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1. Introduction. The geometry of Finsler manifolds of constant flag cur-

vature is one of the fundamental subjects in Finsler geometry. Akbar-Zadeh

[1] proved that, under some conditions on the growth of the Cartan tensor, a

Finsler manifold of constant flag curvature K is locally Minkowskian if K = 0

and Riemannian ifK =−1. So far, the caseK > 0 is the least understood. Bryant

[9] has constructed interesting Finsler metrics of positive constant flag curva-

ture on the sphere S2. Recently, Bao and Shen [5] constructed nonprojectively

flat Randers metrics of constant flag curvature K > 1 on the sphere S3. The

present authors have extended the Bao-Shen result to higher dimensions (cf.

Bejancu and Farran [7]). We proved that, for any constant K > 0, there exists

a Randers metric on the tangent bundle of the unit sphere S2n+1, n ≥ 1, such

that the Finsler manifold F2n+1 = (S2n+1,F) has constant flag curvature K and

is not projectively flat. Recently, Shen [13, 14] constructed interesting exam-

ples of Randers manifolds of constant curvature, and Bao and Robles [4] found

necessary and sufficient conditions for a Randers manifold to have constant

flag curvature. The purpose of the present paper is to show that, subject to

some natural conditions, Randers manifolds of positive constant flag curva-

ture are diffeomorphic to odd-dimensional spheres. More precisely, we prove

Theorem 2.2.

The proof we give to this theorem reveals a surprising relationship between

Randers manifolds of positive constant flag curvature and Sasakian space

forms.

2. Finsler manifolds of constant flag curvature. In the first part of this

section, we present the concept of Finsler manifold of constant flag curvature.

Then, we consider Randers manifolds and present the Yasuda-Shimada theo-

rem [17] on Randers manifolds of positive constant curvature. Finally, we state

the main result of the paper.
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Throughout the paper, we denote by �(M) the algebra of differentiable func-

tions on M and by Γ(E) the �(M)-module of the sections of a vector bundle

E over M . Also, we make use of Einstein convention, that is, repeated indices

with one upper index and one lower index denote summation over their range.

Let Fm = (M,F) be a Finsler manifold, where M is an m-dimensional C∞

manifold and F is the Finsler metric of Fm. Here, F is supposed to be a C∞

function on the slit tangent bundle TM0 = TM \ {0} satisfying the following

conditions:

(i) F(x,ky)= kF(x,y), for any x ∈M , y ∈ TxM , and k > 0;

(ii) the m×m Hessian matrix

[
gij(x,y)

]=
[

1
2

∂2F2

∂yi∂yj

]
(2.1)

is positive definite at every point (x,y) of TM0.

We denote by (xi,yi) the coordinates on TM0, where (xi) are the coordinates

onM . The local frame field on TM0 is {∂/∂xi,∂/∂yi}. Then, the Liouville vector

field L = yi(∂/∂yi) is a global section of the vertical vector bundle VTM0.

Moreover, � = (1/F)L is a unit Finsler vector field, that is, we have

gij(x,y)�i�j = 1, where �i = y
i

F
. (2.2)

A complementary vector bundle to VTM0 in TTM0 is called a nonlinear

connection. The canonical nonlinear connection of Fm is the distributionGTM0

whose local frame field is given by (see Bejancu and Farran [6, page 37])

δ
δxi

= ∂
∂xi

−Gji
∂
∂yj

, (2.3)

where we set

Gji =
∂Gj

∂yi
; Gj = 1

4
gjh

(
∂2F2

∂yh∂xk
yk− ∂F

2

∂xh

)
. (2.4)

The local coefficients Gji are used to define the following Finsler tensor fields:

Rkj = �h
(
δ
δxi

(
Gkh
F

)
− δ
δxh

(
Gkj
F

))
; Rij = gikRkj . (2.5)

Next, we consider a flag �∧V at x ∈M determined by � and the tangent vec-

tor V = Vi(∂/∂xi). Then, according to Bao et al. [3, page 69], the flag curvature

for the flag �∧V is the number

K(�,V)= ViRijVj

gijV iVj−
(
gij�iVj

)2 . (2.6)
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In caseK(�,V) has no dependence on (xi,yi,V i), i∈ {1, . . . ,m}, that is,K(�,V)
is a constant function, we say that Fm is a Finsler manifold of constant flag

curvature. It is proved that Fm is of constant flag curvature K if and only if (cf.

