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THE DILATATION INVARIANT IN THE HOMOTOPY
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We obtain some results on the filtration invariant in the homotopy of spheres. Then
by the relation between the dilatation invariant and filtration invariant, we get the
corresponding results on the dilatation invariant in the homotopy of spheres.
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1. Introduction. Let Sm, respectively Sn, denote the standard unit sphere

in Euclidean space Rm+1, respectively Rn+1, and let f : Sm → Sn be a smooth

map. Following Olivier [5], we define δ(f), the dilatation of f , by

δ(f)= sup
|X|=1

∣∣df(X)∣∣, (1.1)

where X ranges over all unit tangent vectors and | · | is a Euclidean metric.

Moreover, if α ∈ πm(Sn), we define δ(α), the dilatation invariant of α, to be

the real number

δ(α)= inf
f
δ(f), (1.2)

where f : Sm → Sn ranges all smooth representatives f of α. It has been con-

jectured by Olivier [5] that δ(α) is always an integer, which is still an open

problem.

The filtration invariant of α ∈ πm(Sn), filt(α), is the integer originally de-

fined by James [2] in connection with his study of the reduced product con-

struction. The definition is as follows [6]. For p,q ∈ Sn, n ≥ 2, let Ω∗ =
Ω∗(Sn;p,q) be the space of all continuous pathsω : [0,1]→ Sn withω(0)= p,

ω(1)= q, equipped with the compact-open topology. As well known, if p and

q are not conjugate on Sn, that is, q ≠ p,p′ where p′ denotes the antipode of

p, then Ω∗ admits a CW -decomposition of the form

Ω∗ � Sn−1∪e2(n−1)∪···∪er(n−1)∪··· . (1.3)

Let Ω∗r(n−1) � Sn−1∪e2(n−1)∪···∪er(n−1) be its r(n−1)-skeleton. This allows

us to define a filtration on the homotopy group πm(Sn) as follows. For any
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α∈πm(Sn), filt(α) is the least integer r ≥ 0 for which the adjoint ofα, ad(α)∈
πm−1(Ω∗), lies in the image of the naturally induced map

πm−1
(
Ω∗r(n−1)

)
�→πm−1

(
Ω∗
)
. (1.4)

One important fact is that filt(α)= 0 if and only if α= 0 and filt(α)≤ 1 if and

only if α is a suspension element.

The composition problem is very interesting. As we all know, filt(·) and δ(·)
are “submultiplicative,” that is,

filt(α◦β)≤ filt(α)·filt(β), δ(α◦β)≤ δ(α)·δ(β). (1.5)

The former is verified in [2] and the latter is obvious. If α ∈ π2n−1(Sn) is an

element of Hopf invariant unity, then we have filt(α◦β) = 2filt(β) = filt(α) ·
filt(β) from [2]. With the same assumption, it has been conjectured by Roitberg

[6] that δ(α◦β) = δ(α) ·δ(β). But, unfortunately, this conjecture is not true

even for the Hopf homotopy class.

In [6], Roitberg got a relation between the dilatation and filtration invariants

in the homotopy of spheres by the fundamental theorem of Morse theory. In

this note, we want to exploit more of the dilatation invariant. First, we get the

following theorem, which is a generalization of [7, Theorem 1].

Theorem 1.1. Let m > n ≥ 2, f : Sm → Sn be a smooth map and λ =
maxx∈Sn d(f(x),f (−x)), where d is the usual unit sphere metric. If filt([f ])=
r , then δ(f)≥ 2[(r +1)/2]+(1+(−1)r )λ/2π .

2. Proof of Theorem 1.1. Let Ω = Ω(Sn;p,q) be the space of all piecewise

smooth paths ω : [0,1] → Sn with ω(0) = p, ω(1) = q, equipped with the

topology induced by the metric d∗ defined in Milnor [4], let E : Ω → R be the

energy function defined by E(ω)= ∫ 1
0 |dω/dt|2dt, and set

Ωc =Ωc(Sn;p,q
)= E−1([0,c2]), c ≥ 0. (2.1)

It is well known [4, Theorem 17.1] that the inclusion i :Ω→Ω∗ is a homotopy

equivalence. Naturally, f induces a map

f̃ : Sm−1 =Ωπ(Sm;x,−x) �→Ωδ(f)π =Ωδ(f)π(Sn;f(x),f (−x)) (2.2)

for any x ∈ Sm, and the composition

i◦j◦ f̃ : Sm−1 �→Ω∗, (2.3)

j : Ωδ(f)π → Ω the inclusion, is precisely the adjoint of f . The proof then fol-

lows from a study of the homotopy type ofΩδ(f)π for suitable choice ofx ∈ Sm.
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The Borsuk-Ulam theorem guarantees the existence of a point x ∈ Sm such

that f(x)= f(−x). So, minx∈Sm d(f(x),f (−x))= 0. We first assume that λ >
0. Suppose that δ(f) < 2[(r +1)/2]+(−1)rλ/π . Let µ be a number such that

