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for contractive, expansive images and for products.
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1. Introduction. Having introduced notions of local compactness, basis lo-

cal compactness and related measures, and having studied the basic relation-

ship among these concepts in [3], in this paper we study stability properties.

Keeping in mind the stability properties of local compactness in TOP, the cat-

egory of topological spaces and continuous maps, we study how our notions

behave under mappings and products. Especially, in the topological case, the

maps which are required in order to preserve local compactness are continuous

open surjections. This necessitated first finding out what is the right notion of

open map in AP. This is duly done in this paper, and it turns out that the notion

which we use has nice characterizations for a number of primitive approach

structures. Of course, it also turns out to be the right concept in connection

with local compactness.

2. Properties of local compactness in AP. In the construct of topological

spaces, we have the following properties related to local compactness (see any

good textbook on topology, e.g., [4]).

Theorem 2.1. If f is a surjective, continuous, open map of a topological

space (X,τ) to a topological space (Y ,τ′) and (X,τ) is (basis) locally compact,

then so is (Y ,τ′).

Theorem 2.2. Let ((Xi,τi))i∈I be a family of topological spaces. Then∏
i∈I(Xi,τi) is (basis) locally compact if and only if each (Xi,τi) is (basis) lo-

cally compact and all but finitely many (Xi,τi) are compact.

We would like to investigate whether the LCn and BLCn admit similar prop-

erties in AP. First, however, we will have to define a concept in AP similar to

the concept of an open map in TOP.

Definition 2.3. Let (X,�) and (Y ,�′) be approach spaces, let f : X → Y
be a map, and let x ∈ X. Then f is expansive at x if and only if for every
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ϕ ∈ �(x), f(ϕ) belongs to �′(f (x)), where f(ϕ)(y) := inff(z)=y ϕ(z). The

map f is called an expansion if and only if it is expansive at every x ∈ X. In

that case, we also say that f is expansive.

Remark 2.4. Let (X,�) and (Y ,�′) be approach spaces, f : X → Y a map,

and Λ an approach basis for � and x ∈ X. Then the following properties are

equivalent:

(1) f is expansive at x;

(2) for all ϕ ∈�(x), there exists ϕ′ ∈�′(f (x)) : f(ϕ)≤ϕ′;
(3) for allϕ ∈�(x), for all ε,N ∈]0,∞[, there existsϕ′ ∈�′(f (x)) : f(ϕ)∧

N ≤ϕ′ +ε;
(4) for all ϕ ∈Λ(x) : f(ϕ)∈�′(f (x));
(5) for all ϕ ∈Λ(x), there exists ϕ′ ∈�′(f (x)) : f(ϕ)≤ϕ′;
(6) for allϕ ∈Λ(x), for all ε,N ∈]0,∞[, there existsϕ′ ∈�′(f (x)) : f(ϕ)∧

N ≤ϕ′ +ε.
Proposition 2.5. Let (X,τ) and (Y ,τ′) be topological spaces. Then f :

(X,�τ)→ (Y ,�τ′) is expansive if and only if f : (X,τ)→ (Y ,τ′) is open.

Proof. The proof goes as follows:

f is an expansion⇐⇒∀x ∈X, ∀V ∈�(x) : f
(
θV
)∈�′(f(x))

⇐⇒∀x ∈X, ∀V ∈�(x) : θf(V) ∈�′(f(x))
⇐⇒∀x ∈X, ∀V ∈�(x) : f(V)∈�′(f(x))
⇐⇒ f is open.

(2.1)

In a similar fashion, we can prove the following result.

Proposition 2.6. Let (X,�) and (Y ,�′) be approach spaces. If f : (X,�)→
(Y ,�′) is an expansion, then f : (X,τ�)→ (Y ,τ�′) is open.