Bao et al. [3, page 313])

Rij =Khij, (2.7)

where hij are the local components of the angular metric on Fm given by

hij = gij−�i�j, where �i = gij�j. (2.8)

A special Finsler metric was considered by Randers [12]. To define it, we

suppose that M is an m-dimensional manifold endowed with a Riemannian

metric a = (aij(x)) and a nowhere zero 1-form b = (bi(x)). Then, we define

on TM0 the function

F(x,y)=
√
aij(x)yiyj+bi(x)yi. (2.9)

It is proved that F is positive-valued on the whole TM0 if and only if the length

‖b‖ of b satisfies (see Antonelli et al. [2, page 43])

‖b‖2 = bi(x)bi(x) < 1, (2.10)

where bi(x) = aij(x)bj(x), and [aij(x)] is the inverse matrix of [aij(x)]. A

Finsler metric given by (2.9) is called a Randers metric, and Fm = (M,F,aij,bi)
is called a Randers manifold. Next, we consider the 1-form

β= bj(bj|i−bi|j)dxi, (2.11)

where the covariant derivative is taken with respect to Levi-Civita connection

on M . In dimensions 2 and 3, Shen [13, 14] constructed examples of Randers

manifolds whose flag curvature is constant and β ≠ 0 on M . This motivated

Bao and Robles [4] to determine necessary and sufficient conditions for a Ran-

ders manifold to have constant flag curvature. Also they proved that Yasuda-

Shimada theorem [17] is true with the additional condition β = 0 on M . From

these papers, we need the following result.

Theorem 2.1 (Yasuda and Shimada [17], Bao and Robles [4]). Let Fm =
(M,F,aij,bi) be a Randers manifold such that β= 0 onM . Then Fm is of positive

constant curvature K if and only if the following conditions are satisfied:

(i) the length ‖b‖ of b is a constant on M ;

(ii) the covariant derivative of b with respect to Levi-Civita connection de-

fined by a on M satisfies

bi|j+bj|i = 0; (2.12)
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(iii) the curvature tensor of the Riemannian manifold (M,a) is given by

Rhijk =K
(
1−‖b‖2)(ahjaik−ahkaij)

+K(bibkahj+bhbjaik−bibjahk−bhbkaij)
−bh|jbi|k+bh|kbi|j+2bh|ibk|j .

(2.13)

We should note that the above local components Rhijk are taken as follows

Rhijk = a
(
R
(
∂
∂xk

,
∂
∂xj

)
∂
∂xh

,
∂
∂xi

)
, (2.14)

where R is the curvature tensor of Levi-Civita connection ∇ on (M,a), and it is

given by

R(X,Y)Z =∇X∇YZ−∇Y∇XZ−∇[X,Y]Z, (2.15)

for any of the vector fieldsX,Y ,Z onM . As any Randers manifold of dimension

m= 1 is a Riemannian manifold, from now on we consider m> 1.

Apart from the conditions we put in Theorem 2.1, we find in Matsumoto [11]

the condition

bi|h|k =K
(
bhaik−biahk

)
. (2.16)

We show here that (2.16) is a consequence of conditions (i), (ii), and (iii). First,

from (2.12) we deduce that B = bi(x)(∂/∂xi) is a Killing vector field on M .

Thus, we have (cf. Yano and Kon [16, page 268])

R(X,B)Y =∇X∇YB−∇∇XYB, ∀X,Y ∈ Γ(TM), (2.17)

which, in local coordinates, is expressed as follows:

Rhijkbj = bi|h|k. (2.18)

Next, from (2.10) and taking into account (i), we deduce that

bi|jbi = 0. (2.19)

Then, contracting Rhijk by bj and taking into account (2.12) and (2.19), we

obtain

Rhijkbj =K
(
bhaik−biahk

)
. (2.20)

Thus, from (2.18) and (2.20), it follows (2.16).
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We make use of (2.16) in the proof of Lemma 4.2, which is crucial for proving

our main result which is stated as follows.

Theorem 2.2. Let Fm = (M,F,aij,bi) be an m-dimensional Randers mani-

fold of positive constant flag curvature with β = 0 on M . Then m must be an

odd number 2n+1. Moreover,M is a Sasakian space form that is isomorphic to

the sphere S2n+1, provided it is a simply connected and complete manifold with

respect to the Riemannian metric a = (aij).

