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MAPPING PROPERTIES FOR CONVOLUTIONS INVOLVING
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For u > 0, we consider a linear operator L, : A — A defined by the convolution
Suxf, where f, = (1 -p)z2Fi(a,b,c;z) + uz(z2Fi(a,b,c;z))". Let @*(A,B) de-
note the class of normalized functions f which are analytic in the open unit disk
and satisfy the condition zf"/f < (1+Az)/1+Bz, -1 < A<B <1, and let Ry (B)
denote the class of normalized analytic functions f for which there exits a number
n e (—m/2,1/2) such that Re(e" (f'(z) —B)) > 0, (B < 1). The main object of this
paper is to establish the connection between R, (B) and @*(A,B) involving the
operator Ly (f). Furthermore, we treat the convolution I = foz(fu(t)/t)dt * f(z)
for f € Ry(B).

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let A denote the class of functions of the form
f(2)=z+ > anz", (1.1)
n=2

which are analytic in the open unit disk U = {z : |z| < 1} and S denotes the
subclass of functions in A which are univalent in U. Moreover, let $* («) and
K () be the subclasses of S consisting, respectively, of functions which are
starlike of order o and convex of order «, where 0 < @ < 1 in U. Clearly,
we have S*(x) < $*(0) = S*, where S$* denotes the class of functions in A
which are starlike in U and K(x) < K(0) = K, where K denotes the class of
functions in A which are convex in U, and we mention the well-known inclusion
chain K c $*(1/2) c §* C S. For the analytic functions g and h on U with
g(0) = h(0), g is said to be subordinate to h if there exists an analytic function
w on U such that w(0) =0, lw(z)| <1, and g(z) = h(w(z)) for z € U. We
denote this subordinated relation by

g<h or g(z)<h(z) (zel). (1.2)

For -1 < A < B < 1, a function p, which is analytic in U with p(0) =1, is
said to belong to the class P(A,B) if

1+Az
1+Bz

p(z) < (zelU). (1.3)
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The above condition means that p takes the values in the disk with a center
(1-AB)/(1-B?) and aradius |A—B|/(1-B?). The boundary circle cuts the real
axis at the points (1+A)/(1+B) and (1-A)/(1-B). A function f € A is said to
bein @*(A,B) if zf'/f € P(A,B), and in K(A,B) if zf" € @*(A,B). The class
@*(A,B) was introduced by N. Shukla and P. Shukla [4]. Also, Janowski [2]
introduced the class P(A,B). For the fixed natural number n, the subclass
P, (A,B) of P(A,B) containing functions p of the form p(z) =1+ p,z"+---,
z € U, was defined by Stankiewicz and Waniurski [7]. In addition, Stankiewicz
and Trojnar-Spelina [6] investigated a function p(z) =1 -p,z" — - - - belongs
to the class R(n,A,B), where A€ R and B € [0,1] if p(z) < (1+Az)/(1-Bz).
Let R, (B) denote the class of functions f € A for which there exists a number
n e (—m/2,1/2) such that

Re[e(f'(z)-B)]>0 (zeU, B<1). (1.4)

Clearly, we have R,(B) ¢ S (0 < B < 1). Furthermore, if a function f of the
form (1.1) belongs to the class R, (), then

2(1—B)cosn

(n e N\{1}). (1.5)
n

lan| <

The class R, (B) was studied by Kanas and Srivastava [3].
The hypergeometric function »Fi (a,b,c;z) is given as a power series, con-
verging in U, in the following way

< (@n(b)n

Fi(a,b,c;z) = z", 1.6
2hi )= 2 (D 10
where a, b, and ¢ are complex numbers with ¢ # 0,—1,-2,..., and (A),, denotes

the Pochhammer symbol (or the generalized factorial since (1), = n!) defined,
in terms of the Gamma function I', by

_TA+n)

(ANn:= I
HE if n =0, (1.7)
ClA@Q+D)--A+n-1) ifneN={1,2,.1).

Note that »F,(a,b,c;z), for a = ¢ and b = 1 (or, alternatively, for a = 1 and
b = c), reduces to the relatively more familiar geometric function. We also
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note that »F;(a,b,c;1) converges for Re(c —a — b) > 0 and is related to the
Gamma functions by

_I(c)I(c-a-b)

ZFI(a,b,c;l)—m'

(1.8)

The Hadamard product (or convolution) of two power series f(z) = >,_dnz"
and g(z) = >,_ob,z™" is defined as the power series

(f*9)(2) = > anbnz". (1.9)
n=0

N. Shukla and P. Shukla [4] studied the mapping properties of a function f, to
be as given in

fu(z) = (1= zoFi (a,b,c;2) + pz(z2F (a,b,c;2)) (u=0), (1.10)

and investigated the geometric properties of an integral operator of the form
z
t
I(z) = J wdt. (1.11)
0