0< µ < λ≤π and

δ(f) < 2
[
r +1

2

]
+(−1)rµ/π. (2.4)

Thus, by the continuity of d, there is a point x ∈ Sm such that

d
(
f(x),f (−x))= µ. (2.5)

From (2.4), we have δ(f)π < 2[(r +1)/2]π + (−1)rµ. Hence, by (2.5) and the

fundamental theorem of Morse theory [4, Theorem 17.3 and Corollary 17.4],

we deduce the following commutative diagram

Ωδ(f)π

i′

j
Ω

i

Ω∗(r−1)(n−1)
j′

Ω∗

(2.6)

where j′ is the inclusion and i′ is a homotopy equivalence. The conclusion

filt([f ])≤ r−1 then follows from (2.3), which is a contradiction. Furthermore,

when r is odd, we can get δ(f) ≥ r +1 by letting µ → 0+. Then, we consider

the case that λ= 0. For any ε > 0, we can choose a suitable C1-approximation

g of f such that [g]= [f ], |δ(g)−δ(f)|< ε, and λ(g) < ε. Letting ε→ 0+, we

can get the conclusions.

Remark 2.1. Noting that if filt(α) = r is even and inff λ(f) = µ > 0, then

we have δ(α)≥ r +µ/π . If δ(α) is an integer, then we could get δ(α)≥ r +1.

The case that µ = π is very interesting since if true we can get δ(α) ≥ r +1.

When m is even and 2α≠ 0, Lawson Jr. [3] showed that for any representative

f of α, there exists a pair of antipodal points mapped by f into an antipodal

pair, which had been contained in [7, Theorem 1].

Corollary 2.2. If α∈πm(S2) with m> 2 and 2α≠ 0, then δ(α)≥ 4.

Proof. According to [1], filt(α) > 3; so filt(α) = r ≥ 4. Applying Theorem

1.1, we have

δ(f)≥ 2
[
r +1

2

]
+
(
1+(−1)r

)
λ

2π
≥ 4 (2.7)

for any smooth representative f of α. Thus, δ(α)≥ 4.

3. The case of S3. In this section, we consider the filtration of any ele-

ment in π3+k(S3;p) for k = 2p−3,2(i+1)(p−1)−2, and 2(i+1)(p−1)−1,
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i = 1, . . . ,p − 1, where p is an odd prime and πm(Sn;p) represents the p-

primary component of the Abelian group πm(Sn). From [8, Theorem 13.4],

we have the following two propositions.

Proposition 3.1. Let p be an odd prime, then π3+k(S3;p) is Zp for k =
2p − 3, 2(i+ 1)(p − 1)− 2, and 2(i+ 1)(p − 1)− 1, i = 1, . . . ,p − 1, and is 0

otherwise for k < 2(p+1)(p−1)−3.

Proposition 3.2. Let p be an odd prime, then π2mp−1+k(S2mp−1;p) is Zp
for k= 2i(p−1)−1, 1≤ i < p, m≥ 1, and is 0 otherwise for k < 2p(p−1)−2,

m≥ 1.

We identify Sm with the suspension of Sm−1 in the usual way. Then, we

have an isomorphism φ : πm(Sn) → πm−1(Sn−1∞ ) (see [2]). For any element

α in πm(Sn) of order q which is not necessarily a prime, φ(α) is also an

element of order q in πm−1(Sn−1∞ ). Let filt(α)= r , then φ(α) lies in the image

of the natural homomorphism πm−1(Sn−1
r )→ πm−1(Sn−1∞ ). When we consider

the natural homomorphisms

πm−1
(
Sn−1
r

)
�→πm

(
Sn−1
k

)
�→πm−1

(
Sn−1
∞

)
, (3.1)

we know that φ(α) is also an element of order q in πm−1(Sn−1
k ) for k≥ r . So,

we have the following proposition.

Proposition 3.3. If πm−1(Sn−1
k ;p)= 0, then filt(α)≥ k+1 for any nonzero

element α∈πm(Sn;p).

As we all know, πn(Sn) � Z, so π2+k(S2p−1;p) = 0 for k = 2p − 3. By

Proposition 3.2, we have

π2+k
(
S2p−1;p

)= 0 for k= 2(i+1)(p−1)−1, i= 1, . . . ,p−1. (3.2)

Thus, by the isomorphism πi(S2
p−1;p)→πi(S2p−1;p) for i≥ 2 and Proposition

3.3, we get the following theorem.

