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We deal with the numerical analysis of a system of elliptic quasivariational inequal-
ities (QVIs). Under W2,p(Ω)-regularity of the continuous solution, a quasi-optimal
L∞-convergence of a piecewise linear finite element method is established, involv-
ing a monotone algorithm of Bensoussan-Lions type and standard uniform error
estimates known for elliptic variational inequalities (VIs).
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1. Introduction. In this paper, we are concerned with the L∞-convergence

of the standard finite element approximation for the following system of qua-

sivariational inequalities (QVIs): find U = (u1, . . . ,uM)∈ (H1
0(Ω))J satisfying

ai
(
ui,v−ui)� (f i,v−ui) ∀v ∈H1

0(Ω),

ui ≤Mui, ui ≥ 0, v ≤Mui, (1.1)

whereΩ is a bounded smooth domain ofRN ,N ≥ 1, with boundary ∂Ω,ai(u,v)
are J-elliptic bilinear forms continuous on H1(Ω)×H1(Ω), (·,·) is the inner

product in L2(Ω), and f i are J-regular functions.

This system, introduced by Bensoussan and Lions (see [3]), arises in the

management of energy production problems where J-units are involved (see

[4] and the references therein). In the case studied here,Mui represents a “cost

function” and the prototype encountered is

Mui(x)= k+ inf
µ≠i
uµ(x), (1.2)

where k represents the switching cost. It is positive when the unit is “turn on”

and equal to zero when the unit is “turn off.”

Note also that the operatorM provides the coupling between the unknowns

u1, . . . ,uJ .
Naturally, the structure of problem (1.1) is analogous to that of the classical

obstacle problem where the obstacle is replaced by an implicit one depending

upon the solution sought. The terminology QVI being chosen is a result of this

remark.
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The L∞-error estimate is a challenge not only for its practical reasons but

also due to its inherent difficulty of convergence in this norm. Moreover, the

interest in using such a norm for the approximation of obstacle problems is

that they are a type of free boundary problems. This fact has been validated

by the paper of Brezzi and Caffarelli [7] and later by that of Nochetto [15] on

the convergence of the discrete free boundary to the continuous one.

A lot of results on error estimates for the classical obstacle problems and

variational inequalities (VIs) were achieved in this norm, (cf. [1, 11, 14, 16]).

However, very few works are known on this subject concerning QVIs (cf. [5, 10])

and especially the case of systems (see [6]).

Our primary aim in this paper is, precisely, to show that problem (1.1) can

be properly approximated by a finite element method which turns out to be

quasi-optimally accurate in L∞(Ω). The approximation is carried out by first

introducing a monotone iterative scheme of Bensoussan-Lions type which is

shown to converge geometrically to the continuous solution. Similarly, using

the standard finite element method and a discrete maximum principle (d.m.p.),

the solution of the discrete system of QVIs is in its turn approximated by an

analogue discrete monotone iterative scheme, and a geometric convergence to

the discrete solution is given as well. An L∞-error estimate is then established

combining the geometric convergence of both the continuous and discrete it-

erative schemes with known uniform error estimates in elliptic VIs.

An outline of the paper is as follows. We lay down some necessary notations,

assumptions, and preliminaries in Section 2. We consider the continuous prob-

lem and prove some related qualitative properties in Section 3. Section 4 deals

with the discrete problem for which an analogue study to that of the continu-

ous problem is achieved. Finally, in Section 5, we prove a fundamental lemma

and give the main result.

2. Preliminaries

2.1. Assumptions and notation. We are given functions aijk(x), a
i
k(x), and

ai0(x), 1≤ i≤ J, sufficiently smooth such that

∑
1≤j, k≤N

aijk(x)ξjξk �α|ζ|2, ζ ∈RN, α > 0, (2.1)

ai0(x)� β > 0, x ∈Ω. (2.2)

We define the variational forms, for any u,v ∈H1(Ω),

ai(u,v)=
∫
Ω


 ∑

1≤j, k≤N
aijk(x)

∂u
∂xj

∂v
∂xk

+
N∑
k=1

aik(x)
∂u
∂xk

v+ai0(x)uv

dx (2.3)
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such that

ai(v,v)� γ‖v‖2
H1(Ω), γ > 0, (2.4)

and the differential operator associated with the bilinear form ai(·,·)

�i =−
∑

1≤j, k≤N

∂
∂xj

aijk(x)
∂
∂xk

+
N∑
k=1

bik(x)
∂
∂xk

+ai0(x). (2.5)

We are also given right-hand sides

f 1, . . . ,f J such that f i ∈ L∞(Ω), f i ≥ 0. (2.6)

2.2. Elliptic VIs

Definition 2.1. Let f ∈ L∞(Ω) and ψ ∈ W 1,∞(Ω) such that ψ ≥ 0 on ∂Ω.

