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MIRROR SYMMETRY FOR CONCAVEX VECTOR BUNDLES
ON PROJECTIVE SPACES
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Let X C Y be smooth, projective manifolds. Assume that ¢ : X — PS is the zero lo-
cus of a generic section of V* = @;<;0(k;), where all the k;’s are positive. Assume
furthermore that Nx;y = (*(V~),where V-~ = ®jej0(-1;) and all the [;’s are nega-
tive. We show that under appropriate restrictions, the generalized Gromov-Witten
invariants of X inherited from Y can be calculated via a modified Gromov-Witten
theory on PS. This leads to local mirror symmetry on the A-side.

2000 Mathematics Subject Classification: 14N35, 14L30.

1. Introduction. Let V" = @;c;0(k;) and V™ = @ jc;0(—1;) be vector bundles
on P* with k; and [; positive integers. Suppose that X < P is the zero locus
of a generic section of V* and Y is a projective manifold such that X Ly with
normal bundle Nx,y = t*(V 7). The relations between Gromov-Witten theories
of X and Y are studied here by means of a suitably defined equivariant Gromov-
Witten theory in PS. We apply mirror symmetry to the latter to evaluate the
gravitational descendants of Y supported in X.

Section 2 is a collection of definitions and techniques that will be used
throughout this paper. In Section 3, using an idea from Kontsevich, we in-
troduce a modified equivariant Gromov-Witten theory in P corresponding to
V =V*@V~. The corresponding %-module structure [4, 11, 22] is computed
in Section 4. It is generated by a single function Jjy. In general, the equivari-
ant quantum product does not have a nonequivariant limit. It is shown in
Lemma 4.3 that the generator Jy does have a limit Jy which takes values in
H*P™[[q,t]]. It is this limit that plays a crucial role in this work.

Let Y be a smooth, projective manifold. The generator Jy of the pure %-
module structure of Y encodes one-pointed gravitational descendants of Y.
It takes values in the completion of H*Y along the semigroup (Mori cone) of
the rational curves of Y. The pullback map j*: H*Y — H*X extends to a map
between the respective completions. In Theorem 4.7, we describe one aspect
of the relation between pure Gromov-Witten theory of X 2 Y and the modified
Gromov-Witten theory of P¢. Under natural restrictions, the pullback j* (Jy)
pushes forward to Jy. It follows that although defined on P*, Jy encodes the
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gravitational descendants of Y supported in X, hence the contribution of X to
the Gromov-Witten invariants of Y.

The only way that X remembers the ambient variety Y in this context is
by the normal bundle, Y can therefore be substituted by a local manifold.
This suggests that there should be a local version of mirror symmetry (see
the remark at the end of Section 4). This was first realized by Katz et al. [15].
The principle of local mirror symmetry in general has yet to be understood.
Some interesting calculations that contribute toward this goal can be found in
[6].

In Section 5, we give a proof of the mirror theorem which allows us to com-
pute Jy. A hypergeometric series Iy that corresponds to the total space of V is
defined. The mirror Theorem 5.1 states that Iy = Jy up to a change of variables.
Hence, the gravitational descendants of Y supported on X can be computed
in P5.

Two examples of local Calabi-Yau threefolds are considered in Section 6. For
X =P!'and V =0(-1)®0(-1), we obtain the Aspinwall-Morrison formula for
multiple covers. If X = P2 and V = 0(-3), the quantum product of Y pulls back
to the modified quantum product in P2. The mirror theorem in this case yields
the virtual number of plane curves on a Calabi-Yau threefold.

The rich history of mirror symmetry started in 1990 with a surprising con-
jecture by Candelas et al. [5] that predicts the number n, of degree d rational
curves on a quintic threefold. In [11], Givental presented a clever argument
which, as shown later by Bini et al. in [4] and Pandharipande in [22], yields a
proof of the mirror conjecture for Fano and Calabi-Yau (convex) complete in-
tersections in projective spaces. Meanwhile, in a very well-written paper [20],
Lian et al. used a different approach to obtain a complete proof of mirror the-
orem for concavex complete intersections on projective spaces. An alternative
proof of the convex mirror theorem has been given by Bertram [3]. In this pa-
per, we use Givental’s approach to study the local nature of mirror symmetry
and to present a proof of the concavex mirror theorem.

2. Stable maps and localization

2.1. Genus zero stable maps. Let My, (X, B) be the Deligne-Mumford mod-
uli stack of pointed stable maps to X. For an excellent reference on the con-
struction and its properties, we refer the reader to [10]. We recall some of the
features on My, (X, B) and establish some notation. For each marking point x;,
let e; : My (X,B) — X be the evaluation map at x;, and &; the cotangent line
bundle at x;. The fiber of this line bundle over a moduli point (C,x1,...,Xn, f)
is the cotangent space of the curve C at x;. Let 1 : Mo (X,B) — Mo n-1(X,B)
be the morphism that forgets the kth marked point. The obstruction the-
ory of the moduli stack My, (X, B) is described locally by the following exact
sequence:
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0— EXtO (Qc<zxi),@c) —>H0(C,f*TX) — Iy
i-1
(2.1)

— Ext! (QC ( i xi) ,@C) — HY(C,f*TX) — Y — 0.

i=1

(Here and thereafter, we are naming sheaves after their fibres.) To understand
the geometry behind this exact sequence, we note that Jy = Ext' (f*Qy —
Qc,0¢) and Y = Ext? (f*Qx — Qc¢,0¢) are, respectively, the tangent space
and the obstruction space at the moduli point (C,x1,...,Xn, f). The spaces
Ext’(Qc (X", x;),0¢) and Ext! (Qc (S x;),0¢) describe, respectively, the in-
finitesimal automorphisms and infinitesimal deformations of the marked
source curve. It follows that the expected dimension of My, (X,B) is
—Kx-B+dimX+n-3.

A smooth projective manifold X is called convex if H! (P!, f*TX) = 0 for any
morphism f : P! — X. For a convex X, the obstruction bundle Y vanishes and
the moduli stack is unobstructed and of the expected dimension. Examples of
convex varieties are homogeneous spaces G/P.

In general, this moduli stack may behave badly and have components of
larger dimensions. In this case, a Chow homology class of the expected dimen-
sion has been constructed [2, 18]. It is called the virtual fundamental class
and denoted by [My (X, B)]"'\. Although its construction is quite involved,
we mainly use two relatively easy properties. The virtual fundamental class
is preserved when pulled back by the forgetful map 7. A proof of this fact
can be found in [7, Section 7.1.5]. If the obstruction sheaf Y is free, the virtual
fundamental class refines the top Chern class of Y. This fact is proven in [2,
Proposition 5.6].

2.2. Equivariant cohomology and localization theorem. The notion of
equivariant cohomology and the localization theorem is valid for any com-
pact connected Lie group. For a detailed exposition on this subject, we suggest
[7, Chapter 9]. Below, we state without proof the results that are used in this
work.

The complex torus T = (C*)s*! is classified by the principal T-bundle

ET = (C*" = {0})*"" — BT = (CP>)**". (2.2)
Let A; = ¢1(r(0(1))) and A := (Ag,...,As). We use O(A;) for the line bundle

1 (0(1)). Clearly, H*(BT) = C[A]. If T acts on a variety X, we let X7 := X Xt
ET.

DEFINITION 2.1. The equivariant cohomology of X is

Hi(X) = H* (X7). (2.3)
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If X = x is a point, then Xt = BT and Hf (x) = C[A]. For an arbitrary X, the
equivariant cohomology H (X) is a C[A]-module via the equivariant morphism
X - x.

Let AU be a vector bundle over X. If the action of T on X can be lifted to an
action on AU, which is linear on the fibers, U is an equivariant vector bundle and
AU is a vector bundle over Xt. The equivariant Chern classes of E are ckT (u) :=
ck(Ur). We use E(U) (ET(U)) to denote the nonequivariant (equivariant) top
Chern class of a.

Let XT = Ujc; X be the decomposition of the fixed point locus into its con-
nected components. The components X; are smooth for all j and X; is smooth
for all j and the normal bundle N; of X; in X is equivariant. Let i; : X; — X
be the inclusion. The following form of the localization theorem will be used
extensively here.

THEOREM 2.2. Let x € Hf (X) ® C(A). Then,

RS

e Er(Nj)

A basis for the characters of the torus is given by ¢;(to,...,t;) = t;. There is
an isomorphism between the character group of the torus and H?(BT) sending
&; to A;. We say that the weight of the character ¢; is A;.