3. Sasakian space forms. Let M be a (2n+ 1)-dimensional differentiable

manifold and ϕ, ξ, and η be a tensor field of type (1,1), a vector field, and a

1-form, respectively, on M , satisfying

ϕ2 =−I+η⊗ξ, (3.1a)

η(ξ)= 1, (3.1b)

where I is the identity map on Γ(TM). Then, we say that M has a (ϕ,ξ,η)-
structure. It is proved that we have (cf. Blair [8, pages 20, 21])

ϕ(ξ)= 0, (3.2a)

η◦ϕ = 0. (3.2b)

Also, there exists a Riemannian metric a on M such that

a(ϕX,ϕY)= a(X,Y)−η(X)η(Y), ∀X,Y ∈ Γ(TM). (3.3)

Taking Y = ξ in (3.3) and using (3.1b) and (3.2a), we obtain

η(X)= a(X,ξ), ∀X ∈ Γ(TM). (3.4)

Similarly, replace Y byϕX in (3.3), and using (3.1a), (3.2b), and (3.4), we deduce

that

a(ϕX,X)= 0, ∀X ∈ Γ(TM). (3.5)

The manifoldM endowed with a (ϕ,ξ,η,a)-structure is a Sasakian manifold

if and only if the above tensor fields satisfy (cf. Blair [8, page 73])

(∇Xϕ)Y = a(X,Y)ξ−η(Y)X, ∀X,Y ∈ Γ(TM), (3.6)

where∇ is the Levi-Civita connection with respect to the Riemannian metric a.

The following result on the existence of Sasakian structures on Riemannian

manifolds will be used later in the paper.
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Theorem 3.1 (Hatakeyama et al. [10]). Let (M,a) be a (2n+1)-dimensional

Riemannian manifold admitting a unit Killing vector field ξ such that

R(X,Y)ξ = a(Y ,ξ)X−a(X,ξ)Y , ∀X,Y ∈ Γ(TM), (3.7)

where R is the curvature tensor of the Levi-Civita connection on M . Then, M is

a Sasakian manifold.

We need the local expression of (3.7). To this end, we take X = ∂/∂xj , Y =
∂/∂xi, and ξ = ξk(∂/∂xk). Then, using (2.15) and (3.4), we deduce that (3.7) is

equivalent to

ξk|i|j−ξk|j|i = ηiδkj −ηjδki , (3.8)

where ηi = η(∂/∂xi).
Next, we denote by {ξ} the line distribution spanned by ξ on M . Then, the

orthogonal complementary distribution to {ξ} is denoted by {ξ}⊥ and is called

the contact distribution on M . A plane section in TxM is called a ϕ-section if

there exists a vector X ∈ {ξ}⊥x such that {X,ϕX} is an orthonormal basis of

the plane section. The sectional curvature H(X), determined by the ϕ-section

span{X,ϕX}, is called a ϕ-sectional curvature. Thus, we have

H(X)= a
(
R(X,ϕX)ϕX,X

)
, (3.9)

for any unit vector X in {ξ}⊥x . A Sasakian manifold M of constant ϕ-sectional

curvature c is called a Sasakian space form, and it is denoted by M(c). There

are many examples of Sasakian space forms in the literature (see Blair [8, page

99]). However, here we are interested in examples of Sasakian space forms

M(c) with c >−3. It was proved by Tanno [15] that, for any ε > 0, there exists

on the unit sphere S2n+1 a structure of Sasakian space form of constant ϕ-

sectional curvature c =−3+4/ε. We denote this Sasakian space form structure

by S2n+1(c). The same author proved the following theorem.

Theorem 3.2 (Tanno [15]). Let M(c) be a (2n+1)-dimensional simply con-

nected and complete Sasakian manifold with constant ϕ-sectional curvature

c >−3. Then, M is isomorphic to S2n+1(c).

Here, “M isomorphic to S2n+1(c)” means that M is diffeomorphic to S2n+1,

and the diffeomorphism maps the structure tensors on M(c) into the corre-

sponding structure tensors on S2n+1(c).

4. Proof of the main result. In the present section, we prove Theorem 2.2.

The proof is based on a striking similitude we discovered between Randers

manifolds of positive constant flag curvature and a special class of Sasakian

space forms. First, we prove the following lemma.
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Lemma 4.1. Let Fm = (M,F∗,a∗ij ,b∗i ) be a Randers manifold of positive con-

stant flag curvatureK∗. Then, there exists on TM0 a Randers metric F = (aij,bi)
of constant flag curvature K = 1.

