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This paper studies the stability properties of the concepts of local compactness
introduced by the authors in 1998. We show that all of these concepts are stable
for contractive, expansive images and for products.
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1. Introduction. Having introduced notions of local compactness, basis lo-
cal compactness and related measures, and having studied the basic relation-
ship among these concepts in [3], in this paper we study stability properties.
Keeping in mind the stability properties of local compactness in TOP, the cat-
egory of topological spaces and continuous maps, we study how our notions
behave under mappings and products. Especially, in the topological case, the
maps which are required in order to preserve local compactness are continuous
open surjections. This necessitated first finding out what is the right notion of
open map in AP. This is duly done in this paper, and it turns out that the notion
which we use has nice characterizations for a number of primitive approach
structures. Of course, it also turns out to be the right concept in connection
with local compactness.

2. Properties of local compactness in AP. In the construct of topological
spaces, we have the following properties related to local compactness (see any
good textbook on topology, e.g., [4]).

THEOREM 2.1. If f is a surjective, continuous, open map of a topological
space (X, T) to a topological space (Y,T") and (X, T) is (basis) locally compact,
then sois (Y, T').

THEOREM 2.2. Let ((Xj,Ti))ier be a family of topological spaces. Then
[Tie; (X4, Ti) is (basis) locally compact if and only if each (X;,T;) is (basis) lo-
cally compact and all but finitely many (X;, T;) are compact.

We would like to investigate whether the LCn and BLCn admit similar prop-
erties in AP. First, however, we will have to define a concept in AP similar to
the concept of an open map in TOP.

DEFINITION 2.3. Let (X,s) and (Y,#’) be approach spaces, let f: X — Y
be a map, and let x € X. Then f is expansive at x if and only if for every
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@ € d(x), f(@) belongs to ' (f(x)), where f(@)(y) :=infy;)-, @ (z). The
map f is called an expansion if and only if it is expansive at every x € X. In
that case, we also say that f is expansive.

REMARK 2.4. Let (X,s) and (Y,s’) be approach spaces, f: X — Y a map,
and A an approach basis for & and x € X. Then the following properties are
equivalent:

(1) f is expansive at x;

(2) for all @ € d(x), there exists @' € A’ (f(x)): f(@) < @’;

(3) forall € A(x), forall &, N €]0, o[, there exists ¢’ € A’ (f(x)): f(P)A
N=<@'+¢g

(4) forall p € A(x): f(@) € d'(f(x));

(5) for all @ € A(x), there exists " € A'(f(x)): f(p) < @’;

(6) forall @ € A(x),forall e, N €]0, [, there exists ¢’ € A’ (f(x)): f(P)A
N=<@ +e.

PROPOSITION 2.5. Let (X,T) and (Y,T’) be topological spaces. Then f :
(X,d+) = (Y,d) is expansive if and only if f: (X, T) — (Y,T') is open.
PROOF. The proof goes as follows:
fis an expansion < Vx € X, VV €V (x): f(0y) € A" (f(x))
= VxeX, VVeV(x): 0y ed (f(x))
= VxeX, VVeV(x): f(V) eV (f(x))

< f is open. O

(2.1)

In a similar fashion, we can prove the following result.

PROPOSITION 2.6. Let (X,sd) and (Y,") be approach spaces. If f : (X, ) —
(Y,d") is an expansion, then f: (X, Ty) — (Y, Ty ) IS open.

PROPOSITION 2.7. Let (X,d) and (Y,d") be approach spaces and let f : X —
Y be a map. Consider the following properties:
(1) f is an expansion;
(2) forallBCY, foralle € [0,00]: f~1(B®") c (f~1(B))®);
(3) forall BCY :6p-1(5) < 6pof;
(4) forevery filter4onY withGn f(X) = @, forall G € 4: A(stack f~1(9)) <
A’ (%) o f. The following relation holds:

(1) = (2) = (3) = (4). (2.2)
If f: X — Y is surjective, then
(1) = (2) = (3) = (4) (2.3)

with
4") for every filter 4 onY, A(stack f~1(9)) <A’ (9) o f.
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PROOF. (1)=(2).LetBCY and € € [0, ],

f‘l(B“)') =dxeX| sup infe'(b)=< s}
@'ed' (f(x)) beB

@ed(x) beB

C {x e X | sup inf f(@)(b) < e}
(2.4)

xeX| sup inf (p(z)ss}
@EeA(Xx) zef~1(B)