For an equivariant vector bundle A over X, it may happen that the restriction
of A on a fixed-point component X; is trivial (e.g., if X; is an isolated point).
In that case, U decomposes as a direct sum @, u; of characters of the torus.
If the weight of p; is p;, then the restriction of c,{ (W) on X; is the symmetric

polynomial oy (p1,..., Pm).
Our interest here is for X = PS. For any action of T on P*¥, we denote

P:=HFPS, R=PC(A). (2.5)

Consider the diagonal action of T = (C*)S*! on P* with weights (—Ag, ..., —As),
that is,

(t0sE1yeeerts) (20, 21500125) = (£ 20y ny b5 L 25). (2.6)

Then, P = P(®;0(—A;)). There is an obvious lifting of the action of T on
the tautological line bundle O(—1). It follows that 0(k) is equivariant for all
k. Let p = clT (Ops (1)) be the equivariant hyperplane class. We obtain & =
CIA,pl/TLi(p—2A;) and R = C(A)[p]/]1;(p — A;). The locus of the fixed points
consists of points p; for j = 0,1,...,s, where p; is the point whose jth co-
ordinate is 1 and all the other ones are 0. On the level of the cohomology,
the map 1;‘ sends p to A;. A basis for % as a C(A)-vector space is given by
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¢j =[lk+j(p—2Ax) for j = 0,1,...,5. Also, i;‘(qu) = [1k+j(A; —Ax) = Eulery (Nj).
The localization Theorem 2.2 says that for any polynomial F(p) € C(A)[p]/
[Tisi(p—2A0)

F(A))
F = E _ 2.7
Ju»fT (v) = Tk (A7 =A) =7

Translating the target of a stable map, we get an action of T on Mo, (P*,d). In
[17], Kontsevich identified the fixed-point components of this action in terms
of decorated graphs. If f: (C,x1,...,x,) — P* is a fixed stable map, then f(C)
is a fixed curve in P*. The marked points, collapsed components, and nodes are
mapped to the fixed-points p; of the T-action on P¥. A noncontracted compo-
nent must be mapped to a fixed line p;p; on P*. The only branch points are the
two fixed points p; and p; and the restriction of the map f to this component is
determined by its degree. The graph I corresponding to the fixed-point compo-
nent containing such a map is constructed as follows. The vertices correspond
to the connected components of f~1{pg,p1,...,ps}. The edges correspond to
the noncontracted components of the map. The graph is decorated as follows.
Edges are marked by the degree of the map on the corresponding component,
and vertices are marked by the fixed point of P* where the corresponding com-
ponent is mapped to. To each vertex, we associate a leg for each marked point
that belongs to the corresponding component. For a vertex v, let n(v) be the
number of legs or edges incident to that vertex. Also, for an edge e, let d, be
the degree of the stable map on the corresponding component. Let

Mr = Hﬁo,n(v)- (2.8)
v

There is a finite group of automorphisms Gr acting on My [7, 12]. The order of
the automorphism group Gr is

ar = | [de- | Aut@)|. (2.9)

The fixed-point component corresponding to the decorated graph I is
My = iy /G. (2.10)

Let ir : My — Mo (P%,d) be the inclusion of the fixed-point component cor-
responding to I' and Nr its normal bundle. This bundle is T-equivariant. Let
« be an equivariant cohomology class in H} (Moyn(lPS,d)) and or := if ().
Theorem 2.2 says that

Ar
x = S S (2.11)
Jﬁo,n(ﬂ”,d)r ;LMW arEulerr (Nr)
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Explicit formulas for Eulerr(Nr) in terms of Chern classes of cotangent line
bundles in Hf (Mr) have been found by Kontsevich in [17].

2.3. Linear and nonlinear sigma models for a projective space. Two com-
pactifications of the space of degree d maps P! — P* are very important in this
paper. M, := Moo (P*xP',(d,1)) is called the degree-d nonlinear sigma model
of PS,and Ny := P(HO(P',0p1 (d))**!) is called the degree-d linear sigma model
of the projective space P*. An element in HO(P!,0p1 (d))**! is an (s +1)-tuple of
degree d homogeneous polynomials in two variables wy and w;. As a vector
space, H(P!,0p1(d))**! is generated by the vectors vy, = (0,...,0,wiw{ ™",
0,...,0) fori =0,1,...,s and r = 0,1,...,d. The only nonzero component of
Vir is the ith one.

The action of T’ := T x C* in P* x P! with weights (=Aq,..., —Ay) in the PS fac-
tor and (—h,0) in the P! factor gives rise to an action of T’ in My by translation
of maps. T’ also acts in Ny as follows. For ¢ = (to,...,t;) € T and t € C*,

(flt) ) [Po(w()!wl)!"'!PS(woywl)] = [tOPO(tWwal)y---:tsPs(tWO:wl)]-
(2.12)

There is a T'-equivariant morphism y : M; — N,. Here is a set-theoretical de-
scription of this map (for a proof that it is a morphism, see [11] or [19]). Let gq;
for i = 1,2 be the projection maps on P* x PL. For a stable map (C, f) € My, let
Co be the unique component of C such that g2 o f : Cy — P! is an isomorphism.
Let Cy,...,Cy be the irreducible components of C — Cy and d; the degree of
the restriction of g1 o f on C;. Choose coordinates on Cy = P! such that g o
S o, ¥1) = (1, 0).Let ConCi=(a;,by)and qrof=[fo: fr:---:fs]:Cor P.
Then,

w(C,f) =[] (biwo—amw) [ fo: fr:---: f5. (2.13)
i=1

Let p;, be the points of N; corresponding to the vectors v;,. The fixed-point
loci of the T'-action on N, consists of the points p;,-. We write k for the equi-
variant hyperplane class of Ny. The restriction of k at the fixed point p;; is
Ai +rh. The restriction of the equivariant Euler class of the tangent space TN,
at pi is [19]

Ev= [] (Ai=Aj+rh—th). (2.14)
(j,t)=(i,r)

Fixed-point components of My are obtained as follows. Let F;'j be the graph

of a T-fixed point component in Moyl(lPS ,dj), where the marking is mapped

to p; and d; +d; = d. Let (dy,d>) be a partition of d. We identify Mr;'l Xﬁrg
1

2
with a T'-fixed point component Mél 4, In Mg in the following manner. Let

(C1,x1,f1) € Mr& and (Ca,x2,f2) € Mféz .Let C be the nodal curve obtained by
1
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gluing C; with P! at x; and 0 € P! and C> with P! at x» and © € PL. Let f: C —
PS x P! map C; to the slice PS x o by means of f; and C; to P x 0 by means
of f». Finally, f maps P! to p; x P! by permuting coordinates and ¢ maps
M(flldz to pid, € Na, hence the equivariant restriction of ¢* (k) in M(flldz is A+
do>h. The normal bundle NF} . of this component in the above identification
142

can be found by splitting it in five pieces: smoothing the nodes x; and x>
and deforming the restriction of the map to C;, C», P!. Using Kontsevich’s
calculations, Givental obtained [11]

L ! L ef(d)  ef(dn)
ET(NF,-, ) [Tkt (Ai = Ak) ET(N%) ET<NF§ ) —h(-h-c1) h(h-c)’

dydy

2

(2.15)

where c;, j = 1,2 is the first Chern class of the cotangent line bundle on Mq; .
i

3. A Gromov-Witten theory induced by a vector bundle

3.1. The obstruction class of a concavex vector bundle. The notion of
concavex vector bundle is due to Lian et al. [19] and is central to this work.

DEFINITION 3.1. (1) Aline bundle & on X is called convex if H' (C, f*(%£)) =
0 for any genus zero stable map (C,x1,...,Xn, f)-

(2) A line bundle £ on X is called concave if HO(C, f* (%)) = 0 for any non-
constant genus zero stable map (C,xq,...,Xn, f).

(3) A direct sum of convex and concave line bundles on X is called a concavex
vector bundle.

A concavex vector bundle V in a projective space P* has the form
V=V+®V7=(631'61@(](1‘))EB(EBJ‘EJ@(—lJ')), (3.1)

where k; and [; are positive numbers. Denote E* := E(V") and E™ := E(V ™).
Let d > 0. Consider the following diagram:

en+l

Mons1(P,d) ———P*

T4l (3.2)
Mo (PS,d).
Since V is concavex, the sheaf
Vai=VieV, =mpase; (VT @R e 4ef (V) (3.3)

is locally free.
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DEFINITION 3.2. The obstruction class corresponding to V is defined to be
Eq:=E(Va) =E(V])E(V]):=E}E]. (3.4)

For a T-action on P° that lifts to a linear action on the fibersof V=V*te V",
let Et := Ex (V") and E~ := Er (V™). Assume that E~ is invertible.

