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1. Introduction. The purpose of this paper is to establish existence of mild

solutions of a semilinear abstract retarded functional differential equation

(ARFDE) with infinite delay of first order, and to show that under general con-

ditions the set formed by the mild solutions is connected in the space of con-

tinuous functions. This property is known in the literature as the Kneser’s

property. We refer to [5] for the original result in the frame of differential

equations and to [9] for a similar result for functional equations.

We start with an abstract statement of this property. In this statement, we

denote by Vδ(B) the δ-neighborhood of a set B in a metric space.

Lemma 1.1. LetX and Y be metric spaces, B a closed subset of Y , and T :X →
Y a continuous function. Let S = T−1(B) and assume that there is a compact set

K ⊆X such that for each ε > 0, there is a setKε ⊆K with the following properties:

(i) the sets Kε are connected;

(ii) d(x,Kε) < ε for all x ∈ S;

(iii) T(Kε)⊆ Vδ(ε)(B), where δ(ε)→ 0, as ε→ 0.

Then S is connected.

Proof. We assume that S is not connected. We derive the existence of

nonempty disjoint closed sets F1 and F2 such that S = F1∪ F2. This implies

that both F1 and F2 are closed in X and d(F1,F2) = η > 0. Let U be the η/2-

neighborhood of F1. It is clear that for each 0< ε < η/2, the sets Kε∩U ≠ Φ and

Kε∩(X \U)≠ Φ. Since Kε is connected, it follows that Fr(U)∩Kε ≠ Φ. Thus, we

can choose xn ∈ Fr(U)∩Kn, where Kn =Kε, for ε = 1/n with n∈N and n≥N.

Since Kn ⊆ K, there is a subsequence, which we denote by the same index,

such that xn → x, as n→∞. Clearly, x ∈ Fr(U) and, in view of that T is con-

tinuous, T(xn)→ T(x), n→∞. Since d(T(xn),B)→ 0, n→∞, it follows that
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d(T(x),B)= 0, which in turn implies that T(x)∈ B and x ∈ S. Consequently,

x ∈ Fr(U)∩S, which is absurd by the construction of U .

To apply this result to the set formed by the solutions of a certain equa-

tion, the following version is more convenient. Afterwards X denotes a Banach

space, I ⊆R is a compact interval, and C(I;X) stands for the space of continu-

ous functions from I into X endowed with the norm of uniform convergence.

Corollary 1.2. Let � : C(I;X)→ C(I;X) be continuous and S the set of fixed

points of �. Assume that there is a compact set K ⊆ C(I;X) such that for each

ε > 0, there is a set Kε ⊆K with the following properties:

(i) the sets Kε are connected;

(ii) d(x,Kε) < ε for all x ∈ S;

(iii) ‖y−�y‖∞ < δ(ε) for all y ∈Kε, where δ(ε)→ 0, as ε→ 0.

Then S is connected.

Another abstract version of the Kneser property, which is known as the

Krasnoselskii-Perov theorem (see [13]), is obtained using degree theory.

Let X be a Banach space endowed with a norm ‖·‖. Henceforth, we always

assume that A : D(A)→ X is the infinitesimal generator of a strongly contin-

uous semigroup of linear operators T(t) defined on X. In this paper, we are

concerned with the initial value problem defined by the semilinear ARFDE with

infinite delay

x′(t)=Ax(t)+f (t,xt), 0≤ t ≤ τ, (1.1)

with initial condition

x0 =ϕ ∈�, (1.2)

where � is a space, called the phase space for the equation, f : [0,τ]×� is an

appropriated function, and xt represents the function defined from (−∞,0]
into X by xt(θ) = x(t+θ), −∞ < θ ≤ 0. Our purpose is to establish that the

set of mild solutions of (1.1) and (1.2) is connected.

To study this problem in a general context, we will employ an axiomatic

definition of the phase space � introduced by Hale and Kato [4]. To establish

the axioms of space �, we follow the terminology used in [8]. Thus, � will be

a linear space of functions mapping (−∞,0] into X endowed with a seminorm

‖·‖�. We will assume that � satisfies the following axioms.

(A) If x : (−∞,σ +a) → X, a > 0, is continuous on [σ ,σ +a) and xσ ∈ �,

then for every t in [σ ,σ +a), the following conditions hold:

(i) xt is in �;

(ii) ‖x(t)‖ ≤H‖xt‖�;

(iii) ‖xt‖� ≤K(t−σ)sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t−σ)‖xσ‖�, where H ≥ 0

is a constant; K,M : [0,∞) → [0,∞), K is continuous and M is locally

bounded and H, K, M are independent of x(·).
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(A-1) For the function x(·) in (A), xt is a �-valued continuous function on

[σ ,σ +a).
(B) The space � is complete.

Throughout this paper, we always assume that � is a phase space.

