ON HOPF DEMEYER-KANZAKI GALOIS EXTENSIONS

GEORGE SZETO and LIANYONG XUE

Received 15 October 2002

Let *H* be a finite-dimensional Hopf algebra over a field *k*, *B* a left *H*-module algebra, and H^* the dual Hopf algebra of *H*. For an H^* -Azumaya Galois extension *B* with center *C*, it is shown that *B* is an H^* -DeMeyer-Kanzaki Galois extension if and only if *C* is a maximal commutative separable subalgebra of the smash product *B*#*H*. Moreover, the characterization of a commutative Galois algebra as given by S. Ikehata (1981) is generalized.

2000 Mathematics Subject Classification: 16W30, 16H05.

1. Introduction. Let *H* be a finite-dimensional Hopf algebra over a field *k*, B a left H-module algebra, and H^* the dual Hopf algebra of H. In [7], the class of Azumaya Galois extensions of a ring as studied in [1, 2] was generalized to H^* -Azumaya Galois extensions. An H^* -Azumaya Galois extension B was characterized in terms of the smash product B#H see [7, Theorem 3.4]. Observing that the commutator $V_B(B^H)$ of B^H in B is also an H^* -Azumaya Galois extension (see [7, Lemma 4.1]), in the present paper, we will give a characterization of an H^* -Azumaya Galois extension B in terms of $V_B(B^H)$. Moreover, we will investigate the class of H^* -Azumaya Galois extensions B such that $V_B(B^H) = C$, where *C* is the center of *B*. We note that when H = kG, where *G* is a finite automorphism group of B, such a B is precisely a DeMeyer-Kanzaki Galois extension with Galois group G [3, 6, 8, 9]. Several equivalent conditions are then given for an H^* -Azumaya Galois extension being an H^* -DeMeyer-Kanzaki Galois extension, and the characterization of a commutative Galois algebra as given by Ikehata [5, Theorem 2] is generalized to an H^* -DeMeyer-Kanzaki Galois extension.

2. Basic definitions and notation. Throughout, *H* denotes a finite-dimensional Hopf algebra over a field *k* with comultiplication Δ and counit ε , *H*^{*} the dual Hopf algebra of *H*, *B* a left *H*-module algebra, *C* the center of *B*, $B^H = \{b \in B \mid hb = \varepsilon(h)b$ for all $h \in H\}$, and B#H the smash product of *B* with *H*, where $B#H = B \otimes_k H$ such that, for all b#h and b'#h' in B#H, $(b#h)(b'#h') = \sum b(h_1b')#h_2h'$, where $\Delta(h) = \sum h_1 \otimes h_2$.

For a subring *A* of *B* with the same identity 1, we denote the commutator subring of *A* in *B* by $V_B(A)$. We call *B* a separable extension of *A* if there

exist { a_i, b_i in B, i = 1, 2, ..., m for some integer m} such that $\sum a_i b_i = 1$ and $\sum ba_i \otimes b_i = \sum a_i \otimes b_i b$ for all b in B where \otimes is over A. An Azumaya algebra is a separable extension of its center. A ring B is called a Hirata separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. A ring B is called an H^* -Galois extension of B^H if Bis a right H^* -comodule algebra with structure map $\rho : B \to B \otimes_k H^*$ such that $\beta : B \otimes_{B^H} B \to B \otimes_k H^*$ is a bijection where $\beta(a \otimes b) = (a \otimes 1)\rho(b)$. An H^* -Galois extension B is called an H^* -Azumaya Galois extension if B is separable over B^G which is an Azumaya algebra over C^G , and an H^* -DeMeyer-Kanzaki Galois extension if B is an H^* -Azumaya Galois extension and $V_B(B^H) = C$.

Let *P* be a finitely generated and projective module over a commutative ring *R*. Then for a prime ideal *p* of *R*, P_p (= $P \otimes_R R_p$) is a free module over R_p (= the local ring of *R* at *p*), and the rank of P_p over R_p is the number of copies of R_p in P_p , that is, rank $_{R_p}(P_p) = m$ for some integer *m*. It is known that the rank $_R(P)$ is a continuous function (rank $_R(P)(p) = \operatorname{rank}_{R_p}(P_p) = m$) from Spec(*R*) to the set of nonnegative integers with the discrete topology (see [4, Corollary 4.11, page 31]). We will use the rank $_R(P)$ -function for a finitely generated and projective module *P* over a commutative ring *R*.