DEFINITION 3.3. The modified equivariant integral wy : % — C(A) corre-
sponding to V is defined as follows:

+

wy () :=J XU Ef (3.5)
pp E

Consider the trivial action of T = (®;c;C*) ® (&jc;C*) on P*. In this case,
[P’%w =P x (EBI'GI[P)OO) X (EBJ'EJ[P)“’) and Moyn(PS,d)T = Mo,n(ﬂ»s,d) X (@ig[[})w) X
(@jesP>). It follows that ? = H*(P*,C[A]) and % = H*(P*,C(A)). Let p de-
note the equivariant hyperplane class. The T-action lifts to a linear action on
the fibers of V with weights ((=A;)ier, (=Aj) jey). Let g; and q; denote the pro-
jection maps on Mo,n([P’S,d)T. Both V] and V; are T-equivariant bundles and

(Vi)r=Vi®(®ic1a;Op=(-21:)),

_ _ " (3.6)
(Vi)r=Vg®(®je1a;0p=(-Aj)).
The equivariant obstruction class is
Eq:=Er(Va) = Er(V])Er(V]) = ESE;. (3.7)

The modified equivariant integral for the trivial action of T on PS gives rise to
a modified perfect pairing in %

(a,b)y :=wy(aub). (3.8)
Let Ty =1, T, = p,..., TS = p° be a basis of & as a C(A)-vector space. The

intersection matrix (g,¢) := ({Tr, Tt)y) has aninverse (g""). Let T' = 3_ gV T;
be the dual basis with respect to this pairing. Clearly,

T = Ty (%) (3.9)

This implies that, in H* (P X P*) ® C(A), we have
s ) E_
ZTi®T1=A-(1®—), (3.10)
i=1 E¥

where A = Y7 T; ® T;_; is the class of the diagonal in P* x P*.
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Recall that the morphism 17y : Mo, (P*,d) — Mo ,-1(P%,d) forgets the kth
marked point.

LEMMA 3.4. The forgetful morphisms satisfy my*(Eg) = E4 and 1t * (Eg) =
Eg.

PROOF. For simplicity, we consider the case V = 0(k) ®0(—1) and k = n. The
general case is similar. Let My = Mo x(P*,d) and My, , = My, XM, _, Mn. Consider
the following equivariant commutative diagram:

Mn+1nn+1/e,:"+1"";
M naP?,
(3.11)
MnTrnMngn":
M.
We compute
Thi1x€p i1 0(K) = Ty 1T e *O(K) = Bupls ™ e, "0 (k). (3.12)
By the projection formula,
Mt oFen*0(k) = x*en*0(k) ® py (Op,,., ) - (3.13)

Since the map u is birational and M, ;1 is normal p (Oy,, ) = Oy, ,,, hence
¥ e, *0(k) = a*e, *0(k). (3.14)

Substituting into (3.12) and applying base extension properties (1T, is flat)
yields

7Tn+1>s<e:;+1@(k) = Bicx*e,*0(k) = " (Trn*en*@(k))- (3.15)
For the case of a negative line bundle, we have

Rirtpi1ef, 1 0(=1) = R i1 ¥ en ¥0(=1) = RU e o F oF e ¥ O(=1).
(3.16)
We now use the spectral sequence

RP B4« (R1uxF) = RV I1T0,1 4. F, (3.17)

where & is a sheaf of Oy,,, ,-modules. The map u is birational. If we think of M,
as the universal map of M, _, then the map u has nontrivial fibers only over
pairs of stable maps in M,, that represent the same special point (i.e., node or
marked point) of a stable map in M,, ;. These nontrivial fibers are isomorphic
to P'. Since & = e}',,0(—1), we obtain R4u, % = 0 for q > 0. It follows that this
spectral sequence degenerates, giving

Rty 14e,0(=1) = R'Byups i ocF e ¥ O(=1). (3.18)
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Now, we proceed as in (3.14) to conclude
Rimtyi1ef,10(=1) = 1, " (R Ty e, FO(=1)). (3.19)

The lemma is proven. O

REMARK 3.5. The previous lemma justifies the omission of n from the no-
tation of the obstruction class.

3.2. Modified equivariant correlators and quantum cohomology. Let y; €
R for i = 1,...,m and d > 0. Introduce the following modified equivariant
Gromow-Witten invariants:

La(y1,--s¥n) 3=JM ) ef(y1)u---ves(yn) UEs € C(A). (3.20)
o,n At

Now, Mo, (P%,0) = My, x PS and all the evaluation maps equal the projection
q> to the second factor. The integrals in this case are defined as follows:

To(y1,.iyn) i= Jﬁ ef(y1)u---uel(yn)uas (E(V)) € C(A). (3.21)
Mo,n (P5,0)
The modified equivariant gravitational descendants are defined similarly to
Gromov-Witten invariants

fd(Tkl yl,---,TknJ/n)
. ky * kn * (3:22)
= e uer ) U vl () ek () UEL
Mon(PS,d) g
Lemma 3.4 is essential in proving that the modified correlators satisfy the
same properties, such as fundamental class property, divisor property, point
mapping axiom, and so on, that the usual Gromov-Witten invariants do. The
proofs are similar to the ones in pure Gromov-Witten theory. As an illustration,
we prove one of these properties.

FUNDAMENTAL CLASS PROPERTY. Let y,, =1 and d + 0. The forgetful mor-
phism 11, : Mo, (P*,d) — Mo,-1(P%,d) is equivariant. Using Lemma 3.4, we
obtain

ef(y1)u---uel_(yn-1)Uer (1) UEy

3.23
— Tt (ef (Y1) U+ Ue 1 (Ynor) UES). (5:23)

Therefore,

T Yt 1) = [ e () U Vel (yne1) UE)
Mo, (PS,d)
' (3.24)

= ety Vel (ya 1) UEd =0,
T % (MO,n,(PS,d»
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The last equality is because the fibers of 1T, are positive dimensional. If d = 0,
by the point mapping property we know that the integral is zero unless n = 3.
In that case, Io(y1,y2,1) = (y1,¥2).

We will now prove a technical lemma that will be very useful later. Let AUB
be a partition of the set of markings and d = d; +d». Let D = D(A,B,d1,d>)
be the closure in Mo, (P*,d) of stable maps of the following type. The source
curve is a union C = C; U Cz of two lines meeting at a node x. The marked
points corresponding to A are on (i, and those corresponding to B are on C».
The restriction of the map f on C; has degree d; for i = 1,2. D is a boundary
divisor in Movn([@s,d). Let M; := M0,|A\+1 (P*,dy) and M> := MO,IBH—] (P*,d>»). Let
ex and €y be the evaluation maps at the additional marking in M; and M
and u := (ey,€x). The boundary divisor D is obtained from the following fibre
diagram:

D——— M XM
v u (3.25)
Ps ———— PS x PS

where v is the “evaluation map at the node x” and ¢ is the diagonal map.
LEMMA 3.6. For any classes yi,...,yn iInR,
n

J,I1

i=1

eir0a= 3 ([, TTerouestaea ([, TTejtmecroea, )
(3.26)

PROOF. This lemma is the analogue of [10, Lemma 16]. The proof needs a
minor modification. Let o« : D — Mo, (P*,d). Consider the normalization se-
quence at x

0—0c—0ce0cr — 0, —0. (3.27)

Twisting it by f*(V*) and f*(V~) and taking the cohomology sequence yield
the following identities on D:

ot (E)v* (E*) = o* (Ej, X EJ,), (3.28)

o (Eg) = 1" (Eg, XEg,)v* (E7). (3.29)

Combining (3.28) and (3.29), we obtain the restriction of E; in the divisor D

o (Eq) = * (Ea, X Eay)v* (%) (3.30)
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Using formula (3.10), we obtain

(v (E;)_u (m?—;) “(A). (3.31)

Therefore,

n
f He;'k()’i) UE4
Dy

:I | e (yi) VEq, UEg, ™ (1®—E )uu*(A)
M XM> : E+
i=1

:J ]_[e yi) UEq, UEg, up* (ZTQ(@T“)
M

XMz 4y

Z(J He yi) ek (Ty,) uEdl> (J ]_[e Yj UeX(T“)UEdZ)

My Mz j
(3.32)

The lemma is proven. O

The same proof can be used to show that the previous splitting lemma is
true for gravitational descendants as well.

COROLLARY 3.7. The following modified topological recursion relations hold:

n
fd (Tk1+l Y1, Tkp Y2, Tk3 ¥3,» l_[ Tsiwi)
= (3.33)

= Zidl (Tkl 3’1; 1_[ TsiwiaTa>id2 (Tu!Tkz Y27Tk3 y3’ l_[ TSiwi>!

iely iel

where the sum is over all splittings d, + d, = d and partitions I, UI, = {4,...,n}
and over all indices a.

PROOF. Let A and B be two disjoint subsets of {1,2,...,n}. We denote by
D (A, B) the sum of boundary divisors D (E,F,d,,d,) such that E, F is a partition
of {1,2,....,ntand ACE,BCF,and d; +d» = d. The notation D (A, B) reflects
neither the number n of marked points nor the degree d of the maps, but they
will be clear from the context. Consider the morphism 1 : Mg, (P*,d) — Mg 3
that forgets the map and all but the first 3 markings. Since Mg 3 is a point,
the cotangent line bundle at the first marking is trivial. But m*(¥;) = %; —
D({1},{2,3}); therefore, $1 = D({1},{2,3}) in M, (P*,d). Multiply both sides
of the previous equation by Hj?:l c1 (3‘,')"1 U ej‘ (yj)u [Ty (£)%5iU el (w;i)VE4
and integrate. The corollary follows from the splitting lemma for gravitational
descendants. ]
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In the process of finding solutions to the WDVV equations, Kontsevich sug-
gested the following modified equivariant Gromov-Witten potential:

- 1.
D (to,t1,eeertm) = >, > layem), (3.34)
n=3d=0

where y =to+t;p+---+t;p° and t; € C(A). Let ;4 = 03P /0t;0t;0ty.