2. Abstract retarded functional differential equations. Henceforth, T(t) is

a strongly continuous semigroup of linear operators on X with infinitesimal

generator A. We refer the reader to [3, 12] and the references cited therein

for the theory of strongly continuous semigroup and the associated abstract

Cauchy problem (ACP). We only mention here a few results needed for our

developments.

The existence and regularity of solutions of the first-order ACP

x′(t)=Ax(t)+h(t), t ≥ 0,

x(0)= x0,
(2.1)

where h : [0,∞)→ X is a locally integrable function, have been treated in sev-

eral works (see [3, 12]). We only recall here that the function

x(t)= T(t)x0+
∫ t

0
T(t−s)h(s)ds, t ≥ 0, (2.2)

is said to be a mild solution of (2.1).

Similarly, the existence of solutions of the semilinear ACP has been

discussed in [1, 11]. Our interest in this section is to establish a Kneser’s type

property for the solutions of the functional semilinear first-order ACP (1.1)

and (1.2). Next, we abbreviate the notation by writing I = [0,τ].
We begin with a result that ensures existence of solutions under quite gen-

eral hypotheses which are suitable for our purposes. To study this initial value

problem, we assume that the function f : I ×� → X satisfies the following

Carathéodory conditions:

(a) f(t,·) : �→X is continuous a.e., t ∈ I;
(b) for each ψ∈�, the function f(·,ψ) : I →X is strongly measurable.

In what follows, to study problem (1.1) and (1.2) and in order to avoid some

cumbersome notations, if x : I → X is a function such that x(0) = ϕ(0), we

identify x with its extension x : (−∞,τ] → X defined on (−∞,0] by x(θ) =
ϕ(θ). Furthermore, if B ⊆ C(I;X) is a set such that x(0)=ϕ(0), for every x ∈
B, we denote by H(B)⊆ C(I;�) the set consisting of the continuous functions

t→ xt and x ∈ B.

Expression (2.2) motivates the following concept of mild solution.

Definition 2.1. We say that a function x : I → X is a mild solution of

problem (1.1) and (1.2) if x is a continuous function that satisfies the integral
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equation

x(t)= T(t)ϕ(0)+
∫ t

0
T(t−s)f (s,xs)ds, 0≤ t ≤ τ. (2.3)

In what follows, we denote by BR the closed ball with center at 0 and radius

R in an appropriated space. Since the strongly continuous semigroups are uni-

formly bounded on bounded intervals, we represent by M̃ a constant such that

‖T(t)‖ ≤ M̃ for all 0≤ t ≤ τ . Moreover, we abbreviate our notations by writing

K = sup0≤t≤τ K(t) and M = sup0≤t≤τ M(t) and we denote by co(B) the closed

convex hull of a set B.

Theorem 2.2. Assume that the following conditions hold:

(H1) for each R > 0, there is a positive integrable function γR ∈ �1(I) such

that sup{‖f(t,ψ)‖ : ‖ψ‖� ≤ R} ≤ γR(t) a.e., t ∈ I;
(H2) for each 0< t ≤ τ and R ≥ 0, the set {T(t)f (s,ψ) : 0≤ s ≤ τ , ‖ψ‖� ≤ R}

is relatively compact;

(H3) liminfR→∞(M̃K/R)(
∫ τ
0 γR(s)ds) < 1.

Then there is a mild solution of (1.1) and (1.2). In further, if the following con-

dition is fulfilled:

(H4) limsupR→∞(M̃K/R)(
∫ τ
0 γR(s)ds) < 1,

then the set � formed by the mild solutions of (1.1) and (1.2) is compact in C(I;X)
and the set H(�) is compact in C(I;�).

Proof. Let Cϕ = {x ∈ C(I;X) : x(0) =ϕ(0)}. We define the map � : Cϕ →
Cϕ by

�(x)(t)= T(t)ϕ(0)+
∫ t

0
T(t−s)f (s,xs)ds. (2.4)

Clearly, � is well defined and the Lebesgue’s dominated convergence theorem

implies that � is continuous. We affirm that there exists n ∈ N such that � :

Bn → Bn. In fact, if we assume that the assertion is false, we can select an

increasing sequence Rj such that

lim
j→∞

1
Rj

∫ τ
0
γRj (s)ds =α= liminf

R→∞
1
R

∫ τ
0
γR(s)ds < 1, (2.5)

as well as a sequence (nj)j in N and a sequence xj ∈ Bnj such that qj =
Knj +M‖ϕ‖� ≤ Rj ≤ K(nj + 1)+M‖ϕ‖� and ‖�(xj)‖ > nj . Therefore, for

each t ∈ I, we have that ‖xtj‖� ≤ qj from which it follows that

nj <
∥∥�
(
xj
)∥∥≤ M̃∥∥ϕ(0)∥∥+M̃ ∫ τ

0
γRj (s)ds. (2.6)
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Hence, we obtain that

1<
M̃
∥∥ϕ(0)∥∥
nj

+ M̃
nj

∫ τ
0
γRj (s)ds

= M̃
∥∥ϕ(0)∥∥
nj

+M̃ Rj
nj

1
Rj

∫ τ
0
γRj (s)ds �→ M̃Kα, j �→∞,

(2.7)

which contradicts (H3).

