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Let (M,g) be a closed, connected, oriented C∞ Riemannian 3-manifold with tan-
gentially oriented flow F. Suppose that F admits a basic transverse volume form
µ and mean curvature one-form κ which is horizontally closed. Let {X,Y} be any
pair of basic vector fields, so µ(X,Y)= 1. Suppose further that the globally defined
vector �[X,Y] tangent to the flow satisfies [Z,�[X,Y]]= fZ�[X,Y] for any basic
vector field Z and for some function fZ depending on Z . Then, �[X,Y] is either
always zero and H, the distribution orthogonal to the flow in T(M), is integrable
with minimal leaves, or �[X,Y] never vanishes and H is a contact structure. If ad-
ditionally, M has a finite-fundamental group, then �[X,Y] never vanishes on M ,
by the above together with a theorem of Sullivan (1979). In this case H is always a
contact structure. We conclude with some simple examples.
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Throughout this paper, all maps, functions, and morphisms are assumed

to be at least of class C∞. On a closed, connected, oriented C∞ Riemannian

3-manifold (M,g), let F be a tangentially oriented flow. Let V denote the dis-

tribution tangent to the flow F and H the distribution orthogonal to V in TM
determined by the metric g. If E is a vector field on M , �E and �E will denote

the projections of E onto the distributions V and H, respectively. Call the vec-

tor field E vertical if �E = E. Call E horizontal if �E = E. Now, F can be viewed

as a foliation of codimension 2 and leaf dimension 1.

In general, a C∞ foliation of codimension q on an n-dimensional manifoldM
can be defined as a maximal family of C∞ submersions fα :Uα → fα(Uα)⊂Rq,

where {Uα}α∈Λ is an open cover of M and where, for each α,β ∈ Λ and each

x ∈ Uα∩Uβ, there exists a local diffeomorphism φxβα of Rq, so fβ =φxβ,α ◦fα
in some neighborhood Ux of x (see [12, pages 2–3]). In the case of a flow F, the

codimension is q =n−1. In the setting of this paper, the submersions defining

the flow F are fα :Uα → fα(Uα)⊂R2.

A horizontal vector field Z defined on some open set U , where U ⊂ Uα,

is called fα-basic provided fα∗Z is a well-defined vector field on fα(U). As

pointed out in [5] (for any metric g), if U ⊂ Uβ, then Z is also fβ-basic, so

one can speak of Z as a local basic vector field. We sometimes drop the word
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“local.” Let i(W) and θ(W) denote the interior product and the Lie derivative

with respect to a vector field W . A differential form φ is called basic provided

i(W)φ= 0 and θ(W)φ= 0 for all vertical vector fields W (see [16, page 118]).

Throughout this paper, we will assume that (M,g) admits a basic transverse

volume element µ [16].

LetD denote the Levi-Civita connection onM and, following [6], we introduce

the tensors T and A as follows. For vector fields E and F on M ,

TEF =�D�E�F+�D�E�F,

AEF =�D�E�F+�D�E�F.
(1)

Then, T andA are tensors of type (1). These tensors satisfy the usual properties

outlined in [6]. We note that if X and Y are horizontal,

AXY ≠−AYX (2)

in general unless the flow F is bundle-like with respect to the metric g (see [11,

Lemma 1.2]) that is, if X is a basic vector field, Wg(X,X)= 0 for every vertical

vector fieldW . It is worth observing that if F is bundle-like with respect to g and

H is integrable, then the leaves of H are totally geodesic since, by (2), AXX = 0

for every horizontal X. This paper obtains conclusions without imposing the

bundle-like assumption. For this reason, it is hoped the result will be of interest

to topologists.

If V is the unit vector tangent to the flow, we define the mean curvature

one-form κ as follows:

κ(E)= g(E,TVV). (3)

Call κ horizontally closed if dκ(Z1, Z2)= 0 for any horizontal fields Z1 and Z2.

If a basic vector field Z is defined on an open set U , the real-valued function

fZ , discussed in the theorem, will have U as its domain as well. With these

preparations, we give the following result.

Theorem 1. Let (M,g) be a closed, connected, oriented C∞ Riemannian 3-

manifold with tangentially oriented flow F. Suppose the following conditions.

