RIESZ BASES AND POSITIVE OPERATORS ON HILBERT SPACE

JAMES R. HOLUB

Received 2 February 2002

It is shown that a normalized Riesz basis for a Hilbert space H (i.e., the isomorphic image of an orthonormal basis in H) induces in a natural way a new, but equivalent, inner product on H in which it is an orthonormal basis, thereby extending the sense in which Riesz bases and orthonormal bases are thought of as being the *same*. A consequence of the method of proof of this result yields a series representation for all positive isomorphisms on a Hilbert space.

2000 Mathematics Subject Classification: 46B15, 46C05, 47B65.

1. Introduction. Let *H* denote a Hilbert space (assumed real, for notational convenience) with inner product (\cdot, \cdot) and let $\{x_i\}$ be a basis for *H* having coefficient functionals $\{f_i\}$ denoted by $\{x_i, f_i\}$. We say that $\{x_i, f_i\}$ is a *Riesz basis* for *H* if it has the property that $\sum a_i x_i$ converges in *H* if and only if $\{a_i\}$ is in the sequence space l^2 . Equivalently, $\{x_i, f_i\}$ is a Riesz basis for *H* if and only if there is an isomorphism *U* on *H* and some orthonormal basis $\{\phi_i\}$ for *H* so that $U\phi_i = x_i$ for all *i*, implying that Riesz bases and orthonormal bases are the "same" in linear-topological terms, but differ in geometrical ones due to the additional orthogonality relations between basis vectors in an orthonormal basis that is lacking in a Riesz basis. The result below (Theorem 2.1) shows that this is, in a sense, an artificial distinction by showing that every Riesz basis, in fact, is an orthonormal basis for *H* under a different, but equivalent, inner product.

2. Main results

THEOREM 2.1. Let $\{x_i, f_i\}$ be a normalized Riesz basis for a Hilbert space H. Then there is an equivalent inner product on H in which $\{x_i\}$ is an orthonormal basis for H under the norm induced by this inner product.

PROOF. If *x* and *y* are any two vectors in *H*, then the sequences $\{(f_i, x)\}$ and $\{(f_i, y)\}$ are in l^2 , implying that $\sum (f_i, x)(f_i, y)$ converges. Clearly, the bilinear form on $H \times H$, defined by $\langle x, y \rangle = \sum (f_i, x)(f_i, y)$, is then an inner product on *H* for which $\langle x_i, x_j \rangle = d_{ij}$ for all *i* and *j*, in which $\{x_i\}$ is an orthonormal set that is also complete, since if $\langle x_n, x \rangle = 0$ for all *n*, then $0 = \sum (f_i, x_n)(f_i, x) = (f_n, x)$ for all *n*; that is, $0 = \sum (f_i, x_n)(f_i, x)$ by definition of the new inner product for all *n*, implying that $(f_n, x) = 0$ for all *n*, and hence that x = 0.

As usual, the inner product $\langle \cdot, \cdot \rangle$ defines a norm $\|\cdot\|_1$ on H by $\|x\|_1^2 = \langle x, x \rangle = \sum |(f_i, x)|^2$. Since $\{x_i\}$ is a Riesz basis, there is an isomorphism U on H that maps each vector ϕ_i in an orthonormal basis $\{\phi_i\}$ for H to the vector x_i , implying that the isomorphism $V = (U^*)^{-1}U^{-1}$ on H maps x_i to f_i for all i. Since, for any x in H, $\langle x, x \rangle = \sum (f_i, x)(f_i, x) = (\sum (f_i, x)(Vx_i, x)) = \sum (f_i, x)(Vx_i, x) = (V[\sum (f_i, x)x_i], x) = (Vx, x)$, we see that $(Vx, x) = \sum |(f_i, x)|^2 = \|x\|_1^2$ for all X in H, so V is a positive operator. If we let W denote the positive square root of V, then W is also an isomorphism on H so that, for any x in H, we have $\|x\|_1^2 = (Vx, x) = (Wx, Wx) = \|Wx\|^2 \le \|w\|^2 \|x\|^2$. In the same way, we see that $\|x\|_1^2 \le \|W^{-1}\|^2 \|x\|^2$, and it follows that the new norm $\|\cdot\|_1$ is equivalent to the original norm on H. In particular, H is then complete under the new norm, hence a Hilbert space, in which $\{x_i\}$ is then an orthonormal basis, being an orthonormal set, that is complete in the new inner product.

3. Positive operators. In the proof above we used the fact that if $\{x_i, f_i\}$ is a Riesz basis for a Hilbert space *H*, then the operator *U* on *H*, mapping x_i to f_i , is a positive isomorphism on *H*. It is interesting to note that, in fact, *every* positive isomorphism on *H* is such an operator for some Riesz basis in *H*, thereby providing a representation for all positive isomorphisms *U* on a Hilbert space.

THEOREM 3.1. An operator U on a Hilbert space on H is a positive isomorphism if and only if U is of the form $U = \sum f_i \otimes f_i$ for some Riesz basis $\{x_i, f_i\}$ for H (i.e., $Ux_i = f_i$ for all i).

PROOF. If $U = \sum f_i \otimes f_i$ for some Riesz basis $\{x_i, f_i\}$ for H, $\{\phi_i\}$ is an orthonormal basis for H, and T is the isomorphism on H mapping ϕ_i to f_i for all i, then $U = \sum T \phi_i \otimes T \phi_i = TT^*$, a positive isomorphism on H.

Conversely, if *U* is any positive isomorphism on *H*, then *W*, the positive square root of *U*, is also an isomorphism on *H*. If we set $f_i = W\phi_i$ for some orthonormal basis $\{\phi_i\}$, then $\{f_i\}$ is a Riesz basis for *H* so that, for any *x* in *H*, we have $Ux = W^2x = W[\sum(\phi_i, Wx)\phi_i] = W[\sum(W\phi_i, x)\phi_i] = \sum(f_i, x)W\phi_i = \sum(f_i, x)f_i$. That is, $U = \sum_i f_i \otimes f_i$ and the proof is complete.

James R. Holub: Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0123, USA

E-mail address: holubj@math.vt.edu