The following problem is called an elliptic VI: find u∈K such that

a(u,v−u)� (f ,v−u) ∀v ∈K, (2.7)

where K = {v ∈ H1
0(Ω) such that v ≤ ψ a.e.} and a(·,·) is a bilinear form of

the same type as those defined in (2.3).

2.2.1. Levy-Stampacchia inequality

Lemma 2.2 (cf. [2, 3]). Let ψ ∈H1(Ω) such that ψ ≥ 0 on ∂Ω. Let also � be

the differential operator associated with the bilinear form a(·,·) and u be the

solution of VI (2.7) such that �u≥ g (in the sense of H−1(Ω)), where g ∈ L2(Ω).
Then

f ≥�ψ≥ f ∧g. (2.8)

Theorem 2.3 (cf. [2, 13]). Under the conditions of Lemma 2.2, the solution

u of (2.7) satisfies the property u∈W 2,p(Ω) for all p ≥ 2, p <∞, �u∈ L∞(Ω).
2.2.2. A monotonicity property

Theorem 2.4 (cf. [2]). Let (f ,ψ) and (f̃ ,ψ̃) be a pair of data and u =
σ(f ,ψ) and let ũ = (f̃ ,ψ̃) be the respective solutions of (2.7). If f ≥ f̃ and

ψ≥ ψ̃, then σ(f ,ψ)≥ σ(f̃ ,ψ̃).
From now on, we will adopt the notation σ(ψ) instead of σ(f ,ψ).

Proposition 2.5 (cf. [12]). The mapping σ is increasing and concave with

respect to ψ.
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The following proposition plays an important role in proving Proposition

3.4.

Proposition 2.6. Let c be a positive constant. Then σ(ψ+c)≤ σ(ψ)+c.
Proof. Clearly σ(ψ)+c = u+c is solution to the VI with right-hand side

f +a0c and obstacle ψ+c whereas σ(ψ+c) is solution to the VI with right-

hand side f and obstacle ψ+c. Then, as a0(x)≥ β > 0 (see (2.2)) and c > 0, it

follows that f < f+a0c and thanks to Theorem 2.4 we getσ(ψ+c)≤ σ(ψ)+c.

3. The continuous problem

3.1. Existence, uniqueness, and regularity. The existence of a unique so-

lution to system (1.1) can be proved adapting the approach developed in [3,

pages 343–358].

Let L∞+ (Ω) denote the positive cone of L∞(Ω), and consider H+ = (L∞+ (Ω))J
equipped with the norm

‖V‖∞ = max
1≤i≤J

∥∥vi∥∥L∞(Ω). (3.1)

We define the following fixed-point mapping:

T :H+ �→H+,
W �→ TW = ζ = (ζ1, . . . ,ζJ

)
,

(3.2)

where ζi = σ(Mwi)∈H1
0(Ω) is a solution to the following VI:

ai
(
ζi,v−ζi)� (f i,v−ζi) ∀v ∈H1

0(Ω),

ζi ≤Mwi, v ≤Mwi. (3.3)

Problem (3.3) being a coercive VI, thanks to [2, 13] it has one and only one

solution.

Consider now U0 = (u1,0, . . . ,uJ,0), where ui,0 is solution to the following

variational equation:

ai
(
ui,0,v

)= (f i,v) ∀v ∈H1
0(Ω). (3.4)

Due to [3], problem (3.4) has a unique solution. Moreover, ui,0 ∈ W 2,p(Ω),
2≤ p <∞.

3.1.1. Some properties of the mapping T . The mapping T possesses the

following properties.

Proposition 3.1. Let C= {W ∈H+ such that 0≤W ≤U0}. Then T maps C
into itself.
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Proof. (1) TW ≤U0
for all W ∈H+.