DEFINITION 3.8. The modified, equivariant quantum product on R is de-
fined to be the linear extension of

m
Ti*vTj:= Z(i)ijka. (3.35)
k=0

THEOREM 3.9. The algebra QH;iP3 := (R, *y) is a commutative, associative
algebra with unit Ty.
PROOF. A simple calculation shows that

- 1 -
Dij=> > e (Ti, Tj, T, y©1). (3.36)
n=0d=0

The commutativity of the modified, equivariant quantum product follows from
the symmetry of the new integrals. T is the unit due to the fundamental class
property for the modified Gromov-Witten invariants. To prove the associativ-
ity, we proceed as in [9, Theorem 4]. Let &;;x = 93®/0dt;0t,;0tx. We compute

(TikvTj) kv Tk = 2. > ®i7eg @ prug'Ta,

Ty (Tj %y Ti) = > > ®jreg® 019" Ty

(3.37)

Since the matrix (g'4) is nonsingular, (T; xy Tj) *y Ty = Ti *v (Tj %y Ty) is
equivalent to

Zéijegef@sz = Z‘i’jkegef‘i)fil- (3.38)
e, f e.f

Equation (3.38) is the WDVV equation for the modified potential ®. To prove
this equation, let g, 7, s, t be four different integers in {1,2,...,n}. There exists
an equivariant morphism

W:Mo‘n(ﬂps,d) — MOA = UDI (3.39)
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that forgets the map and all the marked points but g, 7, s, t. Obviously, the
divisors D({q,r},{s,t}) and D({q,s},{r,t}) are linearly equivalent in M 4,
hence, via the pullback 7%, they are linearly equivalent in My, (P*,d). Now,
integrate the class

]‘[ ef(y))vei_s(Ti)uel_,(Tj)ver | (Tk) Ue) (T)) UE4 (3.40)

over D({q,7r},{s,t}), and use Lemma 3.6 to obtain WDVV equation; hence, the
associativity O

If we restrict ®; jk to the divisor classes y = tp and use the divisor property
for the modified Gromov-Witten invariants, we obtain the small product

m
TikyTj:=TiuT;+ > g% z (Ti, T, Tx) T*. (3.41)
da>0 k=0

Here, g = e!. We extend this product to ®®c C[[g]] to obtain the small equi-
variant quantum cohomology ring SQH;sPSt. We use %y to denote both the
small and the big quantum product. The difference is clear from the context.

REMARK 3.10. (i) Equation (3.30) and Lemma 3.4 are the basis for building
a modified equivariant Gromow-Witten theory similar to pure Gromov-Witten
theory.

(i) We can see from (3.9) that the only potential problem with the existence
of the nonequivariant limit of (3.41) is the presence of E* in the denominator
of T*. Hence, if V = V- is a pure negative line bundle, the nonequivariant limit
of this product exists. An example of this situation is treated in the last section.

4. A 9-module structure induced by V

4.1. Equivariant quantum differential equations. Recall from Section 2.3
the generator h of H2(BC*). Consider the system of first-order differential
equations on the modified, big quantum cohomology ring Q Hy; (P5)

0 .
ha—tifTi*v, i=1,...,m. 4.1)

THEOREM 4.1. The space of solutions of these equations has the following
basis:

Sa=Ta+ z Z z Z nl fd(TkTasTj,y®n)Tj
(4.2)
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where c is a formal symbol that stands for c1T(£1) and T,/ (h —c) should be
expanded in powers of c/h.

PROOF. On the one hand,

m oo o) 0 _
ne oS S S S T T Ty T 43)

j=0n=0 d=0 k=0 m!
1. m ®© h-(k+1) _
= 2 (T T, Toy® )T+ 3 30 3 3 = Tay (TaTa, Tj, ")
n,d,e j=0n=0 k=0 dq
1 . )
X % d» (TnTJ;Te;Y®m)Te
m,d»,e
(4.4)
The theorem follows from the topological recursion relations (3.33). O

Restrictions §, of the sections s, to y € H?(P™) @ H2(P™) are solutions of

0 .
ha—ti—Ti*v.L—O,l. (4.5)

Repeated use of the divisor axiom yields

©om . (to+pt)/h T .
5o =eltorrtinyT, 1 S N g Id(W,TJ.)TJ, (4.6)
d=1j=0 -¢

where g := el

DEFINITION 4.2. The module of differential operators that annihilate
(54,1)y for all a is called the modified equivariant ¥-module of P induced
by V.

This module is generated by the following R[[to, t1,q]]-valued function
5 s
Jv="> (3a,1),T% 4.7)
a=0

Recall that e; : Mo (P*,d) — P* is the evaluation map at the first marked point
and c is the Chern class of the cotangent line bundle at the first marked point.
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Substituting (4.6) into (4.7) and using the projection formula, we obtain

. to+ pt
Jv=EXP(7O P 1)

(1= S atep e, (% ooaet)Jo (),

a>0

In the above expression, PD : H* (Mo (P*,d)) — Hsiqssda—1-+ (Mo 2 (PS,d)) is
the Poincaré duality isomorphism.

It is convenient for us to work with the moduli space of one pointed stable
maps. To that end we note that

Eq o - E, o
eu(EO[Mo,z(ﬂ” ,d)]) —el*(ih(h_c) N[Mo (P ,d)]). (4.9)

This identity follows easily from the fact that if 11> : Moo (P5,d) — Mo (P*,d)

forgets the second marked point and D is the image of the universal section

of m induced by the marked point, then ¢ = m>*(¢) + D and Ez = 12 * (Ey4).
The final expression for Jjy is

~ to+pt
Jv=eXp(70 hp 1)

' (1 +> quD_l(el*<% N [Mo,l(Ps,d)]>) U (%)) 10

a>0

From this presentation, we see that the presence of the equivariant class E* in
the denominator of Jy is a potential problem for the existence of the nonequiv-
ariant limit.

LEMMA 4.3. The generator Jy € P[[q]]; therefore, it has a nonequivariant
limit.
PROOF. Let V) be the subbundle of V; whose fiber consists of those sec-

tions of HY(C, f*(V*)) that vanish at the marked point. Let E; 1= c{p, (V).
There is an exact sequence of equivariant bundles on M1 (P*,d)

0— V), —Vi—e*(V") —0. (4.11)
Taking the top Chern classes, we obtain

Ej =E,-ef (E"). (4.12)
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We compute

PD ey, (% N [Mo,l(”ﬂyd)])

ZPD_1<61*<%§4E+C))E‘;0[Mo,l([P’S,d)])> (4.13)

:PD*1(E*mel*<hf£E ) [Mo,l([P’S,d)]»

:EmPD-l(el*(hng ) N[Mo,1 (P d)]))

Therefore,

- EE; _
Jv = exp (t();iptl) - (1 +> qiPD ey, (h(g_dc) N [Mo,l(uﬁ,d)]) UE‘).
a>0

(4.14)
It is now visible from this presentation that j, € ®[[q]] and
Jv:=limJy
A—0
B t0+Ht1> PR ( E,E; )
_exp(—h <1+d§0q PD ley, hh—0) N [Mo,(P5,d)]
(4.15)
The lemma is proven. O

4.2. Alocal property of the J-function. LetY be a smooth projective variety
and j: P’ — Y an embedding. Suppose that Nps;y =V~ = 0(-1) for some [ > 0.
Let C be a curve in P¥. The map j gives rise to an embedding

Mon (P*,[C]) = Mou (Y, js([C1)). (4.16)
LEMMA 4.4. Let C be a degree-d rational curve in PS. Then, Mo, (P*,d)
Mon(Y,j« ([CD).

PROOF. Let (C',x1,...,Xn,f) € Mon(Y,j«([C]) and f(C') = CGUCoU---U
Cp be the irreducible decomposition. Then, d[line] = [C;]+---[Cp]. Let I
{i:C;cPstand I, = {1,2,...,n} —I,. Assume that I, is nonempty. If

d[line] - > [Ci] (4.17)

iely

has nonpositive degree in P, we intersect with an ample divisor in Y to see
that

dlline] - > [Ci] = > [Ci] (4.18)

iel) ielp
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is impossible. Otherwise, we intersect with [P*] to get the same contradiction.
Hence, I, is empty and all the curves C; lie in PS. It follows that f factors
through P*, and, therefore, (C’,x1,...,Xn, f) € Mon(P*,d). On the other hand,
Mo, (P*,d) is a component of Mo, (Y,j«([C])) (cf. [7, Section 7.4.4]). These
two arguments imply the lemma. O

Denote Mo, (Y,d) := Mo, (Y, j«([C])), where C is any rational curve of de-
gree d in P*. The following lemma is a special case of a conjecture by Cox et
al. in [8] which was proved in [16].

LEMMA 4.5. The following identity holds [Mo ,, (Y,d) "™ = EgN[Mo, (P*,d)].

At this point we introduce a new object. For any smooth projective variety
Y and any ring #, we define the formal completion of s along the semigroup
of the Mori cone of Y to be

Al[qP]] = {Zaﬁqﬁ, ag € d, B—effective}, (4.19)
B

where B € H»(Y,Z) is effective if it is a positive linear combination of algebraic
curves. This new ring behaves like a power series since, for each f, the set of
« such that « and B — « are both effective is finite. For example, in the case of
P<, we obtain the power series A[[q]].