3. H^* -**Azumaya Galois extensions.** In this section, keeping all notations as given in Section 2, we will characterize an H^* -Azumaya Galois extension *B* in terms of the commutator $V_B(B^H)$ of B^H in *B*.

THEOREM 3.1. If $B = B^H \cdot V_B(B^H)$, then $(V_B(B^H))^H = C^H$.

PROOF. Since $C \subset V_B(B^H)$, $C^H \subset (V_B(B^H))^H$. Conversely, since $V_B(B^H) \subset B$, $(V_B(B^H))^H \subset B^H$. Hence $(V_B(B^H))^H \subset B^H \cap V_B(B^H) \subset$ the center of $V_B(B^H)$. But $B = B^H \cdot V_B(B^H)$, so the center of $V_B(B^H)$ is *C*. Thus, $(V_B(B^H))^H \subset C^H$.

THEOREM 3.2. A ring B is an H^* -Azumaya Galois extension of B^H if and only if $B = B^H \cdot V_B(B^H)$ such that $V_B(B^H)$ is an H^* -Azumaya Galois extension of C^H and B^H is an Azumaya C^H -algebra.

PROOF. (\Rightarrow) Since *B* is an *H**-Azumaya Galois extension of *B^H*, then *V_B*(*B^H*) is an *H**-Azumaya Galois extension of $(V_B(B^H))^H$ (see [7, Lemma 4.1]) and *B^H* is an Azumaya *C^H*-algebra (see [7, Theorem 3.4]). Moreover, by the proof of [7, Lemma 4.1], *B#H* is an Azumaya *C^H*-algebra such that *B#H* \cong *B^H* \otimes_{C^H} ($V_B(B^H)$ #*H*) \cong *B^H*($V_B(B^H)$ #*H*), where *B^H* and $V_B(B^H)$ #*H* are Azumaya *C^H*-algebras. But *H* is a finite-dimensional Hopf algebra over a field *k*, so *B* \cong *B^H* $\otimes_{C^H} V_B(B^H)$ from the isomorphism *B#H* \cong *B^H* $\otimes_{C^H} (V_B(B^H)$ #*H*), and so *B* = *B^H* $\cdot V_B(B^H)$. Hence ($V_B(B^H)$)^{*H*} = *C^H* by Theorem 3.1. Thus *V_B(B^H*) is an *H**-Azumaya Galois *C^H*-algebra.

(⇐) Since $V_B(B^H)$ is an H^* -Azumaya Galois algebra over C^H , $V_B(B^H)#H$ is an Azumaya C^H -algebra [7, Theorem 3.4]. By hypothesis, B^H is an Azumaya C^H -algebra, so $B^H \otimes_{C^H} (V_B(B^H)#H) \cong B^H V_B(B^H)#H = B#H$ which is an Azumaya

 C^{H} -algebra. Thus B#H is a Hirata separable extension of B (see [5, Theorem 1]). Moreover, $V_B(B^H)$ is a separable C^H -algebra (see [7, Theorem 3.4]) and B^H is an Azumaya C^H -algebra by hypothesis, so $B^H \cdot V_B(B^H)$ (= B) is also a separable C^H -algebra. Thus B is an H^* -Azumaya Galois extension of B^H [7, Theorem 3.4].

Next we generalize the characterization of a commutative Galois algebra as given by Ikehata (see [5, Theorem 2]) to a commutative H^* -Galois algebra.

LEMMA 3.3. If C is a commutative H^* -Galois algebra over C^H , then C is a maximal commutative subalgebra of $C^{\#}H$.