Proposition 2.7. Let (X,�) and (Y ,�′) be approach spaces and let f :X →
Y be a map. Consider the following properties:

(1) f is an expansion;

(2) for all B ⊂ Y , for all ε ∈ [0,∞] : f−1(B(ε)′)⊂ (f−1(B))(ε);
(3) for all B ⊂ Y : δf−1(B) ≤ δ′B ◦f ;

(4) for every filter � on Y withG∩f(X)≠∅, for allG ∈ �: λ(stackf−1(�))≤
λ′(�)◦f . The following relation holds:

(1)⇐⇒ (2)⇐⇒ (3) �⇒ (4). (2.2)

If f :X → Y is surjective, then

(1)⇐⇒ (2)⇐⇒ (3)⇐⇒ (
4′
)

(2.3)

with

(4′) for every filter � on Y , λ(stackf−1(�))≤ λ′(�)◦f .
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Proof. (1)⇒(2). Let B ⊂ Y and ε ∈ [0,∞],

f−1
(
B(ε)

′)=
{
x ∈X | sup

ϕ′∈�′(f (x))
inf
b∈B
ϕ′(b)≤ ε

}

⊂
{
x ∈X | sup

ϕ∈�(x)
inf
b∈B
f (ϕ)(b)≤ ε

}

=
{
x ∈X | sup

ϕ∈�(x)
inf

z∈f−1(B)
ϕ(z)≤ ε

}

= (f−1(B)
)(ε).

(2.4)

(2)⇒(3). Let B ⊂ Y , x ∈ X, and ε > 0. Suppose δ′(f (x),B) ≤ ε, then x ∈
f−1(B(ε)′)⊂ (f−1(B))(ε), so δ(x,f−1(B))≤ ε. This implies (3).

(3)⇒(1). Suppose there exist an x0 ∈X, a ϕ0 ∈�(x0), and ε,N ∈]0,∞[ such

that for every ϕ′ ∈�′(f (x0)), f(ϕ0)∧N �ϕ′ +ε. For every ϕ′ ∈�′(f (x0)),
define

B
(
ϕ′) := {y ∈ Y | f (ϕ0

)
(y)∧N >ϕ′(y)+ε}. (2.5)

Notice that for everyϕ′,ξ′ ∈�′(f (x0)), B(ϕ′∨ξ′)= B(ϕ′)∩B(ξ′) and B(ϕ′)≠
∅. Then

sup
ϕ′∈�′(f (x0))

δ′
(
f
(
x0
)
,B
(
ϕ′))∧N

= sup
ϕ′∈�′(f (x0))

sup
θ∈�′(f (x0))

inf
y∈B(ϕ′)

θ(y)∧N

≤ sup
ϕ′∈�′(f (x0))

sup
θ∈�′(f (x0))

inf
y∈B(ϕ′∨θ)

(
ϕ′ ∨θ)(y)∧N

= sup
ϕ′∈�′(f (x0))

inf
y∈B(ϕ′)

ϕ′(y)∧N

≤ sup
ϕ′∈�′(f (x0))

inf
y∈B(ϕ′)

(
f
(
ϕ0
)
(y)∧N)−ε

≤ sup
ϕ′∈�′(f (x0))

sup
ξ∈�(x0)

inf
x∈f−1(B(ϕ′))

(
ξ(x)∧N)−ε

= sup
ϕ′∈�′(f (x0))

(
δ
(
x0,f−1(B(ϕ′)))∧N)−ε,

(2.6)

so

sup
ϕ′∈�′(f (x0))

δ′
(
f
(
x0
)
,B
(
ϕ′))< sup

ϕ′∈�′(f (x0))
δ
(
x0,f−1(B(ϕ′))), (2.7)

which contradicts (3).

(3)⇒(4). Let � be a filter on Y such that G∩f(X)≠∅ for all G ∈ �,

λ
(
stackf−1(�)

)= sup
�∈U(stackf−1(�))

sup
U∈�

δU. (2.8)
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Now � is an ultrafilter containing stackf−1(�) if and only if � := stackf(�)
is an ultrafilter containing �. Hence,

λ
(
stackf−1(�)

)= sup
�∈U(�)

sup
U∈stackf−1(�)

δU

= sup
�∈U(�)

sup
V∈�

sup
U⊃f−1(V)

δU .
(2.9)

Suppose that � is an ultrafilter containing �,V ∈�, and U ⊃ f−1(V). Then for

every x ∈X, δ(x,U)≤ δ(x,f−1(V))≤ δ′(f (x),V), whence

λ
(
stackf−1(�)

)
(x)= sup

�∈U(�)
sup
V∈�

sup
U⊃f−1(V)

δU

≤ sup
�∈U(�)

sup
V∈�

δ′
(
f(x),V

)= λ′(�)(f(x)). (2.10)

(4′)�(3). If f is surjective, then (4)�(4′), so we are to prove (4)⇒(3). If we take a

subset B of Y , then δ′B ◦f = inf�∈U(B) λ′(�)◦f . Now suppose that � is an ultra-

filter containing B, then stackf−1(�) is an ultrafilter containing stackf−1(B).
We infer

δ′B ◦f ≥ inf
�∈U(B)

λ
(
stackf−1(�)

)
≥ inf

stackf−1(�)∈U(f−1(B))
λ
(
stackf−1(�)

)
≥ inf

�∈U(f−1(B))
λ�= δf−1(B).