We now consider a linear operator L, : A — A defined by

Ly (f) = fu(2) * f(2). (1.12)

For p=0in(1.12), Ly (f) = [Ia,p,c(f)1(z), which was introduced by Hohlov [1].
Also, Kanas and Srivastava [3], and Srivastava and Owa [5] showed that the
operator I, p . (f) is the natural extensions of the Alexander, Libera, Bernardi,
and Carlson-Shaffer operators. In this paper, we find a relation between R, (f)
and @*(A,B) involving the operator L, (f). Furthermore, we study to obtain
some conditions for the starlikeness and convexity of the convolution of I and
f, which are given by (1.11) and (1.1), respectively, for f € R,(f).

2. Main results. We make use of the following lemma.

LEMMA 2.1 [4]. Sufficient conditions for f of the form (1.1) to be in * (A, B)
and K (A,B) are

[1+B)n—(A+1)]|an| <B-A,

g 2.1)

NERY VP

n[(1+B)n—(A+1)]|an| <B-A,

n=2

respectively.
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THEOREM 2.2. Leta > 1,b > 1,andc >a+b+1.If f € R,(B) and the
inequality

I'(c)IT'(c—a->b) uab (u—1)(c—a-Db)
F(cfa)r(cfb)[(1+B)(1+cfafbfl>_(A+1)(u_ @-1)m-1 )]
1 (A+1D)(u-1)(c-1)
SUgﬂq)(Z(l—B)cosrlJr1)+ (a-1)(b-1)
(2.2)
is satisfied, then L, (f) € @*(A,B).
PROOF. By Lemma 2.1, it suffices to show that
= ) (1+m-Dp) (@ 1(b)n 1 ~
T := gz[(HB) (A+1)]’ BRI |l =B-A. (23)

Since f € R,(B) and |an| < 2(1 - p)cosn/n. Hence,

] (1+n-1)p)(@n-1(b)n_1 2(1—B)cosn

= (1D n

S
&M&%

[1+B)n—(A+1)

o (@)n(b)y
=2(1-pB)cosny (1+B) -1
1 (nZO (©)n(Dn )

@ Dub-Dy | (@-1b-1)
0 (c=1D)n(D)n c—1

(A+1)(c-1)
C(a-D(-1)

Ms

(1+B)uab (a+1)p(b+1),
¢ 2, (c+1)n(1)n

n=0

(A+1)u{z 1)

o (a=1D)n(b—1)y
(a- 1)(b 1) (nzo (©n(1)p

. la-DH-1)
c—1

—2(1_B)Cosn{r(c)r(c_a_b)|:(1+3)(l+c_uab>

I'(c—a)l'(c-Db) a-b-1
(u—1)(c—a->b)
+(A+1)(“_—(a—1)(b—1) )}

(u=1)(c-1)

Now, this last expression is bounded above by B — A if (2.2) holds. ]

(2.4)
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If we take y=0,A =2x—1,and B = 1 in Theorem 2.2, we have the following
corollary.

COROLLARY 2.3. Leta>1,b>1,andc >a+b+1.1If f € R,(B) and the
inequality

I[(c)[(c—a—-Db) [1 x(c—a-Db) ]

[(c—a)l(c-b)|  (a-1)(b-1)
o (2.5)
1 x(c—
S(1_"‘)(2<1—B>cosn+ >_(a—1)(h—1)

is satisfied, then z>F1(a,b,c;z) x f € S*(x).

If we take x = 0, B = 0, and n = 0 in Corollary 2.3, we get the following
corollary.

COROLLARY 2.4. Leta>1,b>1,andc >a+b+1.1If f €S, and the in-
equality

I'(c)I'(c—a-Db)

3
I'(c—a)T(c-Db) = 2 (2.6)

is satisfied, then z>Fy(a,b,c;z) x f € S*.

THEOREM 2.5. Leta > 0,b >0,andc >a+b+2.If f € Ry(B), and the
inequality

[(c)T(c-a-b)
m[B’A”(“B)(HZM)

ab +(1+B)u(a)2(b)z]
c-a-b-1  (c-a-b-2),

=5~ (gr=grcasn )

—(A+1)p)

(2.7)

is satisfied, then L, (f) € K(A,B).

PROOF. The proof follows from Lemma 2.1. Using the method of the proof
of Theorem 2.2, we omit the details involved. O

For u=0,A=2x-1,and B = 1, Theorem 2.5 yields the following corollary.
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COROLLARY 2.6. Leta>0,b>0,andc >a+b+2.If f € Ry,(B) and the
inequality

I'(c)I'(c—a-Db) ab 1
T'(c—a)T'(c—Db) [170(+ c—a—b—l] = ui(x)(Z(l—B)cosn +1) (2.8)

is satisfied, then z>F(a,b,c;z) x f € K(x).
For @« =0, B =0, and n = 0, Corollary 2.6 yields the following corollary.