PROOF. Since *C* is a commutative H^* -Galois algebra over C^H , $C#H \cong \text{Hom}_{C^H}(C, C)$ [6, Theorem 1.7]. Hence it suffices to show that $V_{\text{Hom}_{C^H}(C,C)}(C_L) = C_L$ where $C_L = \{c_L$, the left multiplication map induced by $c \in C\}$. In fact, $C_L \subset V_{\text{Hom}_{C^H}(C,C)}(C_L)$ is clear. Conversely, let $f \in V_{\text{Hom}_{C^H}(C,C)}(C_L)$. Then, for each $c \in C$, (cf)(x) = (fc)(x) for all $x \in C$. Hence cf(x) = f(cx), and so cf(1) = f(c) for all $c \in C$. Thus $f(c) = d_f(c)$ for all $c \in C$, where $d_f = f(1) \in C$, that is, $f = (d_f)_L \in C_L$.

THEOREM 3.4. Let *C* be a commutative separable C^H -algebra containing C^H as a direct summand as a C^H -module. Then, *C* is a commutative H^* -Galois algebra over C^H if and only if $C \otimes_{C^H} (C^{\#}H) \cong M_n(C)$, the matrix algebra over *C* of order *n* where *n* is the dimension of *H* over *k*.

PROOF. (\Rightarrow) Since *C* is an *H*^{*}-Galois algebra over *C*^{*H*}, *C*#*H* \cong Hom_{*C*^{*H*}}(*C*,*C*) such that *C* is finitely generated and projective over *C*^{*H*} [6, Theorem 1.7]. Hence *C*#*H* is an Azumaya *C*^{*H*}-algebra and *C* is a maximal commutative subalgebra of the Azumaya *C*^{*H*}-algebra *C*#*H* by Lemma 3.3. By hypothesis, *C* is also a separable *C*^{*H*}-algebra, so *C* is a splitting ring for the Azumaya *C*^{*H*}-algebra *C*#*H* such that $C \otimes_{C^H} (C#H) \cong \text{Hom}_C(C#H, C#H)$ (see the proof of [4, Theorem 5.5, page 64]). Noting that $C#H = C \otimes_k H$ which is a free *C*-module of rank *n* where $n = \dim_k(H)$, we have that $C \otimes_{C^H} (C#H) \cong M_n(C)$.

(⇐) Since $C \otimes_{C^H} (C^{\#}H) \cong M_n(C)$, $C \otimes_{C^H} (C^{\#}H)$ is an Azumaya *C*-algebra. By hypothesis, C^H is a direct summand of *C* as a C^H -module, so $C^{\#}H$ is an Azumaya C^H -algebra [4, Corollary 1.10, page 45]. Hence $C^{\#}H$ is a Hirata separable extension of *C*. But *C* is a separable C^H -algebra by hypothesis, so *C* is an H^* -Galois algebra over C^H [7, Theorem 3.4].

We remark that the necessity does not need the hypothesis that C^H is a direct summand of *C*.

4. H^* -**DeMeyer-Kanzaki Galois extensions.** We recall that B is an H^* -DeMeyer-Kanzaki Galois extension of B^H if B is an H^* -Azumaya Galois extension of B^H and $V_B(B^H) = C$. In this section, we characterize an H^* -DeMeyer-Kanzaki Galois extension in terms of the smash product $V_B(B^H)$ #H and prove that C is a splitting ring for the Azumaya C^H -algebras $V_B(B^H)$ #H and B#H.

1629

THEOREM 4.1. Let *B* be an H^* -Azumaya Galois extension of B^H . Then the following statements are equivalent:

- (1) *B* is an H^* -DeMeyer-Kanzaki Galois extension of B^H ;
- (2) $\operatorname{rank}_{C^H}(V_B(B^H)) = \operatorname{rank}_{C^H}(C);$
- (3) *C* is a maximal commutative separable subalgebra of $V_B(B^H)$ #*H*.

PROOF. (1) \Rightarrow (2). It is clear.