Choose generators Dy, ...,D, of H3(Y,Q) such that j*(D;) = Hand j*(D;) =
0 for i > 2. Flements of HO(Y,Q) & H2(Y,Q) are of the form to + tD := to +
t1Dy + - - - + t,D,. It is shown in [11] that the generator of the quantum %-
module for the pure Gromov-Witten theory of Y is

_ t()+tD B 1 [M()’l(Y,B)]Virt
Jyfexp< - )BGHZZ(Y,Q)q PD (el*<h(h—c) . (4.20)

The moduli spaces M (Y,B) are empty unless B is effective. Hence, we con-
sider Jy as an element of the ring H*Y[[to, t1,...,t-11[[q?]].
We extend the map j* : H*Y — H*P* to a homomorphism

J* H*Y[[to, t1,...,t11[[aP1] — H*P*[[to,t:]][[q]] (4.21)

by defining j*(t;) = 0 for i > 1 and j*(qf) = qF for B € j.(H»(P*,Z)) and
j*(qP) =0 for B € H>(Y,Z) — j«(H>(PS,Z)). The following results show that
J-function is local.

THEOREM 4.6. The generator j is local in the sense that j*(Jy) = Jy.
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PROOF. Notice that

H 0 M Y,d virt
j*Jyzexp<to+ht1 ) Z qflj*PD—l (61*(%>)- (4.22)
dy=0

Consider the following fiber diagram:

Mo, (PS,dy) ——— Mo (Y,d1)

el el (423)

Ps Y.

By excess intersection theory [9] and the previous lemma,

. (Mo (Y,d)]™ ) _ . Eq, —
J (61*( h(h—C) =[E Neypx 7h(h_c)ﬂ[M0,1(P ,d,l)] . (4.24)

The theorem follows easily. O

THEOREM 4.7. LetV =V*teV~ =0(k)o0(-1) on P*. Let t: X — P* be the
zero locus of a generic section of V*. Assume that X is smooth and dimX > 2.
Let Y be a smooth projective variety such that j: X = Y with N = Ny)y =
(*(V7). Assume that if C C'Y is a curve with [C] € M X, then all the irreducible
components C; of C satisfy C; C X. Let j* be the map constructed as in (4.21).
Let Jy be the generator of the pure %-module of Y [13]. Then,

u(j*(Jy)) =E(V")Jv, (4.25)

where (, is the Gysin map on cohomology.

PROOF. Since dimX > 2, it follows that H2X is generated by (*(H). Let B
be the Poincaré dual to (*(H), and let Dy,D5,...,D, be a set of generators of
H?(Y,Q). We may assume that j*(D;) = *(H) and j*(D;) = 0 for i > 1. Let
tD:=t,Dy+ - - - +t,Dy. Now,

to+tD
; >

_ virt
(Mo, (v, B)]™ ) (4.26)

hzexp( h(h—c)

qBPDilel* <
BEH?(Y,Q)
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Consider the following diagram:

Mo (Y,d1B1) 2t Moq(X,d1B1) — - Mo, (P*,dy)

(4.27)

el el el

Y X Ps.

The square on the left is a fibre diagram. We repeatedly use the projection
formula

(7" (Jy))

e om g

=y (eXD (tOthlhl*(H)LlZ al E )UPDlel*j1*<[M01(1;l(dhu*C) \m))

—exp(to+htlH>( +d1§:161 “)uPD~ L*el*jl*<[M01(Yh(d7;J*c) v1rt )

=exp<to+ht1H) [E++dlz:1q YUPD ey, 114t ([Mol(i;lzihu*cfl Vm )
(4.28)

The equality in the second row follows from excess intersection theory in the
left square. An argument similar to Lemma 4.4 implies that

Mo, (X,d1B1) = Mo (Y,d1j«(B1)). (4.29)

There are two obstruction theories in this moduli stack corresponding to the
moduli problems of maps to X and Y, respectively. They differ exactly by the
bundle R' 711, 5 (N), where

ﬂz:Mo,z(X,dlﬁl) —’MO,I(X,dlﬁl) (4.30)
is the map that forgets the second marked point and N = Ny,y. It follows that

3 ([Mon (Y, drje (BU)) ™) = E(RVmage5 (N)) 0 [Moa (X,d1 1) ™. 4.31)
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Consider the following commutative diagram:

_ e
Moz (X,d1 1) -

X
0 (
Mo (P*,dy) — 2 - ps
We compute
ey (N) =ef (1*(0(=1)) = 2*ex™ (0(=D)).
There is the following fibre square:
Moz (X,d1 1) ———= Moz (P*,d)
) sl
Mo (X,d1B1) ——> Mo, (P,d).

We apply [14, Proposition 9.3] to obtain

179

(4.32)

(4.33)

(4.34)

R €5 (N) = RUTo, %6 (0(=1)) = u* (R'T124. 6 (0(=1))) = u* (Vg ).

Therefore,

I ([Moa (Y, d e (B)™) = E(R'aef (X)) 0 [Mo (X,d1 B1)]™

= (E7) N [Moq (X,d1 B1)]™.
On the other hand, [7, Proposition 11.2.3] says that
Uy [Moy (X,dy 1)1 = Ef 0 [Mo, (P, dy)].

Substituting (4.36) and (4.37) into (4.28), we obtain

(G () = exp (41

h
]

: ([E*+ iq‘fPDileM <mﬂ[ﬁo,1(ﬂﬁ,d”>u(£))-

d=1

(4.35)

(4.36)

(4.37)

(4.38)
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Recall that, on H* (M1 (P*,d)), we have E4 = E,;E e} (E*). Substituting this
into (4.38) and using the projection formula, we obtain

. to+t1H
0 () = exp (2515
+ c a -1 [Etli[Et; AT S -
UE*U(1+ > qfPD e1*<—ﬂ[Mo1(|P ,d)])U([E ) |-
= h(h—c) '
(4.39)
The theorem is proven. O

REMARK 4.8. This naturally leads to local mirror symmetry. For example,
let Y be a Calabi-Yau threefold that contains X = P2. By adjunction formula, the
normal bundle of P? in X is Kp2 = Op2(—3). The last theorem asserts that the
restriction of Jy in X depends only on V = Op2 (—3), that is, in a neighborhood
of X in Y. Hence, Jy encodes Gromov-Witten correlators of the total space of
Op2 (—3) which is a local Calabi-Yau. In the next section, we see that mirror
symmetry can be applied to Jy, establishing that mirror symmetry is local at
least on the A-side. Interesting calculations in this direction can be found in [6].

5. Mirror theorem. In this section, we formulate and prove the mirror theo-
rem which computes the generator Jy.Recall that V = (©;¢;0(k;))®(® jc;0(-1;))
=V*e V- withk;,l; >0foralli el and j € J. Consider the H*P*-valued hy-
pergeometric series

t0+t1H)

h
oo kid ljd-1 5.1
« qunielnmzl kH+mh)H]€]Hm 0 (—le—mh). (.1

) Hm:I (H +mh)s+1

Iy (to,t1) := exp<

THEOREM 5.1 (mirror theorem). Assume that 3 ;ciki+ 2> jc;l; < s+1 and
that J is nonempty. If | J| > 1 or Yierki+2 jeylj < s+1, then Jy = Iy. Otherwise,
there exists a power series I of q such that Jy (to,t1 +1,) = Iy (to,t1) as power
series of q.

REMARK 5.2. The case in which J is empty has been treated in [3, 4, 11, 22].
It was suggested by Givental that his techniques should apply in the case in
which J is nonempty.

5.1. The equivariant mirror theorem. We use Givental’s approach for com-
plete intersections in projective spaces [11] to prove an equivariant version of
the theorem. For the remainder of this paper, we use the standard diagonal ac-
tion of T = (C*)**! on P* with weights (—Ay,...,—As). Recall from Section 2.2
that @ = HF (P*) = C[Allp)/ITi_o(p — A2) and R = CA)[pl/TTizo(p — A0).
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Denote
eq,_ tO"‘ptl) < d ( E E, ) o\ (t0+t1p)
Jv .7exp< n d—oq €1x hh—c) U l_[ lip | =exp T S(q,h),
= jel
oo kid ld-1
o9 . exp<t0+t1p) zqdﬂiezﬂm:1 (kip +mh) [1jc; [ ln=o (=Ljp—mh)
Vo=
h =0 [Tomei [Tiz (p = Ai +mh)

(5.2)

Obviously, the nonequivariant limits of Ji* and I} are, respectively, Jy and
Iy. The mirror theorem follows as a nonequivariant limit of the following
theorem.

THEOREM 5.3 (the equivariant mirror theorem). The same change of vari-
ables from Theorem 5.1 transforms Iy into Ji.