(2.11)

Proposition 2.8. Let ((Xi,�i))i∈I be a family of approach spaces and let

(X,�) be their product approach space. Then for every k ∈ I, the projection

prk : (X,�)→ (Xk,�k) is an expansion.

Proof. Let x = (xi)i∈I be an element of X. Then an approach basis for

�(x) is given by (see [1, 2])

Λ(x)=
{

sup
j∈J
ϕj ◦prj | J ∈ 2(I), ∀j ∈ J :ϕj ∈�j

(
xj
)}
. (2.12)

Take k∈ I, a finite subset J of I, and a collection (ϕj)j∈J such thatϕj belongs

to �j(xj) for every j ∈ J. We need to prove that

prk

(
sup
j∈J
ϕj ◦prj

)
∈�k

(
xk
)
. (2.13)

Let y ∈Xk. Notice that prk(supj∈J ϕj ◦prj)(y)= infzk=y supj∈J ϕj(zj).
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First case: k∈ J. If we define z0 := (z0
i )i∈I with z0

j := xj for every j ∈ J\{k},
z0
k :=y , and z0

i a fixed but arbitrary element of Xi for every i∈ I\J, we get that

inf
zk=y

sup
j∈J
ϕj
(
zj
)= inf

zk=y

(
ϕk(y)∨ sup

j∈J\{k}
ϕj
(
zj
))

=ϕk(y)∨ inf
zk=y

sup
j∈J\{k}

ϕj
(
zj
)

≤ϕk(y)∨ sup
j∈J\{k}

ϕj
(
z0
j
)
.

(2.14)

Hence, prk(supj∈J ϕj ◦ prj)(y) ≤ ϕk(y) ∨ 0 = ϕk(y), which entails

prk(supj∈J ϕj ◦prj)∈�k(xk).
Second case: k �∈ J. Define z0

j := xj for every j ∈ J, z0
k := y , and z0

i a fixed

but arbitrary element of Xi for every i∈ I\(J∪{k}). Then

prk

(
sup
j∈J
ϕj ◦prj

)
(y)= inf

zk=y
sup
j∈J
ϕj
(
zj
)≤ sup

j∈J
ϕj
(
z0
j
)= 0, (2.15)

so prk(supj∈J ϕj ◦prj)= 0∈�k(xk).

We will now formulate and prove properties of local compactness in AP

similar to Theorems 2.1 and 2.2 in TOP.

Theorem 2.9. For every n ∈ {1,2,3,4,5}, if f : (X,�) → (Y ,�′) is a sur-

jective, expansive contraction and (X,�) is (B)LCn, then (Y ,�′) is (B)LCn as

well.

Proof. We will only prove the case of BLC5, as the other cases follow similar

lines of thought. Let y ∈ Y , then there exists an x ∈X such that y = f(x). Let

ε > 0. We first show that �′
ε(y)= stackf(�ε(x)), suppose F belongs to �ε(x).

Then there exist someϕ ∈�(x) such that F ⊃ {ϕ< ε}, so since f(ϕ) belongs

to �′(y), f({ϕ < ε}) = {f(ϕ) < ε} belongs to �′
ε(y). Hence f(F) belongs

to �′
ε(y). Next, suppose that G ∈ �′

ε(y), then there exists some ϕ′ ∈ �′(y)
such that G ⊃ {ϕ′ < ε}. Since ϕ′ ◦f belongs to �(x), {ϕ′ ◦f < ε} ∈ �ε(x),
whence f({ϕ′ ◦ f < ε}) = {ϕ′ < ε} belongs to f(�ε(x)). This implies G ∈
stackf(�ε(x)).