(2)⇒(1). Since *B* is an *H*^{*}-Azumaya Galois extension of *B^H*, *V*_{*B*}(*B^H*) is an *H*^{*}-Azumaya Galois algebra over *C^H* by Theorem 3.2 such that *V*_{*B*}(*B^H*) is a separable and finitely generated projective module over *C^H* (see [7, Theorem 3.4]). Hence the rank function rank_{*C*^{*H*}}(*V*_{*B*}(*B^H*)) is defined and *V*_{*B*}(*B^H*) is an Azumaya algebra over its center [4, Theorem 3.8, page 55]. But *B* = *B^H* · *V*_{*B*}(*B^H*) by Theorem 3.2, so the center of *V*_{*B*}(*B^H*) is *C*. Thus *V*_{*B*}(*B^H*) is an Azumaya *C*-algebra; and so *C* is a direct summand *V*_{*B*}(*B^H*) as a *C*-module. This implies that *C* is a direct summand *V*_{*B*}(*B^H*) as a *C*^{*H*}-module. Therefore the rank function rank_{*C*^{*H*}(*C*) is also defined. Now by hypothesis, rank_{*C*^{*H*}}(*V*_{*B*}(*B^H*)) = rank_{*C*^{*H*}(*C*), so *V*_{*B*}(*B^H*) = *C*, that is, *B* is an *H**-DeMeyer-Kanzaki Galois extension of *B^H*.}}

(1)⇒(3). Since *B* is an *H*^{*}-DeMeyer-Kanzaki Galois extension of *B^H*, *B* is an *H*^{*}-Azumaya Galois extension such that $V_B(B^H) = C$. Hence $B = B^H \cdot V_B(B^H) \cong B^H \otimes_{C^H} C$ such that *C* is an *H*^{*}-Galois algebra over *C^H* by Theorem 3.2, and so *C* is a separable *C^H*-algebra containing *C^H* as a direct summand as a *C^H*-module [7, Theorem 3.4]. Hence *C* is a maximal commutative separable subalgebra of *C*#*H* where $C = V_B(B^H)$ by Lemma 3.3.

(3)⇒(2). Since *B* is an *H**-Azumaya Galois extension of *B^H*, *B* = *B^H* · *V*_{*B*}(*B^H*) \cong *B^H* ⊗_{*C*^H}*V*_{*B*}(*B^H*) such that *V*_{*B*}(*B^H*) is an *H**-Azumaya Galois algebra over *C^H* by **Theorem 3.2**. Hence *V*_{*B*}(*B^H*)#*H* is an Azumaya *C^H*-algebra and *V*_{*B*}(*B^H*) is an Azumaya *C*-algebra [7, Theorem 3.4]. By hypothesis, *C* is a maximal commutative separable subalgebra of *V*_{*B*}(*B^H*)#*H*, so

$$C \otimes_{C^H} (V_B(B^H) \# H) \cong \operatorname{Hom}_C (V_B(B^H) \# H, V_B(B^H) \# H)$$

$$(4.1)$$

(see [4, Theorem 5.5, page 64]). On the other hand, $V_B(B^H) # H \cong \text{Hom}_{C^H}(V_B(B^H), V_B(B^H))$ (see [7, Theorem 3.4]). Thus

$$C \otimes_{C^{H}} (V_{B}(B^{H}) \# H) \cong C \otimes_{C^{H}} \operatorname{Hom}_{C^{H}} (V_{B}(B^{H}), V_{B}(B^{H}))$$

$$\cong \operatorname{Hom}_{C} (C \otimes_{C^{H}} V_{B}(B^{H}), C \otimes_{C^{H}} V_{B}(B^{H}));$$
(4.2)

and so $\operatorname{Hom}_{C}(V_{B}(B^{H})\#H, V_{B}(B^{H})\#H) \cong \operatorname{Hom}_{C}(C \otimes_{C^{H}} V_{B}(B^{H}), C \otimes_{C^{H}} V_{B}(B^{H})).$ This implies that $V_{B}(B^{H})\#H \cong P \otimes_{C} (C \otimes_{C^{H}} V_{B}(B^{H}))$ for some finitely generated projective *C*-module *P* of rank 1, that is, $V_{B}(B^{H})\#H \cong P \otimes_{C^{H}} V_{B}(B^{H}).$ Taking rank_{*C*^{*H*}}() both sides, we have that $n \cdot \operatorname{rank}_{C^{H}}(V_{B}(B^{H})) = (\operatorname{rank}_{C^{H}}(P)) \cdot (\operatorname{rank}_{C^{H}}(V_{B}(B^{H})))$ where $n = \dim_{k}(H).$ But $\operatorname{rank}_{C^{H}}(V_{B}(B^{H}))$ is also *n*, so $\operatorname{rank}_{C^{H}}(C) = \operatorname{rank}_{C^{H}}(P) = n = \operatorname{rank}_{C^{H}}(V_{B}(B^{H})).$ **Theorem 4.1** implies that the Azumaya C^H -algebras $V_B(B^H)#H$ and B#H have a nice splitting ring C which is an H^* -Galois algebra over C^H and separable over C^H such that $C \otimes_{C^H} (V_B(B^H)#H)$ and $C \otimes_{C^H} (B#H)$ are matrix algebras.