For all ϕ ∈ H1(Ω), we let ϕ+ = max(ϕ,0). By the fact that both of ζi and

ui,0 belong to H1
0(Ω), we clearly have

ζi−(ζi−ui,0)+ ∈H1
0(Ω). (3.5)

Moreover, as (ζi−ui,0)+ ≥ 0, it follows that

ζi−(ζi−ui,0)+ ≤ ζi ≤Mwi. (3.6)

Therefore, we can take v = ζi− (ζi−ui,0)+ as a trial function in (3.3). This

gives

ai
(
ζi,−(ζi−ui,0)+)� (f i,−(ζi−ui,0)+). (3.7)

Also, for v = (ζi−ui,0)+, (3.4) becomes

a
(
ui,0,

(
ζi−ui,0)+)= (f i,(ζi−ui,0)+). (3.8)

So, by addition, we obtain

−ai
((
ζi−ui,0)+,(ζi−ui,0)+)� 0, (3.9)

which, by (2.4), yields

(
ζi−ui,0)+ = 0; (3.10)

thus

ζi ≤ui,0 ∀i= 1,2, . . . ,J, (3.11)

that is,

TW ≤U0. (3.12)

(2) TW ≥ 0, for all W ∈H+.

This follows immediately from standard comparison results in elliptic VIs

since f i ≥ 0.

Proposition 3.2. The mapping T is increasing on H+.
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Proof. It follows immediately from the increasing property of the mapping

σ (see Proposition 2.5).

Proposition 3.3. The mapping T is concave on H+.

Proof. It follows immediately from the concaveness of the mapping σ (see

Proposition 2.5).

Proposition 3.4. The mapping T is Lipschitz continuous on H+, that is,

‖TW −TW̃‖∞ ≤ ‖W −W̃‖∞ ∀W,W̃ ∈H+. (3.13)

Proof. Let W = (w1, . . . ,wJ), W̃ = (w̃1, . . . ,w̃J), and δ = (δ1, . . . ,δJ) such

that

δi = ∥∥wi−w̃i∥∥L∞(Ω). (3.14)

Now, setting

Φ = ‖δ‖∞, (3.15)

the monotonicity property of T implies that

TW ≤ T(W̃ +δ)
≤ (σ(M(δ1+w̃1)), . . . ,σ(M(δi+w̃i)), . . . ,σ(M(δM+w̃J)))
= (σ(δ1+Mw̃1), . . . ,σ(δi+Mw̃i), . . . ,σ(δM+Mw̃J))
≤ (σ(Mw̃1)+δ1, . . . ,σ

(
Mw̃i

)+δi, . . . ,σ(Mw̃M)+δJ)
(3.16)

due to Proposition 2.6. Thus

TW ≤ TW̃ +δ. (3.17)

Interchanging the roles of W and W̃ , one can similarly get

TW̃ ≤ TW +δ. (3.18)

This completes the proof.

Remark 3.5. The discrete version of Proposition 3.4 plays an important

role in the finite element error analysis part of this work.

Remark 3.6. We notice that the solutions of system (1.1) correspond to

fixed points of mapping T , that is, U = TU . Then, in this view, it is natural to

consider the following iterative scheme.
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3.1.2. A continuous iterative scheme of Bensoussan-Lions type. Starting

from U0
defined in (3.4) and U0 = (0, . . . ,0), we define the sequences

Un+1 = TUn, n= 0,1, . . . , (3.19)

Un+1 = TUn, n= 0,1, . . . . (3.20)

The convergence analysis of these sequences rests upon the following re-

sults.

Lemma 3.7. Let 0< λ< inf(k/‖U0‖∞,1). Then T(0)� λU0
.

Proof. The proof is very similar to that of [3, page 351].

Proposition 3.8. Let γ ∈ ]0,1] and W,W̃ ∈ C such that

W −W̃ ≤ γW. (3.21)

Then, under the conditions of Lemma 3.7,

TW −TW̃ ≤ γ(1−λ)TW. (3.22)

Proof. From (3.21), we have (1−γ)W ≤ W̃ . Then, applying Proposition 3.3,

we get

(1−γ)TW +γT(0)≤ T [(1−γ)W +γ ·0]≤ TW̃ , (3.23)

and, due to Lemma 3.7, the desired result follows.

3.1.3. Convergence of the continuous iterative scheme

Theorem 3.9. Under conditions of Propositions 3.1, 3.2, 3.3, and 3.8, the

sequences (Un) and (Un) are monotone and well defined in C. Moreover, they

converge, respectively, from above and below to the unique solution of system

(1.1).

Proof. It is an adaptation of [3, pages 342–358].

3.1.4. Regularity of the solution of system (1.1)

Theorem 3.10 [3, page 453]. Assume aijk(x) in C1,α(Ω), ai(x), and ai0(x)
and f i in C0,α(Ω), α> 0. Then, (u1, . . . ,uM)∈ (W 2,p(Ω))J , 2≤ p <∞.