Next, using (H1) and (H2), we establish that � is completely continuous.

Since � is continuous, it only remains to prove that � takes bounded sets into

relatively compact sets in the space C(I;X). From the Ascoli-Arzela theorem,

it is sufficient to prove that for each R ≥ 0, the set {�0(x)(t) : ‖x‖∞ ≤ R} is

relatively compact in X for all 0≤ t ≤ τ and that the set {�0(x) : ‖x‖∞ ≤ R} is

equicontinuous, where we have denoted

�0(x)(t)=
∫ t

0
T(t−s)f (s,xs)ds. (2.8)

We begin by establishing the first assertion. Let t > 0 and we take ε > 0 small

enough. We can write

�0(x)(t)=
∫ t−ε

0
T(t−s)f (s,xs)ds+∫ t

t−ε
T(t−s)f (s,xs)ds

=
∫ t−ε

0
T(t−ε−s)T(ε)f (s,xs)ds

+
∫ t
t−ε
T(t−s)f (s,xs)ds.

(2.9)

Applying the mean value theorem for the Bochner integral (see [10]), it follows

that∫ t−ε
0
T(t−ε−s)T(ε)f (s,xs)ds
∈ (t−ε)co

{
T(t−ε−s)T(ε)f(s,ψ) : ‖ψ‖� ≤Q, 0≤ s ≤ t−ε}, (2.10)

where Q=KR+M‖ϕ‖�. By (H2), the set on the right-hand side is compact so

that the first term on the right-hand side of (2.9) is included in a compact set

which does not depend on the function x(·).
On the other hand, for the second term on the right-hand side of (2.9), we

obtain the estimation∥∥∥∥∫ t
t−ε
T(t−s)f (s,xs)ds∥∥∥∥≤ M̃ ∫ t

t−ε
γQ(s)ds, (2.11)

which shows that this term converges towards zero as ε→ 0 since γR′ is inte-

grable. Hence, we can assure that the set V(t) = �0(BR)(t) is relatively com-

pact.
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To establish the second assertion, we first observe that

�0(x)(t+h)−�0(x)(t)

=
∫ t+h

0
T(t+h−s)f (s,xs)ds−∫ t

0
T(t−s)f (s,xs)ds

= (T(h)−I)∫ t
0
T(t−s)f (s,xs)ds

+
∫ t+h
t
T(t+h−s)f (s,xs)ds.

(2.12)

Note that the first term on the right-hand side is included in (T(h)−I)V(t) so

that this term converges to zero as h→ 0, independent of x(·)∈ BR . Similarly,

for the second term, we have

∥∥∥∥∫ t+h
t
T(t+h−s)f (s,xs)ds∥∥∥∥≤ M̃ ∫ t+h

t
γQ(s)ds, (2.13)

which implies that this term tends towards zero as h→ 0.

Applying now the fixed-point theorem of Schauder, we infer that � has a

fixed-point x in Bn. Clearly, x is a mild solution of (1.1) and (1.2). Moreover,

the continuity of � implies that the set � consisting of mild solutions is closed.

On the other hand, if condition (H4) holds, then � is bounded. In fact, if we

assume that � is not bounded, then there exists a sequence of functions xj ∈�

such that qj = ‖xj‖∞ ≥ j. Let Rj = sup0≤t≤τ ‖xjt ‖� ≤Kqj+M‖ϕ‖. Hence,

∥∥xj(t)∥∥= ∥∥�xj(t)
∥∥≤ M̃∥∥ϕ(0)∥∥+M̃ ∫ τ

0
γRj (s)ds (2.14)

from which we obtain

1≤ limsup
j→∞

M̃
Rj
qj

1
Rj

∫ τ
0
γRj (s)ds ≤ M̃K limsup

R→∞
1
R

∫ τ
0
γR(s)ds (2.15)

which is absurd by (H4). Finally, using that � is completely continuous, we

deduce that � is compact. The last assertion is a direct consequence of the

next property (see [8]). Thus, the proof is complete.

Lemma 2.3. Let ϕ ∈ �. If B ⊆ C(I;X) is a relatively compact set such that

x(0)=ϕ(0) for every x ∈ B, then H(B) is relatively compact in C(I;�).

We refer to [6, 7] for another existence results.

Next, for future reference, we strengthen a property established in the proof

of Theorem 2.2.