COROLLARY 4.2. If *B* is an H^* -DeMeyer-Kanzaki Galois extension of B^H , then $C \otimes_{C^H} (V_B(B^H) \# H) \cong M_n(C)$, the matrix algebra over *C* of order *n* where $n = \dim_k(H)$.

PROOF. By hypothesis, *B* is an H^* -DeMeyer-Kanzaki Galois extension of B^H , so $C (= V_B(B^H))$ is an H^* -Galois algebra over C^H by Theorem 3.2. Hence *C* is a separable C^H -algebra and $C^{\#}H$ is an Azumaya C^H -algebra [7, Theorem 3.4]. Thus C^H is a direct summand of *C* as a C^H -module. Therefore, $C \otimes_{C^H} (C^{\#}H) \cong M_n(C)$ by Theorem 3.4.

COROLLARY 4.3. If *B* is an H^* -DeMeyer-Kanzaki Galois extension of B^H , then $C \otimes_{C^H} (B \# H) \cong M_n(B)$, the matrix algebra over *B* of order *n* where $n = \dim_k(H)$.

PROOF. By Corollary 4.2, $C \otimes_{C^H} (C \# H) \cong M_n(C)$, so

$$B^{H} \otimes_{C^{H}} C \otimes_{C^{H}} (C \# H) \cong B^{H} \otimes_{C^{H}} M_{n}(C).$$

$$(4.3)$$

Since $B = B^H \cdot V_B(B^H) \cong B^H \otimes_{C^H} V_B(B^H) = B^H \otimes_{C^H} C$, we have that

$$C \otimes_{C^{H}} (B^{\#}H) \cong C \otimes_{C^{H}} ((B^{H} \otimes_{C^{H}} C)^{\#}H)$$

$$\cong C \otimes_{C^{H}} B^{H} \otimes_{C^{H}} (C^{\#}H)$$

$$\cong B^{H} \otimes_{C^{H}} C \otimes_{C^{H}} (C^{\#}H)$$

$$\cong B^{H} \otimes_{C^{H}} M_{n}(C) \cong M_{n}(B^{H} \otimes_{C^{H}} C)$$

$$\cong M_{n}(B).$$

$$(4.4)$$

ACKNOWLEDGMENTS. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

REFERENCES

- R. Alfaro and G. Szeto, *Skew group rings which are Azumaya*, Comm. Algebra 23 (1995), no. 6, 2255-2261.
- [2] _____, On Galois extensions of an Azumaya algebra, Comm. Algebra 25 (1997), no. 6, 1873-1882.
- [3] F. R. DeMeyer, *Some notes on the general Galois theory of rings*, Osaka J. Math. 2 (1965), 117-127.
- [4] F. R. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, Berlin, 1971.
- [5] S. Ikehata, Note on Azumaya algebras and H-separable extensions, Math. J. Okayama Univ. 23 (1981), no. 1, 17–18.
- [6] H. F. Kreimer and M. Takeuchi, *Hopf algebras and Galois extensions of an algebra*, Indiana Univ. Math. J. **30** (1981), no. 5, 675–692.
- [7] M. Ouyang, Azumaya extensions and Galois correspondence, Algebra Colloq. 7 (2000), no. 1, 43-57.

- [8] G. Szeto and L. Xue, Some correspondences for a center Galois extension, Math. Japon. 52 (2000), no. 3, 463-468.
- [9] L. Xue, *The invariant subrings of DeMeyer-Kanzaki Galois extensions*, Port. Math. (N.S.) 59 (2002), no. 1, 37-45.

George Szeto: Department of Mathematics, Bradley University, Peoria, IL 61625, USA *E-mail address*: szeto@hilltop.bradley.edu

Lianyong Xue: Department of Mathematics, Bradley University, Peoria, IL 61625, USA *E-mail address*: lxue@hilltop.bradley.edu

1632