3.2. Rate of convergence of the continuous iterative scheme

Proposition 3.11. Let the conditions of Proposition 3.8 hold. Then

∥∥Un−U∥∥∞ ≤ (1−λ)n
∥∥U0∥∥∞, (3.24)

∥∥Un−U∥∥∞ ≤ (1−λ)n
∥∥U0∥∥∞. (3.25)
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Proof. By Theorem 3.9, we have

0≤U ≤U0, (3.26)

so

0≤U0−U ≤U0. (3.27)

Then, applying (3.21) and (3.22) with γ = 1, we get

0≤ TU0−TU ≤ (1−λ)TU0
(3.28)

and by (3.19),

0≤U1−U ≤ (1−λ)U1. (3.29)

Now, using (3.21) and (3.22) again with γ = 1−λ, it follows that

0≤ TU1−TU ≤ (1−λ)(1−λ)TU1, (3.30)

that is,

0≤U2−U ≤ (1−λ)2U2
(3.31)

and inductively,

0≤Un−U ≤ (1−λ)Un ≤ (1−λ)nU0. (3.32)

We prove estimation (3.25) as estimation (3.24).

4. The discrete problem. Let Ω be decomposed into triangles and let τh
denote the set of all those elements; h > 0 is the mesh size. We assume that

the family τh is regular and quasi-uniform.

Let Vh denote the standard piecewise linear finite element space and Ai,
1≤ i≤ J, be the matrices with generic coefficients ai(ϕl,ϕs), where ϕs , s =
1,2, . . . ,m(h), are the nodal basis functions. Let also rh be the usual interpola-

tion operator.

The d.m.p. We assume that Ai are M-matrices (cf. [9]).

Let uh ∈ Vh be the finite element approximation of u defined in (2.7), that

is,

a
(
uh,v−uh

)� (f ,v−uh) ∀v ∈Vh,
uh ≤ rhψ, v ≤ rhψ.

(4.1)

Now, let σh be a mapping from L∞(Ω) into Vh, defined by

uh = σh(ψ). (4.2)
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The mapping σh possesses analogous properties to those of the mapping σ
(see Proposition 2.5) provided the d.m.p is satisfied.

Proposition 4.1. The mappingσh is increasing, concave, and Lipschitz con-

tinuous with respect to ψ.

4.1. The discrete system of QVIs. We define the discrete system of QVIs

as follows: find Uh = (u1
h, . . . ,u

J
h)∈ (Vh)J such that

ai
(
uih,v−uih

)� (f i,v−uih) ∀v ∈Vh,
uih ≤ rhMuih, uih ≥ 0, v ≤ rhMuih.

(4.3)

4.2. Existence and uniqueness. The existence and uniqueness of a solution

to system (4.3) can be shown similarly to that of the continuous case provided

the d.m.p is satisfied. Indeed, the key idea for proving that consists in associ-

ating with this system the following discrete fixed point mapping:

Th :H+ �→ (Vh)J ,
W �→ ThW = ζh =

(
ζ1
h, . . . ,ζ

J
h
)
,

(4.4)

where ζih = σh(Mwi) is the solution of the following discrete VI:

ai
(
ζih,v−ζih

)� (f i,v−ζih) ∀v ∈Vh,
ζih ≤ rhMwi, v ≤ rhMwi.

(4.5)

Remark 4.2. Under the d.m.p, the mapping Th possesses analogous prop-

erties to that of mapping T (see Propositions 3.1, 3.2, 3.3, 3.4, and 3.8). The

proofs of such properties will not be given as they are very similar to those of

the continuous case. We just list them below.

4.2.1. Some properties of the mapping Th. Let U0
h = (u1,0

h , . . . ,u
J,0
h ) be the

discrete analogue to U0
defined in (3.4):

ai
(
ui,0h ,v

)= (f i,v) ∀v ∈Vh. (4.6)

Then, we have the discrete analogues to Propositions 2.6, 3.1, 3.2, and 3.3,

respectively.

Proposition 4.3. Let Ch = {W ∈ (L∞(Ω))J such that 0≤W ≤U0
h}. Then Th

maps Ch into itself.

Proposition 4.4. The mapping Th is increasing and concave on H+.

Proposition 4.5. The mapping Th is Lipschitz continuous on H+, that is,

∥∥ThW −ThW̃∥∥∞ ≤
∥∥W −W̃∥∥∞ ∀W,W̃ ∈H+. (4.7)
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Remark 4.6. It is not hard to see that the solution of system of QVIs (4.3) is

a fixed point of Th, that is,Uh = ThUh. Therefore, as in the continuous problem,

one can associate with Th the following iterative scheme.