Proof. First, we define on M the Riemannian metric

aij(x)=K∗a∗ij(x), (4.1)

and the 1-form

bi(x)=
√
K∗ b∗i (x). (4.2)

Then, the function

F(x,y)=
√
aij(x)yiyj+bi(x)yi =

√
K∗F∗(x,y) (4.3)

is a new Randers metric on TM0. Also, (4.3) and (2.1) imply that

gij(x,y)=K∗g∗ij(x,y), (4.4a)

gij(x,y)= 1
K∗
gij∗(x,y). (4.4b)

Next, using (2.4), (4.3), and (4.4), we deduce that F and F∗ define the same

canonical nonlinear connection, that is, we have Gji = Gj∗i . As a consequence,

(2.5), (4.3), and (4.4a) yield

Rij = R∗ij . (4.5)

Moreover, using (2.8) for both F and F∗ and taking into account (4.3) and (4.4a),

we infer that

hij =K∗h∗ij . (4.6)

Finally, since F∗ is a Randers metric of positive constant flag curvature K∗, by

(2.7) we have

R∗ij =K∗h∗ij . (4.7)

Thus, (4.5), (4.6), and (4.7) imply that Rij = hij , that is, F is a Randers metric

of constant flag curvature K = 1.

Next, we consider a Randers manifold Fm = (M,F,aij,bi) of constant flag

curvature K = 1 and β= 0. Our purpose is to prove that M is a Sasakian space

form. To this end, we first define on M a new 1-form η= (1/‖b‖)b. Clearly, η
is a unit 1-form, that is, we have

aijηiηj = 1. (4.8)
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Also, from (2.12), (2.13), and (2.16), we obtain

ηi|j+ηj|i = 0, (4.9)

Rihjk =
(
1−‖b‖2)(ahjaik−ahkaij)
+‖b‖2(ηiηkahj+ηhηjaik−ηiηjahk−ηhηkaij

−ηh|jηi|k+ηh|kηi|j+2ηh|iηk|j
)
,

(4.10)

ηi|j|k = ηjaik−ηiajk, (4.11)

respectively, since ‖b‖ is a constant onM . Now, we define onM the unit vector

field ξ = ξi(∂/∂xi), where we set

ξi = aijηj. (4.12)

Then, using (4.12), (4.9), and (4.11), we deduce that

aikξk|j+ajkξk|i = 0, (4.13)

aihξh|j|k =
(
aikajh−ajkaih

)
ξh. (4.14)

The distribution {ξ}⊥ that is complementary orthogonal to the line distri-

bution {ξ} on M is called, as in the case of Sasakian manifolds, the contact

distribution on M . It is easy to see that X ∈ Γ({ξ}⊥) if and only if η(X) = 0.
Now, we prove the following important lemmas.

Lemma 4.2. Let Fm = (M,F,aij,bi) be a Randers manifold of constant flag

curvature K = 1 and β= 0. Then, m must be an odd number 2n+1, n> 0.

Proof. Using the Levi-Civita connection onM with respect to the Riemann-

ian metric a = (aij) and the vector field ξ, we define on M a tensor field

ϕ = (ϕi
j) where we set

ϕi
j =−ξi|j . (4.15)

Then, (4.15), (4.12), and (4.9) yield

ϕi
jϕ

j
k =−aihajsηj|hηs|k. (4.16)

Next, from (4.8), it follows that

ajsηj|hηs = 0. (4.17)

Taking the covariant derivative of (4.17) and using (4.11) and (4.8), we deduce

that

ajsηj|hηs|k =−ajsηsηj|h|k = ahk−ηhηk. (4.18)
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Taking account of (4.18) in (4.16), we obtain

ϕi
jϕ

j
k =−δik+ξiηk. (4.19)

Finally, consider X =Xk(∂/∂xk) from the contact distribution of M , and infer

that

ϕi
jϕ

j
kX

k =−Xi (4.20)

since ηkXk = 0. Hence, the restriction ofϕ to {ξ}⊥ is an almost complex struc-

ture. Thus, the fibers of {ξ}⊥ must be of even dimension 2n. This implies that

m= 2n+1 with n> 0.

Lemma 4.3. Let Fm = (M,F,aij,bi) be a Randers manifold of constant flag

curvature K = 1 and β= 0. Then, M is a Sasakian manifold.