This result being shown, take G ∈�ε(y) and ε′ < ε. Then

inf
H∈�′ε′ (y)
H⊂G

µc(H)≤ inf
K∈�ε′ (x)
K⊂f−1(G)

µc
(
f(K)

)≤ inf
K∈�ε′ (x)
K⊂f−1(G)

µc(K)

≤ inf
z∈X
λ�ε′(x)(z)≤ inf

w∈Y
λ′�′

ε′(y)(w).
(2.16)
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For the notions (B)LC1 and (B)LC2, we are able to prove a theorem completely

similar to Theorem 2.2. This is not possible, however, for the other notions of

(basis) local compactness in AP. We do have a somewhat weaker result for

these notions.

Theorem 2.10. For everyn∈ {1,2}, let ((Xi,�i))i∈I be a family of approach

spaces. Then
∏
i∈I(Xi,�i) is (B)LCn if and only if each (Xi,�i) is (B)LCn and all

but finitely many (Xi,τ�i) are compact.

Proof. For (B)LC1, this theorem is a straightforward consequence of

Theorem 2.2 and the fact that the topological coreflection of a product in AP

is the product in TOP of the topological coreflections of the factor spaces. For

(B)LC2, the proof is easy and almost identical to the proof of Theorem 2.2.

As we will see in the following theorems, the product theorem for (basis)

local compactness in TOP breaks down in two parts for the notions (B)LC3,

(B)LC4, and (B)LC5.

Theorem 2.11. For every n ∈ {3,4,5}, let ((Xi,�i))i∈I be a family of ap-

proach spaces. If (X,�) := ∏
i∈I(Xi,�i) is (B)LCn, then (Xi,�i) is (B)LCn for

every i ∈ I and there exists some countable J ⊂ I such that for every i ∈ I\J :

µc(Xi)= 0.

Proof. Suppose (X,�) is (B)LCn. It follows immediately from Theorem 2.9

and Proposition 2.8 that (Xi,�i) is (B)LCn for every i∈ I.
For the remaining part, suppose that (X,�) is LC3. Let x ∈X, then for every

nonzero natural number n, there exists some neighborhood Vn of x in the

topological coreflection such that µc(Vn)≤n−1. Hence there exists some finite

Jn ⊂ I such that for every i ∈ I\Jn : pri(Vn) = Xi. Define J := ⋃
n Jn and let

i∈ I\J, then for every n,

µc
(
Xi
)= µc(pri

(
Vn
))≤ µc(Vn)≤n−1, (2.17)

hence µc(Xi)= 0.

If (X,�) is BLC3, (B)LC4, or (B)LC5, it is also LC3 and we get the same result.

Theorem 2.12. For every n ∈ {3,4,5}, let ((Xi,�i))i∈I be a family of

approach spaces. If every (Xi,�i) is (B)LCn and if there exists some finite

J ⊂ I such that for all i ∈ I\J : µc(Xi) = 0, then (X,�) := ∏
i∈I(Xi,�i) is

(B)LCn.

Proof. We will prove this property for BLC5, as all other cases are similar

and, moreover, simpler than this one.

Suppose every (Xi,�i) is BLC5 and there exists some finite subset J ⊂ I such

that for all i ∈ I\J : µc(Xi) = 0. Let x ∈ X, ε > 0, and F ∈ �ε(x). Then there



LOCAL COMPACTNESS IN APPROACH SPACES II 115

exists some ϕ ∈ �(x) such that F ⊃ {ϕ < ε}. Take ε′ < ε and N > ε. Then

there exists some finite subset KNε′ ⊂ I such that for every k∈KNε′ , there exists

some ϕNk,ε′ ∈�k(xk) such that

ϕ∧N ≤ sup
k∈KNε′

ϕNk,ε′ ◦prk+
(
ε−ε′). (2.18)

Now

F ⊃

 sup
k∈KNε′

ϕNk,ε′ ◦prk+
(
ε−ε′)< ε


=


 sup
k∈KNε′

ϕNk,ε′ ◦prk < ε′


. (2.19)

We will adopt a fixed value of N and drop the superscript N in KNε′ and ϕNk,ε′ .
Define

Fk,ε′ := {ϕk,ε′ < ε′}∈�ε′
(
xk
)
, ∀k∈ kε′ . (2.20)