Lemma 2.4. Assume that conditions (H1) and (H2) hold. Then for eachQ> 0,

the set {∫ t0 T(t− s)f (s,y(s))ds : 0 ≤ t ≤ τ , y ∈ �∞(I;�), ‖y‖∞ ≤ Q} is rela-

tively compact in X.
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Proof. Proceeding as in the proof of Theorem 2.2, we infer that the set

V(t)=
{∫ t

0
T(t−s)f (s,y(s))ds :y ∈�∞(I;X), ‖y‖∞ ≤Q

}
(2.16)

is relatively compact for each 0≤ t ≤ τ . We put V =⋃0≤t≤τ V(t) and we prove

that this set is relatively compact. To this finality, we first observe that the

following property holds: for each ε > 0, there is δ > 0 such that

V(t+h)⊆ T(h)V(t)+Bε, |h| ≤ δ. (2.17)

In fact, we chose δ > 0 such that M̃
∫ t+h
t γQ(s)ds ≤ ε for h ≤ δ. Thus, for x ∈

V(t+h), we can write

x =
∫ t+h

0
T(t+h−s)f (s,y(s))ds

= T(h)
∫ t

0
T(t−s)f (s,y(s))ds+∫ t+h

t
T(t+h−s)f (s,y(s))ds. (2.18)

Since the first term on the right-hand side is included in T(h)V(t) and the

norm of the second term is less than or equal to M̃
∫ t+h
t γQ(s)ds, we establish

the assertion.

Now, assuming that δ= τ/n for some n∈N large enough, we have that

V ⊆
n−1⋃
i=0

( ⋃
0≤h≤δ

T(h)V(iδ)+Bε
)
=

⋃
0≤h≤δ

T(h)
(n−1⋃
i=0

V(iδ)
)
+Bε, (2.19)

which implies that V is relatively compact.

Next, we assume that problem (1.1) and (1.2) has mild solutions and we

denote by � the set consisting of such solutions. For a set � ⊆ C(I;Y), we

denote by �(I) the set {f(t) : f ∈�, t ∈ I}.
Theorem 2.5. Assume that f is a continuous function and that (H1) and

(H2) are fulfilled. If in further the following conditions hold:

(H5) the set � is compact,

(H6) 3M̃K liminfR→∞(1/R)
∫ τ
0 γR(s)ds < 1,

then � is connected in C(I;X) and H(�) is connected in C(I;�).

Proof. For the remainder of this proof, we abbreviate our notations by

writing h(t) = T(t)ϕ(0). On the other hand, applying (H5) and (H6), we can

select a constant R > 0 large enough such that ‖x‖∞ ≤ R for all x ∈� and

‖h‖∞+3M̃
∫ τ

0
γQ(s)ds ≤ R, (2.20)
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where Q=KR+M‖ϕ‖. This implies that

K‖h‖∞+M‖ϕ‖+3M̃K
∫ τ

0
γQ(s)ds ≤Q. (2.21)

Let V be the set constructed in the proof of Lemma 2.4 for the constant Q.

Without loss of generality, we can assume that V is absolutely convex. We put

U = 2V and U1 = 3V . We denote N1 = 2M̃
∫ τ
0 γQ(s)ds.

We divide the proof into several steps.

Step 1. For a division d of I formed by the points 0 = t0 < t1 ··· < tn−1 <
tn = τ , we consider the function z(·)∈ Cϕ given by z(0)=ϕ(0) and

z(t)= h(t)+
i−1∑
k=1

(∫ tk
tk−1

T(t−s)f (s,ztk−1

)
ds+(tk−tk−1

)
uk

)

+
∫ t
ti−1

T(t−s)f (s,zti−1

)
ds+(t−ti−1

)
ui,

(2.22)

for ti−1 < t ≤ ti and where we choose uk so that
∑i
k=1(tk− tk−1)uk ∈ U and

‖∑ik=1(tk− tk−1)uk‖ ≤ N1, for all i = 1, . . . ,n. Clearly, z is a continuous func-

tion. Next, for a fixed z given by (2.22), we denote by Ψ(·) and u(·) the step

functions defined by Ψ(0) = ϕ, u(0) = u1, Ψ(t) = ztk−1 , and u(t) = uk, for

tk−1 < t ≤ tk and k= 1, . . . ,n. Thus, we can rewrite the definition of z as

z(t)= h(t)+
∫ t

0
T(t−s)f (s,Ψ(s))ds+∫ t

0
u(s)ds. (2.23)

We will show that ‖z(t)‖ ≤ R for 0≤ t ≤ τ , independent of the division d and

the choice of points ui. In fact, from (2.20), we easily obtain that ‖z(t)‖ ≤ R for

0 < t ≤ t1. We assume that the assertion is true for t ∈ [0, ti−1] and we show

that ‖z(t)‖ ≤ R, for ti−1 < t ≤ ti. In fact, it is clear from the axioms of phase

space that ‖zt‖� ≤Q for 0≤ t ≤ ti−1, and since
∑i−1
k=1(tk−tk−1)uk+(t−ti−1)ui

is a convex combination of
∑i−1
k=1(tk−tk−1)uk and

∑i
k=1(tk−tk−1)uk, from (2.23)

we obtain

∥∥z(t)∥∥≤ ∥∥h(t)∥∥+∥∥∥∥∥
∫ t

0
T(t−s)f (s,Ψ(s))ds∥∥∥∥∥

+
∥∥∥∥∥
i−1∑
k=1

(
tk−tk−1

)
uk+

(
t−ti−1

)
ui

∥∥∥∥∥
≤ ‖h‖∞+M̃

∫ τ
0
γQ(s)ds+2M̃

∫ τ
0
γQ(s)ds,

(2.24)

which establishes our assertion.