(a) The flow F admits a basic transverse volume form µ.

(b) Its mean curvature one-form κ is horizontally closed (or, less generally,

κ is basic).

Let X and Y be local basic vector fields on M so µ(X,Y)= 1.

(c) The globally defined vector field �[X,Y] on M satisfies

[
Z,�[X,Y]

]= fZ�[X,Y] (4)

for any local basic vector field Z and for some function fZ depending

on Z .
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Then, either

(i) �[X,Y] vanishes identically onM , so H is integrable and H is a foliation

whose leaves are minimal surfaces in M or

(ii) �[X,Y] never vanishes on M and H is a contact structure.

(d) If, in addition to (a), (b), and (c), M has a finite-fundamental group, then

�[X,Y] never vanishes on M and H is always a contact structure.

Conversely, if conclusion (i) above is obtained, then conditions (a), (b), and (c)

necessarily hold on any closed, connected, oriented C∞ Riemannian 3-manifold

(M,g) with tangentially oriented flow F.

Remarks on conditions (a), (b), and (c) and the proof of the theo-

rem. The Rummler-Sullivan criterion (see [9, 14]) gives a sufficient condition

for a foliation H of a manifold of arbitrary dimension to be a foliation with

the property that its leaves are minimal submanifolds. The above result does

not require the two-dimensional distribution H to be integrable on M3, but

guarantees it unless H is a contact structure.

Condition (a) guarantees that, for basic vector fields {X,Y} above, �[X,Y] is

globally defined onM and, simultaneously in the foliation case, that the leaves

of H are minimal surfaces of M . If the flow F is bundle-like with respect to the

metricg, then condition (a) is automatically satisfied since the metric restricted

to H (and hence the transverse volume element) is (locally) projectible. That,

under the stated conditions, �[X,Y] is globally defined (independent of the

particular pair {X,Y} selected above) was already observed in [1] (see also [2]).

Condition (b) is necessary to guarantee (6) and hence Va≡ 0 on M .

In addition to the remarks about condition (c) at the end of the theorem, the

following observation is in order. Suppose that conditions (a), (b) and conclu-

sion (ii) of our theorem hold on a closed, connected, oriented, C∞ Riemannian

3-manifold (M,g) with tangentially oriented flow F. Then, (5) implies a(x)≠ 0

for any x ∈M . Using the fact (see [2]) that [Z,V]= κ(Z)V for any basic vector

field Z , it is not hard to see that [Z,aV] = (Za/a+κ(Z))aV = fZaV . This is

exactly condition (c). This is a somewhat surprising and pleasing development

since, as noted in the theorem, condition (c) is also implied by conclusion (i)

together with the other ancillary hypotheses. Condition (c) is also natural since

it is well known that if Z is basic and W is vertical, then [Z,W] is vertical.

The main ingredients of the proof are simple. By (5), the globally defined

vector field �[X,Y]= aV for some real-valued function a on M . Equations (6)

and (9) each gives rise to a homogeneous differential equation. In (6),da/dt ≡ 0

in any plaque of an integral curve of F and hence on all of that integral curve.

In (9), da/dt ≡ ha for some real-valued function h along the horizontal lift of

any differentiable curve in fα(Uα). We use these facts repeatedly to show that

the set S, defined below, is open in M , since it is clearly closed.

Proof. As in [2], if a foliation of codimension 2 admits a basic transverse

volume form µ, then �[X,Y] is independent of the pair of basic vector fields,
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satisfying the above normalizing condition and so is globally defined on M .

Now, this means that, on M ,

�[X,Y]= aV, (5)

where a is some globally defined function on M function and V is the unit

vector field tangent to F. Again by [2], for such a codimension 2 foliation, κ
basic implies κ closed. By the appendix of [6] (see [2]), we have, on M ,

0= dκ(X,Y)=−g(DV�[X,Y],V
)=−Va (6)

and so, one can conclude that �[X,Y] is a Killing vector field on each plaque

of the flow F. Clearly, (6) implies that Va≡ 0 on this integral curve and, indeed,

on M . Now, condition (c) implies

g
([
Z,�[X,Y]

]
,V
)= g(DZ�[X,Y],V

)−g(T�[X,Y]Z,V
)

= g(fZ�[X,Y],V
)
,

(7)

or using the properties of T ,

g
(
DZ�[X,Y],V

)+g(Z,TV�[X,Y]
)= g(fZ�[X,Y],V

)
. (8)

This means that, wherever Z is defined,

0= Za+a(κ(Z)−fZ) (9)

since g(V,V)= 1.