Let ε′′ < ε′ and δ > 0, then for every element k of Kε′ , there exists some

element Gk,ε′,ε′′,δ of �ε′′(xk) such that Gk,ε′,ε′′,δ ⊂ Fk,ε′ and also such that

µc(Gk,ε′,ε′′,δ)≤ infy∈Xk λk�ε′′(xk)(y)+δ, for (Xk,�k) is BLC5. This means that

for every k ∈ Kε′ , there exists, some element ψk,ε′,ε′′,δ ∈ �k(xk) such that

Gk,ε′,ε′′,δ ⊃ {ψk,ε′,ε′′,δ < ε′′}. Now for every j ∈ J, there is an F ′j,ε′,ε′′,δ ∈�ε′′(xj)
such that µc(F ′j,ε′,ε′′,δ) ≤ infy∈Xj λj�ε′′(xj)(y)+ δ, as (Xj,�j) is LC5. Con-

sequently, for every j ∈ J, there exists some ψ′j,ε′,ε′′,δ ∈ �j(xj) such that

F ′j,ε′,ε′′,δ ⊃ {ψ′j,ε′,ε′′,δ < ε′′}. If we define

Hε′,ε′′,δ :=
∏
k∈Kε′

Gk,ε′,ε′′,δ×
∏

j∈J\Kε′
F ′j,ε′,ε′′,δ×

∏
i∈I\(J∪Kε′ )

Xi, (2.21)

then Hε′,ε′′,δ ⊂ F . Moreover, Hε′,ε′′,δ belongs to �ε′′(x).
Suppose that

y ∈

 sup
k∈Kε′

ψk,ε′,ε′′,δ ◦prk∨ sup
j∈J\Kε′

ψ′j,ε′,ε′′,δ ◦prj < ε′′

. (2.22)

Then for every k∈Kε′ ,ψk,ε′,ε′′,δ(yk) < ε′′ and for every j ∈ J\Kε′ ,ψ′j,ε′,ε′′,δ(yj)
< ε′′, so for every k∈Kε′ :yk ∈Gk,ε′,ε′′,δ and for every j ∈ J\Kε′ :yj ∈ F ′j,ε′,ε′′,δ.
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This shows y ∈Hε′,ε′′,δ, whence Hε′,ε′′,δ ∈�ε′′(x),

µc
(
Hε′,ε′′,δ

)
= sup
k∈Kε′

µc
(
Gk,ε′,ε′′,δ

)
∨ sup
j∈J\Kε′

µc
(
F ′j,ε′,ε′′,δ

)
∨ sup
i∈I\(J∪Kε′ )

µc
(
Xi
)

≤

 sup
k∈Kε′

inf
y∈Xk

λk�ε′′
(
xk
)
(y)∨ sup

j∈J\Kε′
inf
y∈Xj

λj�ε′′
(
xj
)
(y)


+δ

≤ sup
l∈J∪Kε′

inf
y∈Xl

λl�ε′′
(
xl
)
(y)+δ

= inf
(yl)l∈J∪Kε′ ∈

∏
l∈J∪Kε′ Xl

sup
l∈J∪Kε′

λl�ε′′
(
xl
)(
yl
)+δ

= inf
y∈X

sup
l∈J∪Kε′

λl�ε′′
(
xl
)(
yl
)+δ

≤ inf
y∈X

sup
i∈I
λi�ε′′

(
xi
)(
yi
)+δ

= inf
y∈X

λ�ε′′(x)(y)+δ.
(2.23)

So for every ε′ < ε and for every ε′′ < ε′,

inf
H∈�ε′′ (x)
H⊂F

µc(H)≤ inf
y∈X

λ�ε′′(x)(y), (2.24)

which implies that for every ε′ < ε,

inf
H∈�ε′ (x)
H⊂F

µc(H)≤ inf
y∈X

λ�ε′(x)(y). (2.25)

The proofs of the following theorems are an easy generalization of the

proofs of the corresponding theorems for (basis) local compactness.

Theorem 2.13. For every n∈ {3,4,5}. If f : (X,�)→ (Y ,�′) is a surjective,

expansive contraction, then µ(B)LCn(Y)≤ µ(B)LCn(X).

Theorem 2.14. For every n ∈ {3,4,5}, let ((Xi,�i))i∈I be a family of ap-

proach spaces and (X,�) :=∏i∈I(Xi,�i). Then

µ(B)LCn(X)= sup
i∈I
µ(B)LCn

(
Xi
)∨ inf

Jfinite⊂I
sup
i∈I\J

µc
(
Xi
)
. (2.26)
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