Step 2. To simplify the construction, we consider the points tk equally

spaced with δ = tk − tk−1 and, in addition to the conditions considered in
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Step 1, we suppose that

∥∥∥∥∥∥δ
j∑

k=i+1

uk−
[
T
(
(j−i)δ)−I] i∑

k=1

uk

∥∥∥∥∥∥≤ 2M̃
∫ jδ
iδ
γQ(s)ds, (2.25)

for all 1 ≤ i+1 ≤ j ≤ n. We prove that the set W formed by the functions z
defined by (2.22) is relatively compact in C(I;X). In fact, since h is a fixed func-

tion if we denote z̃ = z−h, we must prove that W0 = {z̃ : z ∈W} is relatively

compact.

First, turning to apply (2.23) and Lemma 2.4, we infer that

z̃(t)=
∫ t

0
T(t−s)f (s,Ψ(s))ds+δ i−1∑

k=1

uk+
(
t−ti−1

)
ui ∈ V +U ⊆U1 (2.26)

for every z ∈W and t ∈ I.
Now, we prove that W0 is equicontinuous. Let 0≤ t′ ≤ t ≤ τ . From (2.23), we

can write

z̃(t)− z̃(t′)

=
∫ t

0
T(t−s)f (s,Ψ(s))ds−∫ t′

0
T(t′ −s)f (s,Ψ(s))ds+∫ t

t′
u(s)ds

= [T(t−t′)−I]∫ t′
0
T(t′ −s)f (s,Ψ(s))ds+∫ t

t′
T(t−s)f (s,Ψ(s))ds

+
∫ t
t′
u(s)ds

= [T(t−t′)−I](z̃(t′)−∫ t′
0
u(s)ds

)
+
∫ t
t′
T(t−s)f (s,Ψ(s))ds

+
∫ t
t′
u(s)ds.

(2.27)

In view of that V is a compact set and z̃(t′)−∫ t′0 u(s)ds ∈ V , in order to prove

the assertion, it is sufficient to show that
∫ t
t′u(s)ds converges towards zero as

t−t′ → 0, independent of the construction of z.

Since the set U is compact and γQ is integrable for ε > 0, there is η0 > 0 such

that ‖(T(s)− I)u‖ ≤ ε/2 for all 0 ≤ s ≤ η0, u ∈ U , and 2M̃
∫ s
s′ γQ(s)ds ≤ ε/2,

for all s′,s ∈ I, |s−s′| ≤ η0. We denote by C1 the constant

C1 = sup
{

1
s
∥∥(T(s)−I)u∥∥ : η0 ≤ s ≤ τ, u∈U

}
(2.28)

and we take 0< η≤min{η0,εη0/2N1,ε/2C1}.
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Initially, we assume that t′ and t coincide with some points of the division.

Thus, we suppose that t′ = ti and t = tj . In this case, we have that

∫ t
t′
u(s)ds = δ

j∑
k=i+1

uk

= δ
j∑

k=i+1

uk−
[
T
(
(j−i)δ)−I]δ i∑

k=1

uk

+[T((j−i)δ)−I]δ i∑
k=1

uk,

(2.29)

and applying (2.25), we obtain the estimation

∥∥∥∥∫ t
t′
u(s)ds

∥∥∥∥≤ 2M̃
∫ t
t′
γQ(s)ds+

∥∥∥∥∥[T(t−t′)−I]δ
i∑
k=1

uk

∥∥∥∥∥. (2.30)

Consequently, since δ
∑i
k=1uk∈U , if tj−ti ≤ η0, it follows that ‖∫ tt′u(s)ds‖≤ε.

Let t−t′ ≤ η. Regarding the relative location of points tk, we analyze three

possible situations. In first case, we assume that there is no point tk between

t′ and t. Hence, there is an index i such that ti < t′ < t ≤ ti+1 and
∫ t
t′u(s)ds =

(t−t′)ui+1. From (2.25), we have that

∥∥ui+1

∥∥≤ 2M̃
δ

∫ ti+1

ti
γQ(s)ds+

∥∥∥∥∥(T(δ)−I)
i∑
k=1

uk

∥∥∥∥∥. (2.31)

Hence, if δ≤ η0, using that t−t′ ≤ δ from the above expression, it follows that

(t−t′)∥∥ui+1

∥∥≤ ε
2
+ (t−t

′)
δ

∥∥∥∥∥(T(δ)−I)δ
i∑
k=1

uk

∥∥∥∥∥≤ ε, (2.32)

while if δ≥ η0, we obtain that

(t−t′)∥∥ui+1

∥∥≤ (t−t′)N1

η0
+(t−t′)1

δ

∥∥∥∥∥(T(δ)−I)δ
i∑
k=1

uk

∥∥∥∥∥≤ ε, (2.33)

which establishes the assertion in this case.