REMARK 5.4. As the reader will see, the central part of the proof of the
mirror theorem (up to Section 5.5) involves lengthy formulas and algebraic
manipulations. To simplify the presentation, we assume during this part that
V = 0(k) ® O(—1). The general case is similar. We return to the general case
V =V*aeV~ in Section 5.5.

Recall that the equivariant Thom classes ¢; of the fixed points p; form a
basis of % as a C(A)-vector space. Let S; and S; be the restrictions of S and S’
at the fixed point p;. By the localization theorem, in P*, they determine S and
S’. By the projection formula,

< e (—lpei) _
s-:J Sup; =1+ dJ 1 PV ERES. 5.3
C e b dZ::lq Moy sy h(h—c) 474 (5:3)

The proof of the equivariant mirror theorem is based on exhibiting similar
properties of the correlators S; and S;. The extra property S; = 1 + o(h™2)
determines S; uniquely. After the change of variables, that property is satisfied
by S; as well, which implies S; = S;.

We now proceed with displaying properties of the correlators S; and S;.

5.2. Linear recursion relations. The first property is given by the following
lemma.

LEMMA 5.5. The correlators S; satisfy the following linear recursion relations:

Si=1+> qRia+ > > qCijaS; (01, Jd l), (5.4)
d=1 d=1 j=i
j
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where Ry € C(A)[h~1] are polynomials inh~1 and

(A=A T (kA +m((Ai—2))/d)) %;(1)(—1/\1'4-7”((7\1'—7\1)/61))_

dn(dh+A;—A) 1%, [Tzo,emy=(iay (Ai = Ak +m((Aj - ;) /d))
(5.5)

Cija =

PROOF. We see during the proof that S; is regular at i = (A; —A;)/d. The
integrals that appear in the formula for S; can be evaluated using localization
theorem

el g s | 1L (et (=)

JMO,I(PSvd)T h(h-c) _; (M)t arET(Nr)( h(h-c) EdE;)r- (5.6)

There are three types of fixed-point components My of ngl([]’” ,d). The first
one consists of those Mr where the component of the curve that contains the
marked point is collapsed to p;. We denote the set of these components by
%ﬁ‘d. Let %,d be the set of those My in which the marked point is mapped at p;
and its incident component is a multiple cover of the line p;,p; for some j # i.
Finally, let 953 4 be the rest of the fixed-point components. Notice first that

1 (eik(—llﬂl)i) , ,)
ELE =0. 5.7
iLﬁmarET(Nr) nh-c) “ata); G-
re?%o,d

Indeed, letIj € @6’ 4 represent a fixed-point component with the marked point
mapped to the fixed point p; for some j # i. Since (ei‘(d>i))rj = 0, we are
done. Next, in each fixed-point component that belongs to 9“@, the class c is
nilpotent. Indeed, if T is the decorated graph that represents such a fixed-point
component, let Mg correspond to the vertex of T that contains the marked
point. Then, k < d + 1. There is a morphism

@ ZMr >—>M0,k (58)

such that @*(c) = cr. For dimension reasons, c?~! = 0 on Moy, therefore,
1/h(h—c) is a polynomial of ¢ in M. Hence,

L 1 (el*(—lvqbi)

wpr arEr (Nr) h(h-c) EdE‘;>l- = Ria (5.9)

i
re.‘%lyd

is a polynomial in 1.
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We now consider the fixed-point components in %‘d. Again, let I represent
such a component. For a stable map (C,x1, f) inT, let C’ be the component of
C containing x, C” the rest of the curve, x = C'nC”, and f(x) = p; for some
j + i. Let d’ be the degree of the map f on the component C' and d” =d—d’.
Then, (C”,x, flc) is a fixed point in Mo 1 (P*,d"). Denote its decorated graph
by I'’. Choose the coordinates on C’ such that the restriction of f on C’ is
given by f(yo,y1) = (0,...,z; = yg’,...,zj = yf’,...,O). As T moves in %éyd, the
set of all such I’ exhausts all the fixed points in M (P*,d’’), where the first
marked point is not mapped to p;. Since Aut(I') = Aut(I'"’), it follows from (2.9)
that

ar :d’ar”. (510)

The local coordinate at p; on the component C’ is z = /Y. The weight of the
T-action on y; is A;/d’ for [ = 0,1. It follows that the weight of the action on
the coordinate z and hence on T;*l, C"is (Aj—A;)/d’; therefore, cr = (Aj—A;)/d’.
Now, E7(Nt) can be split in three pieces: smoothing the node x, deforming the
maps f|cr, and f|cr. It follows [11] that

da -1 s
Aj

J,Ai—cf')ET(N o) ] I (Ai—Ak+m%).

m=0 k=0,(m,k)#(0,i)
(5.11)

Next, we find the localization of E/; and E; on the fixed-point component M} Lda
Consider the normalization sequence at the node x

Er(Np) = (

0—0c—0c®0c — 0y — 0. (5.12)

Twisting it by f*(V*) and f*(V ™), respectively, and taking the cohomology
sequence yield

(Eﬁ)r = ( - l/\j) (Eﬁ” )r" (Eaf’ )r"

), = Eidr (Ep)r 6-13)
4 kA '

An explicit basis for H (C’, f*(V~)) = H' (Op1 (=1d’)) consists of

s, ld —2-5
Yo L s=0,1,...,1d ~2. (5.14)
(>ox1)

ld' —s—1,,1+5"
Yo 4

It allows us to compute

ld’' -2 1d’ -1
T Ai—A;
Ez)r = [] (I“,M Ai—lfSAj): I (—l)\i+s : J). (5.15)
5=0 d d d

s=1
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Therefore, we have

ld' -1

(Eg)r = (=14)) 1_[ < LA ""SA d/\ )(Ed' )pr- (5.16)

s=1

A basis for HO(C', f*(V*)) = HO(Op1 (kd')) consists of monomials ygyk4 —
for s = 0,...,kd". It can be used to calculate (E}, ) similarly to (E; )1 above.
Recall from (4.12) that E] = ej (E(V"))E,. The line bundle e} (V") is trivial on
Mr, but the torus acts on it with weight kA;. Hence, (E)r = kA;(E);)r. Substi-
tuting into (5.13) yields

kd' 7\ 7\
ENr=11 (kA == )(Ed,,)r,, (5.17)

r=1

We pause here to show that S; is regular at h = (A; —A;)/d for any j # i and
any d > 0. It follows from (5.7) and (5.9) that

d (= 1) [T (Ai = Ax) (E - Eg )p
Sl—l+Zq Ra+ > a Lm)r n(h—cr)arEr (NY) . (5.18)

i
res, 2.d

From this representation of S;, it is clear that the coefficients of the power
series S; = X7 Siaq? belong to Q(A,h). But cr = (Aj—A;)/d for somed <d
and R;4 has poles only at h = 0; therefore, S; is regular at h = (A;—A;)/d. We
use (5.11), (5.17), and (5.16) to compute

Hk#l (/\ Ak)(Eél'Ez;)l"
2 4 LMm h(h—cr)arEr (Nr)

Fe?‘

- S et Sa | I Tk (= M) (Egr - Eg )
ot (g =20 /d) (A=A /& = Yar Er (Ny)

a'=1j+i Iz
Aj—A
Z Zq Cl]d’sj(q; a4 )
da'=1 j=i
(5.19)
The lemma follows by substituting the above identity into (5.18). g

LEMMA 5.6. The correlators S; satisfy the same linear recursion relations
as S;.
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PROOF. We know that ] = .7 q4S;; with

;o TIRE (kA +mh) [T (— 1A — mh)
(= ]
“anTl, [T5-0,jm)+a) (Ai = A +mh)

(5.20)

Note that S;; € C(A, h) is a proper rational expression of #. It has multiple poles
at h = 0 and simple poles at i = (A, —A;)/m forany v = i and any 1 < m < d.
Applying calculus of residues in the f-variable yields

d

' _R S

Sia=Ria+ 2. 2 Guix xS mh)
=1r=+i

W R+ ((Ar = A0) /M) TTRES (= 1A —n((Ar —As) /m))

Hfl:],(j,n):t(r,m) [Tico.Gmeca (A=A +n((Ay —A;) /m))
(5.21)

for some polynomials R;; € C(A)[A~!] such that R;4(0) = 0. Substitute (5.21)
into (5.20) to obtain

S{ =1+ z qdRid
d=1

o d .
+0§161d§i mZ::1 dh(A;—A, + mh)
X Hﬁil (kAi+n((Ay=A;)/m)) Hifl;()l (=IAi=n((Ay=A;)/m))

Hizl,(j,n):t(r,m) [Tico.m«a (Ai = A +n((Ar —Ay) /m))
(5.22)

Changing the order of summation in the last equation yields

Si—1-> q%Ria

a=-1
5 D N LI E—
2 2 4R —A, +mh)
o 3 gaom Dz (RAcen (A=) fm)) Tncg (A= (A =Ai)fm)).
d=m dnﬁ:l,(j,n)at(r,m) [Tico.m«a) (Ai=Aj+n((A,—A;)/m))

(5.23)
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The lemma follows from the identity

S gim Wy (kA + (A = Ag) /m)) TTisg (— 1A —n((Ar —A;) /m))
d=m dnrdl:l,(j,n):t(r,m) [Tico.Gm=ia (Ai = A +n((Ar = A;) /m))

_ (A =20)/m) T (kAi+n((Ar=Ai)/m)) [Tao 1(-12\ —n((Ay = A;)/m))
anl,(],n):t (r,m) HJ:O (/\ A‘ +n((/\r )/m))

i Hn L (kKA + 1 (A = A0) /m) TTnS (= 1A, —n((Ay = Q) /m))
u=0 Ay — )/m)l_[n 1,(j,n)=#( ru)l_[] O( )\ +n((A1’_)\l)/m))
(5.24)

|

5.3. Double polynomiality. Recall from Section 3.1 that V induces a modi-
fied equivariant integral wy : ;% — C(A) defined as follows:

wy(a) = J{PS au E—i (5.25)
T

As we can see, in the case V =0(k) ®0(—1), this modified equivariant integral
simplifies via E*/E~ = kp/ — lp = k/l. We have chosen not to simplify this

integral in the proof of the following lemma so that it is easier to see how to
proceed in the general case.