4.2.2. A discrete iterative scheme of Bensoussan-Lions type. Starting from

U0
h solution of (4.6) (resp., from U0

h = (0, . . . ,0)), we define

Un+1
h = ThUnh n= 0,1, . . . , (4.8)

respectively

Un+1
h = ThUnh n= 0,1, . . . . (4.9)

Then, by analogy with the continuous problem, using the following inter-

mediate results, we are able to prove the convergence of the discrete iterative

scheme to the solution of system (4.3).

Lemma 4.7. Let 0 < λ < inf(k/‖U0
h‖∞,1). Then, under the d.m.p, Th(0) �

λ·U0
h.

Proposition 4.8. Let γ ∈ ]0,1] and W,W̃ ∈ C such that

W −W̃ ≤ γW. (4.10)

Then

ThW −ThW̃ ≤ γ(1−λ)ThW. (4.11)

Theorem 4.9. Under the d.m.p and the conditions of Propositions 4.3, 4.4,

and 4.8, the sequences (Unh) and (Unh) are monotone and well defined in Ch.

Moreover, they converge, respectively, from above and below to the unique so-

lution of system (4.3).

Proof. Very similar to that of Theorem 3.9.

4.2.3. Rate of convergence of the discrete iterative scheme

Proposition 4.10. Under the d.m.p, the discrete analogues to estimates

(3.24) and (3.25) hold

∥∥Unh−Uh∥∥∞ ≤ (1−λ)n
∥∥U0

h
∥∥∞, (4.12)

∥∥Unh−Uh
∥∥∞ ≤ (1−λ)n

∥∥U0
h
∥∥∞. (4.13)

Proof. It is exactly the same as that of Proposition 3.11.

5. The finite element error analysis. This section is devoted to demonstrate

that the proposed method is quasi-optimally accurate in L∞(Ω). For this pur-

pose, we need first to introduce an auxiliary sequence of discrete VIs and next

prove a fundamental lemma.
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From now on, C will denote a constant independent of both h and n.

5.1. An auxiliary sequence of discrete VIs. Let Un = (u1,n, . . . ,un,J) be the

sequence defined in (3.19). We then introduce the following discrete sequence:

Ũn+1
h = ThUn, n= 0,1, . . . , with Ũ0

h =U
0
h, (5.1)

where U0
h is defined in (4.6) and for any n� 1, ũi,nh is solution to the following

discrete VI:

ai
(
ũi,n+1
h ,v−ũi,n+1

h
)� (f i,v−ũi,n+1

h
) ∀v ∈Vh,

ũi,n+1
h ≤ rhMui,n, v ≤ rhMui,n.

(5.2)

We notice that ũi,nh , solution of (5.2), represents the piecewise finite element

approximation of ui,n, the ith component of Un. Therefore, using the regular-

ity result provided by Lemma 5.1 and next adapting [11], we have the optimal

uniform error estimate given below.

Lemma 5.1. For any i= 1, . . . ,J,

max
n≥0

(∥∥ui,n∥∥W2,p(Ω),
∥∥ui,n∥∥W2,p(Ω)

)
≤ C, 2≤ p <∞, (5.3)

where C is a constant independent of n.

Proof. We know that ui,1 = σ(Mui,0) is a solution to the VI with obstacle

ψ= k+infuµ,0, µ ≠ i andui,0 ∈W 2,p(Ω). So, ‖ψ‖W1,∞(Ω) ≤ C1 and, therefore, as

in [3, Lemma 2.3, page 372], we get �iψ≥−c1 in the sense of H−1(Ω). Hence,

by Lemma 2.2 and Theorem 2.3, it follows that ‖ui,1‖W2,p(Ω) ≤ C2.

Now, assume that ‖ui,n−1‖W2,p(Ω) ≤ C3 with C3 independent of n. Then, ψ=
k+ infuµ,n−1 satisfies ‖ψ‖W1,∞(Ω) ≤ C4, µ ≠ i. So, using the same arguments as

before, we get �iψ≥−c2 in the sense of H−1(Ω) with c independent of n, and

therefore ‖ui,n‖W2,p(Ω) ≤ C , where C is a constant independent of n.

(The proof of ‖ui,n‖W2,p(Ω) ≤ C is exactly as above.)