Now, we assume that there is an index i such that ti−1 < t′ < ti < t < ti+1.

Therefore, from our definitions, it follows that

∫ t
t′
u(s)ds = (ti−t′)ui+(t−ti)ui+1. (2.34)

Since ti−t′ < t−t′ and t−ti < t−t′, we can argue as in the preceding case.
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Finally, we consider that there are indices i < j such that ti−1 < t′ < ti < tj <
t < tj+1. Clearly,

∥∥v(t)−v(t′)∥∥≤ ∥∥v(t)−v(tj)∥∥+∥∥v(tj)−v(ti)∥∥+∥∥v(ti)−v(t′)∥∥, (2.35)

where we have abbreviated v(t) = ∫ t
0 u(s)ds. In view of that tj − ti ≤ t − t′,

from our initial remark, we obtain that ‖v(tj)−v(ti)‖ ≤ ε. Thus, this case is

reduced to estimate the first and third term on the right-hand side of the above

expression. For the first term, we observe that v(t) is a convex combination of

v(tj) and v(tj+1). Therefore,

∥∥v(t)−v(tj)∥∥≤ ∥∥v(tj+1
)−v(tj)∥∥, (2.36)

and since δ= tj+1−tj ≤ t−t′, we can repeat the previous argument. The third

term is estimated similarly.

From the Ascoli-Arzela theorem, it follows thatW0 is relatively compact and

so is W = h+W0.

Step 3. Now let ε > 0 be fixed. Without loss of generality, we assume also

that ε ≤min{τ/2,2N1} and we take ε1 = ε/2M̃τ . Using the compactness of sets

� and W as well as the continuity of f , we infer the existence of 0< δ1 ≤ 2Kε
such that

∥∥f (s,ψ1
)−f (s,ψ2

)∥∥≤ ε1 (2.37)

for all s ∈ I and for every ψ1,ψ2 ∈ H(W ∪�)(I) such that ‖ψ1−ψ2‖� ≤ δ1.

Similarly, there is δ2 > 0 such that

∥∥x(s)−x(t)∥∥≤ δ1

4K
(2.38)

for all x(·)∈W ∪� and s,t ∈ I such that |t−s| ≤ δ2.

Now, we choose δ= τ/n≤min{δ2,δ1τ/2Kε}.
In the sequel, we consider the division d defined by ti = iδ, i = 0, . . . ,n. Let

Wε be the set formed by the functions defined by (2.22) with (u1, . . . ,un)∈ Zε,
where Zε is the set consisting of points (u1, . . . ,un) ∈ ((2/δ)U)n that satisfy

the following conditions:

(i) δ
∑i
k=1uk ∈U ,

(ii) δ‖∑ik=1uk‖ ≤ M̃tiε1,

(iii) ‖δ∑jk=i+1uk−δ[T((j−i)δ)−I]
∑i
k=1uk‖ ≤ 2M̃

∫ tj
ti γQ(s)ds,

for all i= 1, . . . ,n and j ≥ i+1.

We notice that condition (ii) implies that δ‖∑ik=1uk‖ ≤N1. Next, we establish

some properties of Wε.
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Step 4. The set Wε is connected. This assertion is an easy consequence

of the fact that the functions z ∈ Wε depend continuously on the choice of

(u1, . . . ,un)∈ Zε and Zε is convex by our construction.

Step 5. In this step, we show that the solutions of (2.3) can be approximated

by the elements in Wε. Let x ∈� be fixed. We proceed to define z ∈Wε so that

‖x−z‖∞ ≤ ε. We define z(·) inductively on the intervals [ti−1, ti].
Let i= 1. In this case, t1 = δ and we take

u1 = 1
t1

∫ t1
0
T
(
t1−s

)[
f
(
s,xs

)−f(s,ϕ)]ds. (2.39)

It is clear from our construction that u1 ∈ (1/δ)U . Moreover, from (2.38), it

follows that ‖xs−ϕ‖� ≤ δ1/4 so that (2.37) implies that ‖f(s,xs)−f(s,ϕ)‖ ≤
ε1 for all 0≤ s ≤ δ and this yields that ‖u1‖ ≤ M̃ε1. We define

z(t)= h(t)+
∫ t

0
T(t−s)f (s,ϕ)ds+tu1 (2.40)

for 0≤ t ≤ t1. From this expression, it follows that

z
(
t1
)= h(t1)+∫ t1

0
T
(
t1−s

)
f(s,ϕ)ds+t1u1

= h(t1)+∫ t1
0
T
(
t1−s

)
f(s,ϕ)ds = x(t1). (2.41)

Moreover, for 0< t ≤ t1, we have

∥∥x(t)−z(t)∥∥≤ ∥∥∥∥∫ t
0
T(t−s)[f (s,xs)−f(s,ϕ)]ds∥∥∥∥+t∥∥u1

∥∥
≤ 2M̃ε1t ≤ δ1

2K
.