Let S = {q ∈ M : �[X,Y](q) = 0}. Clearly, S is closed in M . Note that if

�[X,Y](q)= 0, (i.e., a(q)= 0 by (5)), then �[X,Y]≡ 0 on the integral curve L
of F containing q. This follows because, by (6), Va≡ 0 implies that a is constant

on the integral curves of F.

We must show that for any q ∈ S, �[X,Y]≡ 0 on some path-connected open

set U of q. Since q ∈Uα for some α, we can choose U ⊂Uα. Now, let q′ ∈U . We

must show a(q′) = 0. There exists a path σ in U , so σ(0) = q and σ(1) = q′.
Observe for each ti ∈ [0,1], there exists an εi > 0, so if t ∈ (ti−εi,ti+εi), then

σ(t) can be reached by a horizontal path from σ(ti) to the plaque of σ(t),
followed by a path in that plaque to σ(t) itself.

This is achieved as follows. For this U ⊂ Uα, σ(ti) ∈ U and fα(U) ⊂ R2 is

open. There is a path γ∗i in fα(U), connecting fα(σ(ti)) to fα(σ(t)). Then, γi,
the unique horizontal lift of γ∗i starting at σ(ti), gives the desired horizontal

path. (Indeed, γ∗i might be chosen as fα(σ(u)) for ti ≤ u ≤ t.) Clearly, the

tangent vector to γi can be extended to a basic vector field. If 0 = a(σ(ti)) =
a(γi(ti)), (9) implies

a
(
γi(t)

)= 0. (10)
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Since a is constant on the integral curves of F and hence on the plaques of

these curves,

a
(
σ(t)

)= 0. (11)

Now [0,1] is compact. A standard Lebesgue covering argument allows us to

apply (10) and (11) n times to obtain

0= a(q)= a(σ(t0))
= a(γ0

(
t0
))= a(γ0

(
t1
))

= a(σ(t1))= a(γ1
(
t1
))

= a(γ1
(
t2
))= a(σ(t2))= ···

= a(σ(tn−1
))= a(γn−1

(
tn−1

))
= a(γn−1

(
tn
))= a(γn−1(1)

)
= a(σ(1))= a(q′).

(12)

This means that a(q′)= 0. Since q′ was any point of U , this means that

a≡ 0 on all of U, (13)

that is, �[X,Y] = aV vanishes on U . This means that S is open. By connect-

edness, S =M . Thus, if �[X,Y] vanishes at one point of M , it vanishes on M
identically and H is integrable. This proves (i) and (ii) since (14) guarantees that

the leaves of H in (i) are minimal.

Suppose that (d) holds. Then, (a), (b), and (c) hold. Suppose (i) of our theorem

is obtained. Let {X′,Y ′} be an orthonormal pair of horizontal vector fields—

which need not be basic, since we do not impose the bundle-like hypothesis on

the metric g. Then the mean curvature one-form associated with the foliation

H is given by

β(E)= g(E,AX′X′ +AY ′Y ′) (14)

for any vector field E on M . The fact that µ is basic implies that the form β
vanishes identically by [2, pages 50–51]. Hence, the leaves of H are minimal

submanifolds of M . Clearly, the foliation H can be described as the nullity of

the nonsingular one-form α(E) = g(E,V), where V is as above. But then we

have a contradiction of a result of Sullivan (see [15]) as formulated by Tondeur

(see [17, pages 21–22] or [18, pages 13–14]). Sullivan’s theorem says that a

codimension 1 foliation, defined by a nonsingular one-form on a closed 3-

manifoldM with finite fundamental group, cannot be (geometrically) taut, that

is, cannot admit a metric so that the leaves of H are minimal (see [7, Chapter

3]). Thus, �[X,Y] never vanishes and so α∧dα never vanishes on M , as can

be easily checked on the basis {V,X,Y} with {X,Y} basic, as above.
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If conclusion (i) of the theorem is obtained (H is integrable with minimal

leaves), then (6) above implies that κ is horizontally closed. Hence, condition

(b) of the theorem is obtained. Since �[X,Y] ≡ 0, condition (c) is immediate.