Theorem 5.2. Under the conditions of Lemma 5.1,

∥∥Un−Ũnh
∥∥∞ ≤ Ch2|logh|2. (5.4)

The following lemma plays a crucial role in proving the main result.
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Lemma 5.3. Let (Un), (Unh), and (Ũnh ) be the sequences defined in (3.19),

(4.8), and (5.1), respectively. Then

∥∥Un−Unh∥∥∞ ≤
n∑
p=0

∥∥Up−Ũph
∥∥∞. (5.5)

Proof. We prove this lemma by induction. Indeed, estimation (5.5) is true

for n= 0 since Ũ0
h =U

0
h. Also, knowing that

U1 = TU0, U1
h = ThU0

h, Ũ1
h = ThU

0, (5.6)

it follows that

∥∥U1−U1
h
∥∥∞ ≤

∥∥U1−Ũ1
h
∥∥∞+

∥∥Ũ1
h−U

1
h
∥∥∞

≤ ∥∥U−Ũ1
h
∥∥∞+

∥∥ThU0−ThU0
h
∥∥∞.

(5.7)

So, thanks to the Lipschitz continuity property of Th, we get

∥∥U1−U1
h
∥∥∞ ≤

∥∥U1−Ũ1
h
∥∥∞+

∥∥U0−U0
h
∥∥∞

≤
1∑
p=0

∥∥Up−Ũph
∥∥∞.

(5.8)

Now, assume that

∥∥Un−1−Un−1
h

∥∥∞ ≤
n−1∑
p=0

∥∥Up−Ũph
∥∥∞. (5.9)

Then

∥∥Un−Unh∥∥∞ ≤
∥∥Un−Ũnh

∥∥∞+
∥∥Ũnh −Unh

∥∥∞
≤ ∥∥Un−Ũnh

∥∥∞+
∥∥ThUn−1−ThUn−1

h
∥∥∞.

(5.10)

Using again the Lipschitz continuity of Th, it follows that (5.10) is less than

or equal to

∥∥Un−Ũnh
∥∥∞+

∥∥Ũn−1
h −Un−1

h
∥∥∞ ≤

∥∥Un−Ũnh
∥∥∞+

n−1∑
p=0

∥∥Up−Ũph
∥∥∞

≤
n∑
p=0

∥∥Up−Ũph
∥∥∞,

(5.11)

which completes the proof of Lemma 5.3.
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Now, guided by Lemma 5.3, Propositions 3.11 and 4.10, and Theorem 5.2,

we are in a position to demonstrate our main result.

5.2. L∞-error estimate for the system of QVIs (1.1)

Theorem 5.4.

∥∥U−Uh∥∥∞ ≤ Ch2| logh|3, (5.12)∥∥U−Uh∥∥1,∞ ≤ Ch| logh|3, (5.13)

where

‖U‖1,∞ = max
1≤i≤J

∥∥ui∥∥W1,∞(Ω). (5.14)

Proof. Using estimates (3.24), (4.12), (5.4), and (5.5), we have

∥∥U−Uh∥∥∞ ≤
∥∥U−Un∥∥∞+

∥∥Un−Unh∥∥+∥∥Unh−Uh∥∥∞
≤ ∥∥U−Un∥∥∞+

n∑
p=0

∥∥Up−Ũph
∥∥∞+

∥∥Unh−Uh∥∥∞

≤ ∥∥U0−U0
h
∥∥∞+

n∑
p=1

∥∥Up−Ũph
∥∥∞+

∥∥U−Un∥∥∞+
∥∥Unh−Uh∥∥∞

≤ Ch2| logh|3/2+n·Ch2| logh|2+(1−λ)n∥∥U0∥∥∞+(1−λ)n
∥∥U0

h
∥∥∞,

(5.15)

where we have also used the standard uniform error estimate

∥∥U0−U0
h
∥∥∞ ≤ Ch2| logh|3/2 (5.16)

(cf. [8, 14]). Finally, letting (1−λ)n = h2, we get the desired result.

The W 1,∞-error estimate (5.13) follows immediately from standard inverse

inequality (cf. [8]).

Conclusion. (1) We have established a convergence order in the L∞-norm

for a coercive system of QVIs. A future paper will be devoted to the noncoercive

case for which a different approach will be developed and analyzed.

(2) It is also important to notice that the error estimate obtained in this paper

contains an extra power in logh than expected. We believe that this is due to

the approach followed.

(3) The same approach may also be extended to other important problems

such as the system of QVIs related to games theory [3].
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