(2.42)

Proceeding by induction, we assume now that we have selected the elements

uk, k = 1, . . . , i−1 such that (u1, . . . ,ui−1,0, . . . ,0) ∈ Zε and the function z(t)
given by (2.22) for t ∈ [0, ti−1] satisfies z(tk)= x(tk) and the estimation

∥∥x(t)−z(t)∥∥≤ δ1

2K
, 0≤ t ≤ ti−1. (2.43)

We define now the function z on [ti−1, ti]. We begin by selecting

ui = 1
δ

i−1∑
k=1

∫ tk
tk−1

[
T
(
ti−s

)−T(ti−1−s
)][
f
(
s,xs

)−f (s,ztk−1

)]
ds

+ 1
δ

∫ ti
ti−1

T
(
ti−s

)[
f
(
s,xs

)−f (s,zti−1

)]
ds.

(2.44)
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Utilizing the function Ψ(·) defined previously, we can abbreviate

ui = 1
δ

∫ ti
0
T
(
ti−s

)[
f
(
s,xs

)−f (s,Ψ(s))]ds
− 1
δ

∫ ti−1

0
T
(
ti−1−s

)[
f
(
s,xs

)−f (s,Ψ(s))]ds. (2.45)

Initially, we establish that (u1, . . . ,ui,0, . . . ,0)∈ Zε. From the above expression,

it follows easily that δui ∈ 2U and

δ
i∑
k=1

uk =
∫ ti

0
T
(
ti−s

)[
f
(
s,xs

)−f (s,Ψ(s))]ds, (2.46)

which implies that δ
∑i
k=1uk ∈U and δ‖∑ik=1uk‖ ≤N1. Moreover, form+1≤

j ≤ i, we have that

δ
j∑

k=m+1

uk = δ
j∑
k=1

uk−δ
m∑
k=1

uk

=
∫ tj

0
T
(
tj−s

)[
f
(
s,xs

)−f (s,Ψ(s))]ds
−
∫ tm

0
T
(
tm−s

)[
f
(
s,xs

)−f (s,Ψ(s))]ds
= [T(tj−tm)−I]∫ tm

0
T
(
tm−s

)[
f
(
s,xs

)−f (s,Ψ(s))]ds
+
∫ tj
tm
T
(
tj−s

)[
f
(
s,xs

)−f (s,Ψ(s))]ds

(2.47)

which yields

δ
j∑

k=m+1

uk−
[
T
(
tj−tm

)−I]δ m∑
k=1

uk

=
∫ tj
tm
T
(
tj−s

)[
f
(
s,xs

)−f (s,Ψ(s))]ds
(2.48)

which in turn implies the estimation∥∥∥∥∥δ
j∑

k=m+1

uk−
[
T
(
(j−m)δ)−I]δ m∑

k=1

uk

∥∥∥∥∥≤ 2M̃
∫ tj
tm
γQ(s)ds. (2.49)

In addition, for ti−1 < s ≤ ti, we can write

xs−Ψ(s)= xs−xti−1+xti−1−zti−1 . (2.50)

From (2.38), we have that ‖xs − xti−1‖� ≤ δ1/4 and, by induction, ‖xti−1 −
zti−1‖� ≤ δ1/2. Combining these estimations with (2.37), we infer that

δ‖∑ik=1uk‖ ≤ M̃tiε1, which establishes that (u1, . . . ,ui,0, . . . ,0)∈ Zε.
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Now, we define z(t) for ti−1 < t ≤ ti by means of formula (2.22). Using this

expression as well as the choice of uk, k= 1, . . . , i, we infer that

x
(
ti
)−z(ti)= ∫ ti

0
T
(
ti−s

)[
f
(
s,xs

)−f (s,Ψ(s))]ds−δ i∑
k=1

uk

=
∫ ti

0
T
(
ti−s

)[
f
(
s,xs

)−f (s,Ψ(s))]ds
−
∫ ti−1

0
T
(
ti−1−s

)[
f
(
s,xs

)−f (s,Ψ(s))]ds−δui
= 0.

(2.51)

Moreover, from (2.38) and the choice of δ, it follows that

∥∥x(t)−z(t)∥∥≤ ∥∥x(t)−x(ti−1
)∥∥+∥∥z(t)−z(ti−1

)∥∥≤ δ1

2K
, (2.52)

which establishes the assertion.