Let µ be the transverse volume form of the flow F. The fact that the leaves of

H are minimal means that β, the mean curvature one-form of the foliation H,

vanishes indentically. Since H⊥ =V is clearly integrable, [18, page 40, Proposi-

tion 4.30] applies and θ(W)(µ) = 0 for any vertical W . Since µ is the volume

form of H, i(W)(µ)= 0 for any vertical W . This means that µ is basic, so (a) is

obtained. The proof of the theorem is complete.

Example 1. Let Tn denote the torus of dimension n with the flat metric.

Then the product bundle S1 → T 3 = S1×T 2 → T 2 gives a simple example of

conclusion (i) of our theorem. Each copy of the circle S1 is totally geodesic. The

bundle is a product and hence the submersion from T 3 → T 2 is bundle-like, so

conditions (a), (b), and (c) clearly hold. Each leaf of H is a totally geodesic (and

hence minimal) T 2. Note that π1(T 3) is infinite.

Example 2 (see [3, Example 1]). Let h be the Heisenberg Lie algebra with

orthonormal basis X, Y , V and the relation [X,Y] = V . Using the usual Levi-

Civita formula for the covariant derivative of left-invariant vector fields, one

sees that

DXX =DYY =DVV = 0,

DXY =−DYX =
(

1
2

)
V,

DXV =DVX =−
(

1
2

)
Y ,

DYV =DVY =
(

1
2

)
X.

(15)

Then κ ≡ 0. If g denotes the left-invariant metric, it is clearly bundle-like

with respect to the flow on M induced by V . Because the metric is bundle-like,

the flow F induced by V admits a holonomy invariant transverse volume form

µ, so (a) of our theorem holds. Conditions (b) and (c) also hold. These same

structures is obtained on a compact quotientM (see [13]) of the Heisenberg Lie

group H by a discrete subgroup. Let α1, α2, and α3 be the one-forms dual to

X, Y , and V , respectively. Then one checks easily that α3∧dα3 never vanishes

on M and so is a contact structure (compare [4] for such a contact structure).

Example 3. Perhaps the most obvious example of a contact structure arises

from the flow defining the Hopf fibration on a unit sphere S3. Each integral

curve is a copy of the unit circle S1. The distribution H orthogonal to that tan-

gent to the flow is well known to be nonintegrable and indeed, in the above ter-

minology, �[X,Y] is never zero (because of the curvature equations of O’Neill)

so H is a contact structure.
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Concluding Remarks. The theorem is motivated by the consideration of

the work in [8] (see also [3]). It would not be surprising if a version of this

result is known in the more restricted case, that the flow F is bundle-like with

respect to the metric g, although we have been unable to track down a precise

reference other than [8] (see also [3]). If the flow F is assumed to be Riemannian

[there exists a metric g′ on M with respect to which F is bundle-like], then a

result of Dominguez (see [18, page 81]) guarantees the existence of a bundle-

like metric g so that κ is basic. Then a result of Kamber-Tondeur guarantees

that κ is closed. Thus, conditions (a) and (b) are unnecessary in this case. One

still, however, needs (c) of our theorem. In the presence of such a bundle-like

g, the conclusion of our theorem in the foliation case (i) is stronger: the leaves

of H are totally geodesic. Interesting results of [10] (see Theorems 2 and 3 of

that paper) give sufficient conditions for a foliation of surfaces on a compact

3-manifold to be non-geodesible.

In [8] the bundle-like hypothesis as well as constant curvature restrictions

are assumed. Because of the work in [2], the dimensional restriction, the theo-

rem of Sullivan, and the assumption that µ is basic, these are not required here.

I would like to add that much is known about contact manifolds. See for exam-

ple, David Blair’s fine book Riemannian Geometry of Contact and Symplectic

Manifolds (Birkhäuser, 2001).
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