LEMMA 5.7. If z is a variable, the expression
P(z,h) = wy(e"*S(qe*",n)S(q,~N)) (5.26)

belongs to Q(A)[h][[q,z]].

PROOF. In Section 2.3, we introduced the action of T" = T x C* on PS x P!
with weights (—Ay,...,—As) on the first factor and (—#,0) in the second factor.
Consider the following T’-equivariant diagram:

Mo (PSx P!, (d,1)) ———> psx p!
T (5.27)
My = HOVO(PS x P, (d,1)).
Define

Wa=WioW] =1 ((e1)" (Ops (k) ®0p1)) @R 14 ((e1) ™ (Ops (1) ® Op1)).
(5.28)
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The lemma follows from the identity

P(z,h) = > qu eZV KEr (Wy), (5.29)
d=0

(M,j)]"

where ¢ and k were defined in Section 2.3. The localization formula for the
diagonal action of T on P* applied to the left side gives

s S,(qezh h)eZAiS'(q —h) kA
P Z,h = t ’ 1\ ( i ) 5.30
(= go [Trei (A —Ak) —1A; (5.30)
We recall from identity (5.3)
S F(=lpi) o
Si=1+ dj et (=lpdi) - 531
l 2.4 Mo Py R(R—c) 474 (5.3D)

a=1

To compute the integrals on the right side of (5.29), we use localization for

the action of T’ on M. In Section 2.3, we found that the components of the

fixed-point loci have the form Mgilld2 = Mrﬁ xﬁr‘; for some i =0,1,...,s and
1 2

a splitting d = d; + d». We first compute the restriction of E7-(Wy) in such a
component. Consider the following normalization sequence:

0_’©C_’@C0®©C1$©C2 _’@X1@©x2 — 0. (5.32)

Twist (5.32) by f*(0(—1) ® Op1) and take the corresponding long exact coho-
mology sequence. We obtain

0—C—0x,(-D&0y, (=) = W; — Wy eW;, — 0. (5.33)
The first piece is trivial since it comes from the isomorphism
(@ps(_l)x@pl) |C0 E@CD = C. (5.34)

The left-hand side is generated by 1/z;!; therefore, the weight of that piece is
—IA;. It follows that

Er (Wy) = (=1Ai)Eg Eg,- (5.35)
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Similarly, twisting the normalization sequence (5.32) by f*(0(k) ® Op1) and
taking the corresponding cohomology sequence, we obtain

Er (W}) = (kA)Ej, Ej,. (5.36)

We now use the localization theorem to calculate the integrals on the right side
of (5.29). The equivariant Euler class of the normal bundle of the fixed-point
component M, fil 4, has been calculated at the end of Section 2.3. We have

J eZV KEr (Wy)
(Mg)

ez()\i+d2h)

-3 (k;\l.)(-mi)wJ(Mr‘;l)TET(;ri )<e_ikr§((p_)§?id)1)rd1

rt rt
dyrdy

dy

XJ 1 (el(qbi)E;zzEdz)
(n%)r ET(Nr;'lZ) h(h-c) Jy

e L (s

I T, il lk=i (Ai— Ak (Mr§1>TET<Nr§1> h(-h-c1) )i
XJ 1 (eik(_ IAigpi)Ea, ) .
(Ml"é2 )T ET (Nl}z) h(h _CZ) ri

(5.37)

If we use localization to compute S; in (5.31) and then substitute in (5.30), we
obtain the right side of the last equation. |

LEMMA 5.8. If z is a variable, the expression
P'(z,h) = wy (S’ (ge?",h)eP?S' (q,—h)) (5.38)
belongs to Q(A)[h][[q,z]].

PROOF. The lemma will follow from the identity

o kd ld-1
P'(z,h) = > qdj e [ ] (kk —=mhn) [ | (~lk + mh). (5.39)
a=o 7t m=0 m=1

Na)r

For d = 0, the convention

kd ld—1 i kip
J e* [ (kk +mh) [ ] (~lk +mh) :J \er’Z(lE“) (5.40)
(Na)g m=0 m=1 Pr HJEJ —Lip
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is taken. Apply the localization formula to the integrals (5.38). We obtain

P'(z,h)

_y kel i eyt TS, A+ mh) T (= =)
S () T (A= 4) = [0 TT—o (A = Aj +mbh)

y Z dzn’;fl(km mh) [192, (= 1A; + mh)
Hm: HJ:O(AI Aj— mh)

_ i; Z ghzeitdinz el o(kd?\1+mh) mir (= 1Ai—mh)
iz0 H]qtl (A 2\J) —0 Hry%:l j=0 (Ai— /\j+mh)

kd ld
XZ 0, [In2y (kAi —mh) 21(—[)\1+mh)

T8, TT52 (Ai = A, — mh)

(5.41)

But for d,d» >0

TR (kA +mA) T (= 1A — mh) TTM2, (kA — mh) [1192," (= 1A; + mh)
Hj:ti(/\i_)\j)Hm:lnj:O(Ai_Aj+mh)Hm:lnj:O(Ai_Aj_mh)

TN (k (A + dyn) —ma) T 7 (< 1A+ dih) + mh)
- dy +d; .
[T5=0 T 20,0 my= i) (i + dih =4 —mbh)

(5.42)
Therefore,
P’ (z,h)
St S S etrame o (ke di ) —mh) [Tt (= UAc+dah) +mh)
d=0  d1=0i=0 [Tz an:O,(j,m)wt(i,dl) (7\1+d1h—7\j—mh)
(5.43)

By the localization formula in N;, we can see that

o ld—1
Pz =Y qu 0% 1‘[ (ki —mh) [ (~1k +mh). (5.44)

d=0 ar m=1
The lemma is proven. O

5.4. Mirror transformation and uniqueness. The following two lemmas
carry over from [11]. The first lemma deals with uniqueness.

LEMMA 5.9. LetS=>7 1Saq% andS' = >.7_(S,a% be two power series with
coefficients in R[[h~1]] that satisfy the following conditions:
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(1) So=S,=1;

(2) they both satisfy the recursion relations of Lemma 5.5;

(3) they both have the double polynomiality property of Lemma 5.8;

(4) foranyd, Sq = S;mod(h~?).
Then, S = S'.

The second lemma describes a transformation which preserves the proper-
ties of Lemma 5.9.

LEMMA 5.10. Let I, be a power series in q whose first term is zero. Then,
exp(I1p/h)S(qge",h) satisfies conditions (1), (2), and (3) of Lemma 5.9.

5.5. The conclusion of the proof of mirror theorem. Recall that
I = exp (L +ht1p )

o kid ljd-1 .
y <1+ S qaThier Iy (kep ) [y T (ljpmh)>_ 645
it [ ITio (p = Ai+ mh)

We are assuming that there is at least one negative line bundle. We expand
the second factor of I;! as a polynomial of #~!. Each negative line bundle pro-
duces a factor of p/h. For example, in the case V = 0(k) @0(-1), the expansion
yields

h (dl)s+1 hd(s+1-k-1) h2
(5.46)

© _1\ld _
I‘e/qzexp<to+pt>(l+§zqd( Dd-1)kd)! 1 +0<1))_
d=1

If V contains two or more negative line bundles, it follows that

I“Q}q:exp(lt();—m) <1+0(%>). (5.47)

Lemmas 5.9 and 5.10 imply that Jy* = I If > ki + X ;c; 1; < s+ 1, the pres-
ence of 1/h46+1-k=D jn the above expansion shows, again that,

I‘e,q:exp<¥) <1+0(%)); (5.48)

hence, j¢4 = I*9. We may assume that X.ic;ki+2jc;lj=s+1and [J| =1.In
this case,

15q=exp<t°;—’7t) <1+11%+0(%)>, (5.49)
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where I is a power series of g whose first term is zero. For example, if V =
O(k) ®0(-1), the power series I is

i g CDM =1kt

Il = = (d!)5+1 (550)
Recall that S = 1 +o(h~2). Therefore,
exp(h?p)S(qell,h) =1+11%+0(T1‘2). (5.51)

Lemma 5.10 implies that both exp(I;p/h)S(ge',h) and S’(q,h) satisfy the
conditions of Lemma 5.9. It follows that

exp(%)s(qeh,h) _ S (q.h). (5.52)

Multiplying both sides of this identity by exp((to + pt)/h) yields
JP ko, t+1h) = I (Lo, t). (5.53)

This completes the proof.

