AN APPLICATION OF A SUBORDINATION CHAIN

SUKHJIT SINGH and SUSHMA GUPTA

Received 12 April 2002

Let *K* denote the class of functions $g(z) = z + a_2 z^2 + \cdots$ which are regular and univalently convex in the unit disc *E*. In the present note, we prove that if *f* is regular in *E*, f(0) = 0, then for $g \in K$, $f(z) + \alpha z f'(z) \prec g(z) + \alpha z g'(z)$ in *E* implies that $f(z) \prec g(z)$ in *E*, where $\alpha > 0$ is a real number and the symbol " \prec " stands for subordination.

2000 Mathematics Subject Classification: 30C45, 30C50.

1. Introduction. Let *S* denote the class of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 (1.1)

which are regular and univalent in the unit disc $E = \{z : |z| < 1\}$. A function $f \in S$ is said to be convex of order β , $0 \le \beta < 1$, if and only if

$$\operatorname{Re}\left[1 + \frac{zf''(z)}{f'(z)}\right] > \beta, \quad z \in E.$$
(1.2)

For a given β , $0 \le \beta < 1$, let $K(\beta)$ denote the subclass of *S* consisting of convex functions of order β and let K = K(0) be the usual class of convex functions.

A function f given by (1.1) is said to be close-to-convex in E if f is regular in E and if there exists a function $g \in K$ such that

$$\operatorname{Re}\left[\frac{f'(z)}{g'(z)}\right] > 0, \quad z \in E.$$
(1.3)

It is well known that if a function is close-to-convex in E, then it is univalent in E.

Suppose that *f* and *g* are regular in $|z| < \rho$ and f(0) = g(0). In addition, suppose that *g* is also univalent in $|z| < \rho$. We say that *f* is subordinate to *g* in $|z| < \rho$ (in symbols, f(z)g < (z) in $|z| < \rho$) if $f(|z| < \rho) \subset g(|z| < \rho)$.

In 1947, Robinson [4] proved that if g(z) + zg'(z) is in *S* and $f(z) + zf'(z) \prec g(z) + zg'(z)$ in |z| < 1, then $f(z) \prec g(z)$ at least in $|z| < r_0 = 1/5$. S. Singh and R. Singh [6], in 1981, increased the constant r_0 to $2 - \sqrt{3} = 0.268 \dots$ Subsequently, in 1984, Miller et al. [2] further increased this constant to $4 - \sqrt{13} = 0.3944 \dots$

Recently, R. Singh and S. Singh [5] pursued the problem initiated by Robinson when $g \in K(\beta)$. In fact, they considered the cases when $\beta = 0$ and $\beta = 1/2$ and proved the following results.

THEOREM 1.1. Let f be regular in E with f(0) = 0 and let $g \in K$. Suppose that

$$f(z) + zf'(z) \prec g(z) + zg'(z)$$
 (1.4)

in E. Then,

$$f(z) \prec g(z) \tag{1.5}$$

at least in $|z| < r_0$ *, where* $r_0 = \sqrt{5}/3 = 0.745...$

THEOREM 1.2. Let f be regular in E, f(0) = 0, and let $g \in K(1/2)$. Then

$$f(z) + zf'(z) \prec g(z) + zg'(z)$$
 (1.6)

in E implies that

$$f(z) \prec g(z) \tag{1.7}$$

at least in $|z| < r_1$, where $r_1 = ((51 - 24\sqrt{2})/23)^{1/2} = 0.8612...$

In the present note, we consider the subordination $f(z) + \alpha z f'(z) \prec g(z) + \alpha z g'(z)$ in |z| < 1, $g \in K$ and $\alpha > 0$, and show that the subordination $f(z) \prec g(z)$ holds in the entire disc |z| < 1 and does not depend upon the order of convexity of g as claimed by R. Singh and S. Singh in [5].

2. Preliminaries. We will need the following definition and results to prove our theorem.

DEFINITION 2.1. A function L(z,t), $z \in E$ and $t \ge 0$, is said to be a subordination chain if $L(\cdot,t)$ is analytic and univalent in E for all $t \ge 0$, $L(z,\cdot)$ is continuously differentiable on $[0,\infty)$ for all z in E, and $L(z,t_1) \prec L(z,t_2)$ for $0 \le t_1 \le t_2$.

LEMMA 2.2 [3, page 159]. The function $L(z,t) = a_1(t)z + \cdots$, with $a_1(t) \neq 0$ for $t \ge 0$ and $\lim_{t\to\infty} |a_1(t)| = \infty$, is a subordination chain if and only if

$$\operatorname{Re}\left[z\frac{\partial L/\partial z}{\partial L/\partial t}\right] > 0, \quad z \in E, \ t \ge 0.$$

$$(2.1)$$

LEMMA 2.3. Let p be analytic in E and q analytic and univalent in \overline{E} except for points where $\lim_{z\to \zeta} p(z) = \infty$ with p(0) = q(0). If p is not subordinate to q, then there is a point $z_0 \in E$ and $\zeta_0 \in \partial E$ (boundary of E) such that $p(|z| < |z_0|) \subset q(E)$, $p(z_0) = q(\zeta_0)$, and $z_0p'(z_0) = m\zeta_0q'(\zeta_0)$ for $m \ge 1$.

Lemma 2.3 is due to Miller and Mocanu [1].