Proof. First, from (4.8) and (4.13), we deduce that there exists on M a

Killing vector field ξ. Then from (4.14), we obtain

ξi|j|k = δikηj−ajkξi, (4.21)

which implies (3.8). Hence, by Theorem 3.1, we get the assertion of our lemma.

Since M is a Sasakian manifold, we may use the local expressions of some

formulas from Section 3. First, we consider a unit vector field X = Xi(∂/∂xi)
from the contact distribution of M . Then, from (3.4) and (3.2b), we infer that

ηiXi = ηiϕi
jX

j = 0. (4.22)

Also, (3.3) and (3.5) yield

aijϕi
kX

kϕj
hX

h = aijXiXj = 1, aijϕi
kX

kXj = 0. (4.23)

Finally, using (4.9), (4.12), (4.15), and (4.20), we obtain

ηi|jXiXj = 0, ηi|jXiϕ
j
kX

k =−ηj|iXiϕj
kX

k = 1. (4.24)

Now, we prove the following theorem.

Theorem 4.4. Let Fm = (M,F,aij,bi) be a Randers manifold of constant

flag curvature K = 1 and β = 0. Then, M is a Sasakian space form of constant

ϕ-sectional curvature c ∈ (−3,1).

Proof. Let Xi =Xi(∂/∂xi) be a unit vector field from the contact distribu-

tion of M . Then, using (3.9) and (2.14), we deduce that

H(X)= RhijkXiXkϕh
s Xsϕ

j
tXt. (4.25)
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As by Lemma 4.3, M is a Sasakian manifold, we only need to prove that H(X)
is a constant on M . To this end, we replace the components of the curvature

tensor from (4.10) in (4.25), and using (4.22), (4.23), and (4.24), we obtain

H(X)= (1−‖b‖2){(ahjϕh
s Xsϕ

j
tXt

)(
aikXiXk

)−(ahkϕh
s XsXk

)(
aijXiϕ

j
tXt

)}
+‖b‖2{(ηiXi)(ηkXk)ahjϕh

s Xsϕ
j
tXt+

(
ηhϕh

s Xs
)(
ηjϕ

j
tXt

)
aikXiXk

−(ηiXi)(ηjϕj
tXt

)
ahkϕh

s XsXk−
(
ηhϕh

s Xs
)(
ηkXk

)
aijXiϕ

j
tXt

−(ηh|jϕh
s Xsϕ

j
tXt

)(
ηi|kXiXk

)+(ηh|kϕh
s XsXk

)(
ηi|jXiϕ

j
tXt

)
+2

(
ηh|iϕh

s XsXi
)(
ηk|jXkϕ

j
tXt

)}
= (1−‖b‖2)−3‖b‖2

= 1−4‖b‖2.
(4.26)

By assertion (i) of Theorem 2.1, ‖b‖ is a constant on M . So, M is a Sasakian

space form of constantϕ-sectional curvature c = 1−4‖b‖2. Moreover, we have

−3< c < 1 since 0< ‖b‖< 1, which completes the proof of the theorem.

Corollary 4.5. Let Fm = (M,F∗,a∗ij ,b∗i ) be a Randers manifold of positive

constant flag curvature K∗ and β = 0. Then, M is a Sasakian space form of

constant ϕ-sectional curvature c ∈ (−3,1).

Proof. By Lemma 4.1, there exists on TM0 a Randers metric F = (aij,bi)
of constant flag curvature K = 1. Thus, the assertion of the corollary follows

from Theorem 4.4.

Finally, suppose that Fm = (M,F,aij,bi) is a Randers manifold satisfying

the conditions from Theorem 2.2. Then, by Corollary 4.5 and Theorem 3.2, we

deduce that M is isomorphic to an odd-dimensional sphere. This completes

the proof of our main result in Theorem 2.2.

5. Conclusions. By Theorem 2.2, we classified the simply connected and

complete Randers manifolds of positive constant curvature satisfying the “Bao-

Robles condition” β= 0. We stress that the 1-form b = (bi(x)) that defines our

Randers metric is nowhere zero on the manifold. Examples of Randers metrics

of positive constant curvature for which b vanishes at some points of the

manifold are given by Shen [14], and Bao and Robles [4]. Finally, we conjecture

that Randers metrics of positive constant curvature whose β is nowhere zero

on the manifold live only on open sets of Rm.
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