Step 6. In this step, we prove that the elements of Wε are approximate

solutions of (2.3). Specifically, we show that∥∥∥∥∥z(t)−h(t)−
∫ t

0
T(t−s)f (s,zs)ds

∥∥∥∥∥≤ ε (2.53)

for all t ∈ I and z ∈Wε.
In fact, for ti−1 < t ≤ ti, using (2.22), we have

z(t)−h(t)−
∫ t

0
T(t−s)f (s,zs)ds

=
∫ t

0
T(t−s)[f (s,Ψ(s))−f (s,zs)]ds

+δ
i−1∑
k=1

uk+
(
t−ti−1

)
ui,

(2.54)

and employing now (2.37), (2.38), and the choice of δ, we can establish the

estimation ∥∥∥∥z(t)−h(t)−∫ t
0
T(t−s)f (s,zs)ds∥∥∥∥

≤
∥∥∥∥∫ t

0
T(t−s)[f (s,Ψ(s))−f (s,zs)]ds∥∥∥∥

+
∥∥∥∥∥δ

i−1∑
k=1

uk+
(
t−ti−1

)
ui

∥∥∥∥∥
≤ 2M̃τε1,

(2.55)

which shows our assertion.
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Since � is the set of fixed points of the map � given by (2.4), gathering

Step 1 and Step 6 and applying Corollary 1.2, we obtain that � is connected

in the space C(I;X). Finally, to complete the proof, we observe that the map

Λ : Cϕ → C(I;�), x(·)→ (t→ xt), is continuous and that H(�)=Λ(�).

3. Application. The equations studied in this work are widely used to model

concrete problems. We consider, as an example, the equation

∂u(ξ,t)
∂t

= d∂
2u(ξ,t)
∂ξ2

+h
(∫∞

0
q(s)u(ξ,t−s)ds

)
, 0< ξ < 1, t > 0,

u(ξ,t)= 0, ξ = 0,1,
(3.1)

where d is a positive constant and q(·) and h are continuous functions that

satisfy some conditions that will be specified later, which is a simplification

of the predator-prey model proposed by Cohen et al. [2] to represent some

inherent time delay in the population model.

To represent this problem in an abstract frame, we take X := L2([0,1]) and

x(t) :=u(·, t). The operator A is given by

Au(ξ)= du′′(ξ) (3.2)

with domain

D(A) := {u(·)∈ L2([0,1]) :u′′(·)∈ L2([0,π]), u(0)=u(1)= 0
}
. (3.3)

It is well known that A generates a strongly continuous semigroup T(·) which

is compact, analytic, and selfadjoint. Furthermore, A has discrete spectrum

with simple eigenvalues −n2π2d, n ∈ N. The set of normalized eigenvectors

is complete in X, which shows that ‖T(t)‖ ≤ e−dπ2t , t ≥ 0, so that M̃ = 1.

Let � denote the space UCg in the terminology of [8]. Here, g is a positive

continuous function defined in (−∞,0] which satisfies conditions (g2) and (g4)

in [8] and the function G(t)= sup−∞<θ≤−t(g(t+θ)/g(θ))→ 0, as t→∞. In this

case, � is a fading memory space (see [8, Theorem 1.3.8, Example 7.1.7]) and

H = g(0), K(t)= sup−t≤θ≤0 1/g(θ), and M(t)=G(t).
Assuming that

C =
∫ 0

−∞
g(θ)

∣∣q(−θ)∣∣dθ <∞, (3.4)

it follows that the Bochner’s integral

F(ϕ)=
∫ 0

−∞
q(−θ)ϕ(θ)dθ (3.5)
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defines a bounded linear operator F : �→X. Hence, we have that

F(ϕ)(ξ)=
∫ 0

−∞
q(−θ)ϕ(ξ,θ)dθ a.e., (3.6)

where we have abbreviated the notation by writingϕ(ξ,θ) instead ofϕ(θ)(ξ),
θ ∈ (−∞,0], and ξ ∈ [0,1].

We assume in addition that there are constants C1 ≥ 0 and 0 ≤ α ≤ 1 so

that h satisfies the condition |h(t)| ≤ C1|t|α, t ∈ R. We define f(t,ϕ)(ξ) =
h(F(ϕ)(ξ)), 0≤ ξ ≤ 1.

With these definitions, problem (3.1) can be set in the form (1.1) and (1.2)

and we can verify easily that the hypotheses of Theorem 2.2 hold. In fact, it is

not difficult to see that f satisfies the Carathéodory conditions. Furthermore,

∥∥f(t,ϕ)∥∥2 ≤ C1Cα‖ϕ‖α�, (3.7)

which shows that condition (H1) holds with γR(t)= C1CαRα, and, in turn, this

definition shows that (H4) and (H6) are fulfilled for all τ > 0 when α< 1, while

(H4) and (H6) are verified for τ > 0 small enough when α = 1. Finally, condi-

tion (H2) follows from the fact that T is a compact semigroup . Consequently,

the hypotheses of Theorems 2.2 and 2.5 are satisfied and we can assert that

problem (3.1) has mild solutions and that the set formed by these solutions is

connected.

It is worth to point out that we have obtained these properties without as-

suming that h satisfies a local Lipschitz condition.
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