for i = k,, where

1-g 1-2g

- 5.7
A x5 -7

HZ
B=q—5, C=
X1

Since z — B/z2 + C is strictly monotonic for z > 0, then (5.6) yields ax = a;.
This contradicts our assumption that ay # a;. Thus, (5.5) is valid and it suffices
to show that g, < 0 for the case n = 2,3.

When n = 2, by setting x; = x, xo = b, w1/q = u, and w;/q = v, we can
identify g, as (4.1), and the result follows from Lemma 4.1.

When n = 3, by setting x; = x, x» = a, X3 = b, w1/q = u, w/q = s,
and ws3/q = v — s, we can identify g3 as (4.3), and the result follows from
Lemma 4.2.

Thus, we have shown that g,, = (1/w1)0f,/0x1 < 0 with equality holding if
and only if n =1 or n =2, g = 1/2. By letting x; tend to x», we have

fn(xn:Q) an—l(xn—laQ) an—l(xn—lvq,)’ (5-8)

where x,,_1 = (x2,...,X,) with weights w1 + w3, ...,w,-1, 0, and ¢' = min{w;
+ w2,...,wy}. Here, we have used the following inequality, which is a conse-
quence of (3.5) (see [9]):

1
InA,—-InH,, > ?0',1. (5.9)

n

It then follows by induction that f,, > f,-1 > ---> fo =0when g =1/2 in
frorelse fy > fu-1=---= f1 =0, and this completes the proof. O

We note that the above theorem gives a sharpening of Sierpinski’s inequality
[13], originally stated for the unweighted case (w; = 1/n) as

H' A, <G <AV 'H,. (5.10)

The following corollary gives refinements of (1.4).
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COROLLARY 5.2. ForO0<x; <---<x, <1, q=min{w;},

(1— ra N (1-x1)2/x? _ (1— ra\ (1=xn)2/x3
(An(l q)an> 1 1>A,11qHﬁ>(Ayfl q)an n n
—_ —_ Gl b

Gn Gn 11
, (1-x1)2/x? , (1-xn)2/x7 .11
Gais) == )
A "t |
with equality holding if and only if x1 =x2=---=x, orq=1/2.

PROOF. This is a direct consequence of Theorem 5.1, following from a sim-
ilar argument as in [12]. O

6. Concluding remarks. We note that if for x,, < 1/2, we have

B p. _p’ o
( X1 ) <t ns ( Xn ) ’ 6.1)
1-x Pny—Pns 1-xyn

then B > 1 and « < 1; otherwise, by letting € tend to 0 in (2.1), we get contra-
dictions.
It was conjectured that an additive companion of (1.4) is true (see [1])

n(Gn—Gp) <(m-1)(A,—A}) +H,—H,,. (6.2)
In [3], Alzer asked if the above conjecture is true and whether there exists a

weighted version. Based on what we have got in this paper, it is natural to give
the following conjecture of the weighed version of (6.2).

CONJECTURE 6.1. ForO<x; <---<x,<1/2 and q =min{w;},
Gn-G, <(1-q)(An—A}) +q(H,—H,). (6.3)

Recently, Alzer et al. [6] asked the following question: what is the largest
number & = «(n) and what is the smallest number = (n) such that

x(Ap—A))+(1-)(Hyn—Hy,) <Gn—G,, < B(Ay—A),)+(1-B)(H,—H,;,)
(6.4)

forall x; € (0,1/2] (i=1,...,n)?
We note here that « < 0 since the left-hand side inequality above can be

written as

0Ap+(1-c)Hp—Gp < @A, +(1-)H, — G,,. (6.5)
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By a similar argument as in the proof of Theorem 2.1, replacing (x1,...,Xx5)
by (ex1,...,€xy) and letting € tend to 0 in (6.5), we find that (6.5) implies that

XA, +(1-c)Hy -G, <0 (6.6)
for any x. If we further let x; tend to 0 in (6.6), we get
xA, <0 (6.7)

which implies that « < 0.

ACKNOWLEDGMENT. The author is grateful to the referees for their helpful
comments and suggestions.

REFERENCES

[1] H. Alzer, An inequality for arithmetic and harmonic means, Aequationes Math.
46 (1993), no. 3, 257-263.

[2] , The inequality of Ky Fan and related results, Acta Appl. Math. 38 (1995),
no. 3, 305-354.

[3] ___, OnKy Fan’s inequality and its additive analogue, J. Math. Anal. Appl. 204
(1996), no. 1, 291-297.

[4] | A new refinement of the arithmetic mean-geometric mean inequality,
Rocky Mountain J. Math. 27 (1997), no. 3, 663-667.

[5] —, On an additive analogue of Ky Fan’s inequality, Indag. Math. (N.S.) 8

(1997), no. 1, 1-6.
[6] H.Alzer, S. Ruscheweyh, and L. Salinas, On Ky Fan-type inequalities, Aequationes
Math. 62 (2001), no. 3, 310-320.
[7] E. F. Beckenbach and R. Bellman, Inequalities, Ergebnisse der Mathematik und
ihrer Grenzgebiete, N. F., Bd. 30, Springer-Verlag, Berlin, 1961.
[8] D. I Cartwright and M. J. Field, A refinement of the arithmetic mean-geometric
mean inequality, Proc. Amer. Math. Soc. 71 (1978), no. 1, 36-38.
[9] P. Gao, A generalization of Ky Fan'’s inequality, Int. J. Math. Math. Sci. 28 (2001),
no. 7, 419-425.
[10] ____, Certain bounds for the differences of means, RGMIA Res. Rep. Coll. 5
(2002), no. 3, Article 7.
[11]  A. McD. Mercer, Bounds for A-G, A-H, G-H, and a family of inequalities of Ky
Fan'’s type, using a general method, J. Math. Anal. Appl. 243 (2000), no. 1,
163-173.
[12]  P.R. Mercer, A note on Alzer’s refinement of an additive Ky Fan inequality, Math.
Inequal. Appl. 3 (2000), no. 1, 147-148.
[13] W. Sierpinski, On an inequality for arithmetic, geometric and harmonic means,
Warsch. Sitzungsber. 2 (1909), 354-358 (Polish).
[14] W. L. Wang and P. F. Wang, A class of inequalities for the symmetric functions,
Acta Math. Sinica 27 (1984), no. 4, 485-497 (Chinese).

Peng Gao: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109,
USA
E-mail address: penggao@umich.edu


mailto:penggao@umich.edu