COROLLARY 5.11. LetV = (®;c10(k;)) ® (& jejO(~1j)). For |J| > 1 ork+1<
s+1,

) Lid-1
0 ( E,E; ) _ [Ties lecrllil (kiH+mh)[1;e; 1oy (=1;H—mh)
1%

- . (554
h(h—c) [ (H+mhys1 (5-54)

PROOF. As mentioned above, in this case we have Ji! = I Recall that

. E,E;
Jit =exp (tm_hiptl) (1 +> glery (h(r;zi—dc) ) ul] (—lﬂ))). (5.55)

d>0 Jjel
We obtain the equivariant identity
PR kid ljd*l
el ( EdEd ) U 1—[ (—l 'P) _ Hiel Hm:l (kip +mh) Hje] Hm:O (_ ljp _mh)
* iP)= .
h(h-c) jeJ an:lnizo(lﬂ—/\k +mh)

(5.56)
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The restriction of p to any fixed point p; is nonzero. This implies that p is
invertible. Therefore, we obtain

P kid lid—1
E, E; [Tier [Tin=1 (kilo+mh)njejnyf1:1 (=ljp—mh)
el =  —— . (5.57)
h(h-c) [T TTklh (p = Ak +mh)
The nonequivariant limit of this identity reads
, kid Ljd-1
e ( [Ed[Ed ) _ Hielnmzl (leerh) Hje]l_[mzl (7le7mh) (5.58)
Y\ hh—c) 1% _, (H +mh)s+! S
The corollary is proven. O

This corollary is particularly useful when Euler(V~) = 0 in PS. In this case,
Jv = Iy = exp((to + Hty)/h), hence, the mirror theorem is true trivially. An
example of such a situation is V = Op1(—1) @ Op1 (—1) which is treated in the
next section.

6. Examples

6.1. Multiple covers. Let C be a smooth rational curve in a Calabi-Yau three-
fold X with normal bundle N =0(-1)®0(-1) and 8 = [C] € H»(X,Z). Since
Ky = Oy, the expected dimension of the moduli space M o (X,dp) is zero. How-
ever, this moduli space contains a component of positive dimension, namely,
Moo (P, d). Indeed, let f : P! — C be an isomorphism, and g : P! — P! a degree
d multiple cover. Then, f o g is a stable map that belongs to Moo (X,dp). For
a proof of the fact that My o(P',d) is a component of Moo (X,dB), see [7, Sec-
tion 7.4.4]. Let N, be the degree of [M(X,dB)]'". We want to compute the
contribution ny of Mo o(P',d) to N4. Kontsevich asserted in [17] and Behrend
proved in [1] that the restriction of [Moo(X,dB) 1" to Moo (P!,d) is precisely
E4 for V=0(—1)®0(-1). Therefore,

Ng = L Ea. (6.1)
Moo (P1,d)

Note that dimMg o (P',d) = 2d -2, and the rank of the bundle V is also 2d - 2.
We use the mirror theorem to compute numbers 7n,. Since V contains two
negative line bundles, we can apply Corollary 5.11

E a-1 (_H —mh)? 1
e1*< d )—H’"*l( mn” _ 6.2)

n(h—-c))  T4_(H+mh)2 (H+dh)?
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An expansion of the left-hand side using the divisor property for the modified
gravitational descendants yields

el*( Ea ):d"d H cUEy, (6.3)

[ — - + R
hth—c) h2  h3 Jﬁo,uuﬂm

where c is the Chern class of the cotangent line bundle at the marked point.
On the other hand,

1 1 2H
(H+dh)2 ~ d2h2  d3h3" (6.4)
We obtain the Aspinwall-Morrison formula
1
=g (6.5)

which has been proved by several different methods [17, 21, 23]. We also obtain

2

cUEy; = ——. 6.6
jﬁo,1<P1,d> T a 6.6

6.2. Virtual numbers of plane curves. Let X be a Calabi-Yau threefold con-
taining a P?. As we saw in Remark 4.8, the normal bundle of P? in X is Kp> =
0(—-3). Let C be a rational curve of degree d in P2. Since Ky = Oy, the ex-
pected dimension of the moduli space Mo (X,[C]) is zero. Lemma 4.4 says
that Mo o(P?,d) = Moo (X,[C]); hence, the dimension of this moduli stack is
3d — 1. Recall the diagram

Mo, (P?,d) ——— p2

m (6.7)

Moo (P?,d).

From Lemma 4.5, the virtual fundamental class of M o(X,[C]) is the refined
top Chern class of the bundle V; = Ry, (e} (Kp2)) over Mo o(P?,d). The zero-
pointed Gromov-Witten invariant

Na :=deg[Mo,o(X,[C])]"™" = Ea (6.8)

JMO’()(IPZ ,d)

is called the virtual number of degree d rational curves in X. As promised in
Remark 3.10, we show that the modified equivariant quantum product in this
case has a nonequivariant limit. We also use the mirror theorem to calculate
these numbers N,.
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The modified pairing on [P’(ZC* corresponding to V = Op2(—3) is

{a,b) ::J

(PZ )(C*

aubu( (6.9)

1
-3p-A ) '
Recall that p denotes the equivariant hyperplane class in P2. Then, 1,p,p? is a
basis for % as a Q(A)-module. A simple calculation shows that —Ap?2, —3p? —
AH,—3p —Aisits dual basis with respect to the above pairing. Since both bases
and E; are polynomials in A, we can restrict I; and *y in @ = H* (P2, Q[A])
and take the nonequivariant limit. Denote by H the nonequivariant limit of p.
We obtain the following nonequivariant quantum product on H*P2e Q[[4]]:

akxvb:=aub+> qT*l4(a,b,~3HTy), (6.10)
d=1

where T0 =1, T! = H, T? = H?, and, for y1,Y>,...,Yn € H*P?,

efyively,u---uUely, UE,. (6.11)

Li(Y1, Y2, ¥n) :J
Mo,n (P2,d)

For example, using the divisor axiom, we obtain

HxyH = H? (1 -3> qdd3Nd). (6.12)
a>0

Theorem 3.9 implies the following theorem.

THEOREM 6.1. The ring (H*P2®@Q[[q]l], *v) is an associative, commutative,
and unital ring with unity 1 = [P2].

Denote by i the embedding i: P? — X. Since the normal bundle of P? in X is
Op2 (—3), it follows that i*(—(1/3)[P?]) = T' and i*(—(1/3)[l]) = T?. There-
fore, the map i* : (H*X,Q) — (H*P?,Q) is surjective. Consider the small
quantum cohomology rings SQH*X = (H*X ® Q[[B]],*) and SQH{P? :=
(H*P? ® Q[[q]],*v), where the products are given by three-point correla-
tors. Recall from Section 4.2 the extension of i* : H*(X,Q) — H*(P2,Q) to
i*:SQH*X - S QH;{ P?. There is a natural relation between the modified quan-
tum product in P? and the pure product in X.

THEOREM 6.2. The map i* is a ring homomorphism.

PROOF. Complete 7° = [X], 7! = —(1/3)[P?], and T2 = —(1/3)H into a
basis of (H*X,Q) by adding elements from Ker(i*).Let 7o = [pt],71 =H, T2 =
[P2],... be the dual basis. Let a,b € H*X. We want to show

i*(axb) =i*(a)*xyi* (D). (6.13)
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But

_ Br * * *
axb BEHZ(:X Q);q T J[ﬁog(x,ﬁ)]\’irtel auvesbuesTy. (6.14)
5 (X, :

Note that this formula is true for a Z-basis, but, due to the uniqueness of the
quantum product, it is true for any Q-basis as well. Now,

*(a*xb) qu

a=0 v

J et (i*a) ues (i*b) et (i*Ty)Ea.  (6.15)
Mo,3(P2,d)

But i*(7") = T* for » = 0,1,2 and i*(7") = 0 for ¥ > 2. The theorem follows
from the readily checked fact that i*(1x) = —3HTy for k=0,1,2. |

Using the divisor and fundamental class properties of the modified gravita-
tional descendants, it is easy to show that

Jv = exp (W) (1 3— z qdde) (6.16)

The hypergeometric series corresponding to the total space of V = Op2 (—3) is

p(t0+t1H)i d]‘[3‘“( 3H - mh)_

(ans

Iy :=ex (6.17)
h o T4 (H +mh)3
We expand the function
=ew (5 ) (1o (3)
Iy —exp( m 1+1; " +0 w)) (6.18)
where
11=3Z a(- 1)d(3d LY (6.19)

The mirror theorem for this case says that J(to,t; +1y) = Iy (to,t1). This the-
orem allows us to compute the virtual number of rational plane curves in the
Calabi-Yau X. The first few numbers are 3, —45/8, 244/9.
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