COROLLARY 2.7. Leta >0, b >0,andc >a+b+1.If f € S and the
inequality

w

<= (2.9)

I'(c)IT'(c—a-Db) [1 ab ]
2

I'(c—a)'(c-Db) c—-a-b-1

is satisfied, then z,Fy(a,b,c;z) * f € K.

In our next theorems, we find the sufficient conditions for I * f to be in
@*(A,B) and K (A, B). From the definition of I given by (1.11), we obtain

I(z)=z+ Z (a- “)YC’;“_)l(Z’”l))" 1Pt on (50 zeU).  (210)

THEOREM 2.8. Leta >1,b>1,andc > a+Db.If f € R,(B) and the inequality

(1+B—(A+1)p),F (a,b,c;1) — (A+1)(1 - p)aF3(a,b,1,1,c,2,2;1)
(2.11)

1
< wA)(Z(l—[S)cosn +1)

is satisfied, then I x f € *(A,B).

PROOF. By Lemma 2.1, it satisfies to show that

1-—p+np)(@)n-1(b)n
(C)n-1(1)n

Z (1+B)n—(A+1)) <B-A. (2.12)
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Suppose that f € R,(B). Then by (1.5) we observe that

(1-p+np)(a)n-1(b)y—1 2(1—-p)cosn
()n-1(D)n n

T, < > (1+B)n-(A+1))
n=2

00

—2(1—B)cosn{((1 +B)(1—p)— (A+Dp) >

n=2

(@)n-1(b)n-1
(€)n-1(1)n

0o

—(A+DA—p)

n=2

i n-1(b)pn_
D

n=2

(@n-1(P)n-
(€)n-1(D)n+1

c—1
(a-1)(b-1)
-(A+1)(1-p)sF3(a,b,1,1,c,2,2;1)

= 2(1—ﬁ)cosn{((1+B)(1—u)—(A+1)u)( +2F (a,b,C;l))

+(1+B)u2F(a,b,c;1)

c—1
- [(<1+B>(1—u>—<A+1>u)m+B—A]}

(2.13)

by (2.11). This completes the proof. ]

Taking y =0, A =2x—1, and B = 1 in Theorem 2.8, we see the following
corollary.

COROLLARY 2.9. Leta>1,b>1,andc > a+b. If f € R,(B) and the in-
equality

1

ZFl(a,b,C;l)—0(4F3(01,b,1,1,c,2,2;1) =< (1—0() (m

+ 1) (2.14)

is satisfied, then [ 2F1(a,b,c;t)dt * f € S*(x).
Taking @ = 0, 8 = 0, and n = 0 in Corollary 2.9, we get the following corollary.

COROLLARY 2.10. Leta>1,b>1,andc > a+b. If f €S and the inequality

I(c)[(c-a-b) 3
Tc—a)(c—b) ~2 (2.15)

is satisfied, then [§ 2Fy(a,b,c;t)dt x f € S*.
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THEOREM 2.11. Leta >1,b > 1,andc >a+b+1.1If f € R,(B) and the
inequality

I'(c)IT'(c—a->b)

F(c—a)r(c—h)[(l+3)(l+c e )

—a-b-1
c—a-b c—a-b
+(A+”<“<(a—1)(b—1> _1)_ (a—l)(b—l))] (2.16)
1 )_(I*H)(AJrl)(cfl)
2(1-B)cosn (a-1)(b-1)

s(B—A)(

is satisfied, then I x f € K(A,B).

PROOF. The proof follows from Lemma 2.1 and by applying similar method
as in the proof of Theorem 2.8; we omit the details involved. O

If welet u=0,A=2x—-1,and B =1 in Theorem 2.11, we get the following
corollary.

COROLLARY 2.12. Leta>1,b>1,andc >a+b+1.If f € R,(B) and the
inequality

I'(c)I'(c—a->b) [1 x(c—a-Db) ]

I[(c—a)T(c-b)l (a-1)(b—-1) 2.17)
1 x(c—1) '
S“‘“)(m+ )‘m

is satisfied, then [§ 2F(a,b,c;t)dt x f € K(x).

If we let x =0, B =0, and n = 0 in Corollary 2.12, we have the following
corollary.

COROLLARY 2.13. Leta >1,b > 1,andc >a+b+1.If f € S and the
inequality

I'(c)[(c-a-b) 3
Tc—a)(c—b) ~2 (2.18)

is satisfied, then [ »Fy(a,b,c;t)dt * f € K.
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