= (f ).
(2)=>3). Let BC Y, x € X, and € > 0. Suppose &' (f(x),B) < ¢, then x €
FLBE) c (f~1(B))®, s0 6(x, f1(B)) < ¢. This implies (3).
(3)=(1). Suppose there exist an xg € X, a g € A (xp), and &,N €]0, o[ such

that for every @’ € o’ (f(x0)), f(@o) AN £ @’ +¢&. For every @' € A’ (f(xp)),
define

B(@'):={yeY|f(po)(¥)AN>@ (y)+¢}. (2.5)

Notice that for every @', & € A’ (f(x0)),B(p'VE) =B(p')NB(E') and B(p') +
&. Then

sup 0" (f(x0),B(®')) AN

@’ esd’ (f(x0))
= sup sup inf O0(y)AN
@’ ed (f(x0)) O’ (f(xg)) YEB(@')
< sup sup inf  (p'VvO)(y)AN
@esd (f(xg)) O’ (f(xg)) YEB(@'VO)
= sup inf @ (y)AN
@’ ed (f(xg)) YEB(@') (2.6)
< sup inf  (f(®o)(¥)AN)—¢
@’ esd’ (f(xq)) YEB(@')
< sup sup inf  (E(x)AN)-¢
@' ed’ (f(xg)) E€st(xg) XEfL(B(@)
= sup  (8(x0,f " (B(@)))AN) —¢,
@' ed (f(xg))
SO
sup &' (f(x0),B(@')) < sup  &(xo,f " (B(®))), (2.7)
@ ed (f(xp)) @ ed (f(xp))

which contradicts (3).
(3)=(4). Let G be a filter on Y such that Gn f(X) = @ for all G €%,

A(stack f71(9)) = sup supdy. (2.8)
aeU (stack f~1(4)) UEU
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Now U is an ultrafilter containing stack f~1(%) if and only if ¥ := stack f(U)
is an ultrafilter containing %. Hence,

A(stack f71(9)) = sup sup Oy
VeU(9) Uestack f~1(V) 2.9)
= sup sup sup Oy.
VYeu(9) VET Usf-1(V)

Suppose that ¥ is an ultrafilter containing %,V € V', and U > f~1(V). Then for
every x € X, §(x,U) <8(x, f1(V)) <8 (f(x),V), whence

A(stack f71(9))(x) = sup sup sup Oy
VeU(9) VET U>f-1(v)

< sup supd’(f(x),V) =A"(9)(f(x)).
Veu(©) Ver

(2.10)

(4")=(3).If fis surjective, then (4)<(4’), so we are to prove (4)=(3). If we take a
subset B of Y, then 60 f = infycyg) A’ (V) o f. Now suppose that V' is an ultra-
filter containing B, then stack £~ (7') is an ultrafilter containing stack f~!(B).
We infer

’ ° . -1
Sgof ZvégmeStaCkf )
> inf A(stack f=H(¥
stack f~1(V)eU (f~1(B)) ( f7n) (2.11)
= 11'17fl AL = 5f—1(3).
weU (f~1(B)) 0

PROPOSITION 2.8. Let ((Xi,4;))icr be a family of approach spaces and let
(X,d) be their product approach space. Then for every k € I, the projection
pry: (X, ) — (Xi, o) is an expansion.

PROOF. Let x = (xj)ic; be an element of X. Then an approach basis for
A(x) is given by (see [1, 2])

A(x) = {supq)joprj |Je2W, vjeJ:p, e &dj(xj)}. (2.12)
JjeJ

Take k € I, a finite subset J of I, and a collection (@) jc; such that ¢; belongs
to s;(x;) for every j € J. We need to prove that

pry (sup(pjoprj> € sy (xk). (2.13)
JjeJ

Let v € Xy. Notice that pry(sup;c; @;opr;)(y) =inf;, - sup,c; @;(z;).
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First case: k € J. If we define z0 := (z?)iel with z? = x; for every j € J\{k},
22 =y, and z? a fixed but arbitrary element of X; for every i € I\ J, we get that

inf sup;(z;) = inf ((Pk(y)\/ sup Q%(%))
zk=y jeJ K=Y Jent

=@i(y)Vvinf sup @;(z;) (2.14)
zx=y jeJ\{k}

=@r(y)Vv sup @;(29).
JeJ\ ik}

Hence, pri(supjc;@j o prj)(y) < @r(y) v 0 = @i(y), which entails
I (Supje; @ oPr) € sy (x).