Theorem 3.4. The elements of order p in π3+k(S3) are of filtration at least

p for k= 2p−3 and 2(i+1)(p−1)−1, i= 1, . . . ,p−1.

By Theorems 1.1 and 3.4, we can easily get the following corollary.

Corollary 3.5. The elements of order p in π3+k(S3) are of dilatation at

least p+1 for k= 2p−3 and 2(i+1)(p−1)−1, i= 1, . . . ,p−1.

Corollary 3.6. If α is an element of order p in π3+k(S3) as in Corollary 3.5

and γ ∈π3(S2) is the Hopf class, then δ(γ ◦α)≥ 2p+1.

Proof. According to [2], filt(γ ◦α) = 2filt(α) since γ has Hopf invariant

one. Noting that the composition is a homomorphism, the order of γ ◦α is
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then 1 or p as p is prime. As filt(α) ≥ p by Theorem 3.4, we have filt(γ ◦
α) = 2filt(α) ≥ 2p > 0, so γ ◦α ≠ 0. Thus, the order of γ ◦α is p. It follows

immediately from Remark 2.1 that δ(γ ◦α) ≥ 2p+1 since 3+k is even and p
is an odd prime.

From [8, Theorem 13.4], we know that π2p−3+k(S2p−3;p) is Zp for k= 2(p−
1)2−2 and 2i(p−1)−1, i= 1, . . . ,p−1, and is 0 otherwise for k < 2p(p−1)−2.

So we have

π2+k
(
S2p−3;p

)= 0 for k= 2(i+1)(p−1)−2, i= 1, . . . ,p−1. (3.3)

Thus, by the isomorphism πi(S2
p−2;p)→ πi(S2p−3;p) and Proposition 3.3, we

get the following proposition.

Proposition 3.7. The elements of order p in π3+k(S3) are of filtration at

least p−1 for k= 2(i+1)(p−1)−2, i= 1, . . . ,p−1.

By Theorem 1.1 and Proposition 3.7, we can easily get the following corol-

lary.

Corollary 3.8. The elements of order p in π3+k(S3) are of dilatation at

least p−1 for k= 2(i+1)(p−1)−2, i= 1, . . . ,p−1.

Corollary 3.9. If α is an element of order p in π3+k(S3) as in Corollary 3.8

and γ ∈π3(S2) is the Hopf class, then δ(γ ◦α)≥ 2(p−1).

Proof. According to [2], filt(γ ◦ α) = 2filt(α) since γ has Hopf invari-

ant one. As filt(α) ≥ p − 1 by Proposition 3.7, it follows immediately from

Theorem 1.1 that δ(γ ◦α)≥ 2(p−1).

4. Further results on the case that πm(Sn;p) = Zp . Let p be a prime. We

consider the case thatπm(Sn;p)= Zp . For any elementα of order p inπm(Sn),
we denote by λ(α) the least integer k such thatπm−1(Sn−1

k ;p)≠ 0, then we have

πm−1
(
Sn−1
λ(α)−1;p

)= 0, πm−1
(
Sn−1
λ(α);p

)= Zp. (4.1)

Thus by Proposition 3.3, we have

filt(α)≥ λ(α). (4.2)

Let β be an element of order p in πm−1(Sn−1
λ(α)), then β can be naturally re-

garded as an element in πm−1(Sn−1∞ ) with order p. Then, φ−1(β) is an element

of order p in πm(Sn). Since πm(Sn;p)= Zp , we have

πm
(
Sn;p

)= 〈φ−1(β)〉. (4.3)
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So, α = kφ−1(β) for some 1 ≤ k ≤ p−1. Thus, α = kφ−1(β) = φ−1(kβ) and

φ(α)= kβ∈πm−1(Sn−1
λ(α)). So we have

filt(α)≤ λ(α). (4.4)

By (4.2) and (4.4), we get the following theorem.

Theorem 4.1. If πm(Sn;p) = Zp , then filt(α) = λ(α) for any element α of

order p in πm(Sn).

By Proposition 3.2, we have

π2+k
(
S2p−1;p

)= Zp for k= 2(i+1)(p−1)−2, i= 1, . . . ,p−1. (4.5)

So we have λ(α) = p − 1 for any element α of order p in π3+k(S3) where

k= 2(i+1)(p−1)−2, i= 1, . . . ,p−1. Thus by Theorem 4.1, we get the following

theorem.

Theorem 4.2. The elements of order p in π3+k(S3) are of filtration p−1 for

k= 2(i+1)(p−1)−2, i= 1, . . . ,p−1.
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