1752

3. Main theorem

THEOREM 3.1. Let f be regular in E with f(0) = 0 and let $g \in K$. For any real number α , $\alpha > 0$, suppose that

$$f(z) + \alpha z f'(z) \prec g(z) + \alpha z g'(z) \tag{3.1}$$

in E. Then,

$$f(z) \prec g(z) \tag{3.2}$$

in E.

PROOF. First, we observe that $g(z) + \alpha z g'(z) = h(z)$, say, is close-to-convex and hence univalent in *E* whenever $g \in K$. Without any loss of generality, we can assume that *g* is regular and univalent in the closed disc \overline{E} . If possible, suppose that f(z) is not subordinate to g(z) whenever (3.1) holds. Then by Lemma 2.3, there exist points $z_0 \in E$, $\zeta_0 \in \partial E$, and $m \ge 1$ such that $f(|z| < |z_0|) \subset g(E)$, $f(z_0) = g(\zeta_0)$, and $z_0 f'(z_0) = m\zeta_0 g'(\zeta_0)$. This gives

$$f(z_0) + \alpha z_0 f'(z_0) = g(\zeta_0) + m \alpha \zeta_0 g'(\zeta_0).$$
(3.3)

Define a function

$$L(z,t) = h(z) + \alpha t z g'(z) = a_1(t) z + \cdots .$$
(3.4)

Since h(z) and zg'(z) are analytic in E, L(z,t) is also analytic in E for all $t \ge 0$, and is continuously differentiable on $[0, \infty)$ for all $z \in E$. Now, from (3.4), we get

$$a_1(t) = \frac{\partial L}{\partial z}(0,t) = 1 + \alpha(1+t) \neq 0$$
(3.5)

for all $t \ge 0$ and $\alpha > 0$. Also

$$\lim_{t \to \infty} |a_1(t)| = \infty. \tag{3.6}$$

As $g \in K$, a simple calculation yields

$$\operatorname{Re}\left[z\frac{\partial L/\partial z}{\partial L/\partial t}\right] = \operatorname{Re}\left[\frac{1}{\alpha} + (1+t)\left(1 + \frac{zg^{\prime\prime}(z)}{g^{\prime}(z)}\right)\right] > 0$$
(3.7)

for $z \in E$, $t \ge 0$, and $\alpha > 0$. Hence, by Lemma 2.2, L(z,t) is a subordination chain. Therefore, in view of Definition 2.1, we have $L(z,t_1) \prec L(z,t_2)$ for $0 \le t_1 \le t_2$. Since, from (3.4), L(z,0) = h(z), we deduce that

$$L(\zeta_0, t) \notin h(E) \tag{3.8}$$

for $|\zeta_0| = 1$ and $t \ge 0$.

1753

Now, in view of (3.4) and (3.3), we can write

$$f(z_0) + \alpha z_0 f'(z_0) = L(\zeta_0, m-1), \tag{3.9}$$

where $z_0 \in E$, $|\zeta_0| = 1$, and $m \ge 1$. Formula (3.9), when combined with (3.8), contradicts (3.1). Hence, we must have $f(z) \prec g(z)$ in *E*. This completes the proof of our theorem.

Letting α approach infinity, we arrive at the following well-known result of Suffridge [7].

COROLLARY 3.2. Let f be regular in E with f(0) = 0 and let $g \in K$. If $zf'(z) \prec zg'(z)$ in E, then $f(z) \prec g(z)$ in E.

We now present some interesting examples choosing g as some distinguished member of the class K.

Let *f* be regular in *E*, f(0) = 0, and let $\alpha > 0$. Then

- (a) $f(z) + \alpha z f'(z) \prec z/(1-z) + \alpha z/(1-z)^2$ in $E \Rightarrow f(z) \prec z/(1-z)$ in E;
- (b) $f(z) + \alpha z f'(z) \prec e^{z}(1 + \alpha z) 1$ in $E \Rightarrow f(z) \prec e^{z} 1$ in E;
- (c) $f(z) + \alpha z f'(z) \prec -\log(1-z) + \alpha z/(1-z)$ in $E \Rightarrow f(z) \prec -\log(1-z)$ in *E*.

Note that the function $-\log(1-z)$ is convex of order 1/2 in *E*.

REFERENCES

- S. S. Miller and P. T. Mocanu, *Differential subordinations and univalent functions*, Michigan Math. J. 28 (1981), no. 2, 157-171.
- [2] S. S. Miller, P. T. Mocanu, and M. O. Reade, Subordination-preserving integral operators, Trans. Amer. Math. Soc. 283 (1984), no. 2, 605–615.
- [3] Ch. Pommerenke, *Univalent Functions*, Studia Mathematica/Mathematische Lehrbücher, vol. 25, Vandenhoeck & Ruprecht, Göttingen, 1975.
- [4] R. M. Robinson, Univalent majorants, Trans. Amer. Math. Soc. 61 (1947), 1-35.
- [5] R. Singh and S. Singh, Subordination by convex functions, Int. J. Math. Math. Sci. 24 (2000), no. 8, 563–568.
- [6] S. Singh and R. Singh, *Subordination by univalent functions*, Proc. Amer. Math. Soc. 82 (1981), no. 1, 39-47.
- [7] T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J. 37 (1970), 775-777.

Sukhjit Singh: Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal-148, 106 Punjab, India *E-mail address*: sukhjit_d@yahoo.com

Sushma Gupta: Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal-148, 106 Punjab, India *E-mail address*: sushmaqupta1@yahoo.com

1754