Second case: k ¢ J. Define z} := x; for every j € J, z{ := v, and z{ a fixed
but arbitrary element of X; for every i € I\(J U {k}). Then

pry (Supcpjoprj>(y) = inf sup;(z;) <SUD(P;( =0, (2.15)
jeJ zk=y jej
SO prk(supjejcpjoprj):Oeﬂk(xk). O

We will now formulate and prove properties of local compactness in AP
similar to Theorems 2.1 and 2.2 in TOP.

THEOREM 2.9. For every n € {1,2,3,4,5}, if f: (X,dA) — (Y, ") is a sur-
Jective, expansive contraction and (X,d) is (B)LCn, then (Y,d’) is (BILCn as
well.

PROOF. We will only prove the case of BLC5, as the other cases follow similar
lines of thought. Let y € Y, then there exists an x € X such that y = f(x). Let
&> 0. We first show that ¥ () = stack f (V¢ (x)), suppose F belongs to V¢ (x).
Then there exist some @ € #(x) such that F D {p < &}, so since f(g) belongs
to A" (y), fHUp < €}) = {f(@) < €} belongs to V,(y). Hence f(F) belongs
to V(). Next, suppose that G € V;(y), then there exists some @’ € s’ ()
such that G D {@’ < €}. Since @’ o f belongs to A(x), {Q' o f < €} € Ve(x),
whence f({@' o f < ¢&}) = {@’ < €} belongs to f(T:(x)). This implies G €
stack f(Ve(x)).

This result being shown, take G € V() and ¢’ < €. Then

inf p.(H)< inf p.(f(K))< inf p(K)
HeV' o (y) KeVr(x) KeVr(x)

HcG Kcf1G) Kcf~1(G) (2.16)
<inf AV (x)(z) < inf A"V (¥)(w)
zeX weY
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For the notions (B)LC1 and (B)LC2, we are able to prove a theorem completely
similar to Theorem 2.2. This is not possible, however, for the other notions of
(basis) local compactness in AP. We do have a somewhat weaker result for
these notions.

THEOREM 2.10. Foreveryn € {1,2}, let ((X;,4;))ie; be a family of approach
spaces. Then [[;c;(Xi, ;) is (BILCn if and only if each (X;, ;) is (BILCn and all
but finitely many (X;,Ty;) are compact.

PROOF. For (B)LC1, this theorem is a straightforward consequence of
Theorem 2.2 and the fact that the topological coreflection of a product in AP
is the product in TOP of the topological coreflections of the factor spaces. For
(B)LC2, the proof is easy and almost identical to the proof of Theorem 2.2. O

As we will see in the following theorems, the product theorem for (basis)
local compactness in TOP breaks down in two parts for the notions (B)LC3,
(B)LC4, and (B)LC5.

THEOREM 2.11. For every n € {3,4,5}, let ((X;,4i))ier be a family of ap-
proach spaces. If (X,d) := [1ic; (X, ;) is (BILCn, then (X;,9;) is (B)LCn for
every i € I and there exists some countable J C I such that for every i € I\] :
He(X7) = 0.

PROOF. Suppose (X, ) is (B)LCn. It follows immediately from Theorem 2.9
and Proposition 2.8 that (X;, ;) is (B)LCn for every i € I.

For the remaining part, suppose that (X,s) is LC3. Let x € X, then for every
nonzero natural number n, there exists some neighborhood V,, of x in the
topological coreflection such that . (V,,) < n~—!. Hence there exists some finite
Jn C I such that for every i € I\J, : pr;(V,) = X;. Define J := J,, J, and let
i € I\ ], then for every n,

pe (Xi) = pe (pri (V) < pe (Vi) =71, (2.17)

hence p.(X;) = 0.
If (X,s) is BLC3, (B)LC4, or (B)LC5, it is also LC3 and we get the same result.
O

THEOREM 2.12. For every n € {3,4,5}, let ((Xi,4;))icr be a family of
approach spaces. If every (Xi, ;) is (BILCn and if there exists some finite
J C I such that for all i € 1\J : u.(X;) = 0, then (X,s) = [[ic;(Xi, ;) Is
(B)LCn.

PROOF. We will prove this property for BLC5, as all other cases are similar
and, moreover, simpler than this one.

Suppose every (X;, ;) is BLC5 and there exists some finite subset J C I such
that forall i e I\J : puc.(X;) = 0. Let x € X, € > 0, and F € V(x). Then there
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exists some @ € #A(x) such that F D {@ < &}. Take ¢’ < € and N > . Then
there exists some finite subset KY c I such that for every k € K, there exists
some @y, € sdi(xy) such that

@ AN < sup @, opry+(e—¢€'). (2.18)
kekl
Now
FO | sup @ oprp+(e—¢) <e|=| sup @y, oprp <e |. (2.19)
kekl kek

We will adopt a fixed value of N and drop the superscript N in K?’ and (pkN‘ o
Define

Fk,g’ = {(pkyy < E’} eVer (Xk), Vke kg/. (2.20)

Let €’ < & and 6 > 0, then for every element k of K./, there exists some
element Gy 75 of Ver(xyk) such that Gy 75 C Fre and also such that
He(Grerer,5) < infyex, AV e (xi) () + 0, for (X, sdi) is BLCS. This means that
for every k € K¢, there exists, some element @y, ¢ 5 € HAx(xy) such that
Gre g5 D {Wke o5 <&'}. Now for every j € J, there is an F},e’,e”,& € Ver(xj)

such that pc(Fj . v 5) < infyex; A Ve (x;) () + 6, as (Xj,9;) is LC5. Con-
sequently, for every j € J, there exists some ¢ . .. s € dl;(x;) such that

Figens AW en s < €'} I we define

HE’;E”,E = 1_[ Gk,g’,g”,5>< 1_[ FJ,'!E/!EH’(SX l_[ Xi, (221)
keKer JENK i€\ (JUKr)

then Hy ¢ 5 C F. Moreover, Hy ¢ s belongs to Ve (x).
Suppose that

ye <| SUpP Yie'e,5°PTk V. SUP Y o 50Pr; < s”}. (2.22)
keK,s Je\Kgr°

Then for every k € K¢/, Yie e,5(yk) < €' and for every j € J\K, (,U;’E,’E”’é(yj)

< ¢&”,soforevery k € K¢ : yx € Gy ¢ 5 and for every j € J\Ke 1 yj € FJ’. s
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This shows v € Hr ¢+ 5, whence Hy o7 5 € Ve (X),

() = 500 (G ) ¥ s e(Fls) v sup k)
keKe JEI\K¢r i€\ (JUK,/)

< (sup inf AVer (xk) () v sup  inf A;Ver (Xj)(y)) +6
keK, yeXy JEJ\Ky YEX

< sup inf AV (x) (V) +6
leJUK, yeX]

= inf sup A Ve (x1) (1) +6
Diejuk, €lliejuk,, X1 l€JUKy

=inf sup AV (x1)(1)+8
yeXxleJuK,

< inf sup A Ve (x;) (yi) +6
yeX iel

= inf AV (x) () + 9.
yeX

(2.23)
So for every €' < ¢ and for every €’ < €',
inf p.(H) < inf AV (x)(y), (2.24)
HeV (x) yeX
HCF
which implies that for every €’ < ¢,
inf  pc(H) < inf AT (x) (). (2.25)
HeV . (x) yeX
HCF O

The proofs of the following theorems are an easy generalization of the
proofs of the corresponding theorems for (basis) local compactness.

THEOREM 2.13. Foreveryn € {3,4,5}. If f : (X, o) — (Y,sd") is a surjective,
expansive contraction, then ugycn(Y) < tpiren(X).

THEOREM 2.14. For every n € {3,4,5}, let ((X;,4i))ic; be a family of ap-
proach spaces and (X, ) := [1;c;(Xi, ;). Then

Upren(X) = supppren (Xi) v inf  sup pe (X;). (2.26)
iel JfinitecI iel\J
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