ON THE WEAK UNIFORM ROTUNDITY OF BANACH SPACES

WEN D. CHANG and PING CHANG

Received 10 June 2002

We prove that if X_i , $i=1,2,\ldots$, are Banach spaces that are weak* uniformly rotund, then their l_p product space (p>1) is weak* uniformly rotund, and for any weak or weak* uniformly rotund Banach space, its quotient space is also weak or weak* uniformly rotund, respectively.

2000 Mathematics Subject Classification: 46B20.

1. Definitions and preliminaries. In this note, X and Y denote Banach spaces and X^* and Y^* denote the conjugate spaces of X and Y, respectively. Let $A \subset X$ be a closed subset and X/A denote the quotient space. We use S(X) for the unit sphere in X and $P_{l_p}(X_i)$ for the l_p product space. We refer to [1,3] for the following definitions and notations. For more recent treatment, one may see, for example, [2].

DEFINITION 1.1. A Banach space X is $UR^{A'}$, where A' is a nonempty subset of X^* , if and only if for any pair of sequences $\{x_n\}$ and $\{y_n\}$ in S(X), if $\|x_n + y_n\| \to 2$, then $f(x_n - y_n) \to 0$ for all f in A'.

DEFINITION 1.2. A Banach space X is WUR (weakly uniformly rotund) if and only if X is UR^{X^*} .

DEFINITION 1.3. The conjugate space X^* is W*UR (weak* uniformly rotund) if and only if X is UR $^{Q(X)}$, where $Q: X \to X^{**}$ is the canonical embedding.

- **2. Some results on the weak* and weak uniform rotundity.** From the definition, we clearly have the following corollary.
- **LEMMA 2.1.** The Banach space X is W^*UR if and only if for any pair of sequences $\{x_n\}$ and $\{y_n\}$ in X, if $\|x_n\| \|y_n\| \to 0$, $\{\|y_n\|\}$ is bounded, and $\|x_n\| + \|y_n\| \|x_n + y_n\| \to 0$, then $x_n y_n \xrightarrow{w^*} \theta$.

THEOREM 2.2. Suppose that X_i , i = 1, 2, ..., are W^* UR, then for p > 1, $P_{l_p}(X_i)$ is W^* UR.

PROOF. Let $X_i = Y_i^*$, then $P_{l_p}(X_i) = [P_{l_q}(Y_i)]^*$ (where 1/p + 1/q = 1) (see [2]). Let $\{x_n\} = \{(x_1^n, x_2^n, x_3^n, ..., x_m^n, ...)\} \in P_{l_p}(X_i)$, $\{y_n\} = \{(y_1^n, y_2^n, y_3^n, ..., y_m^n, ...)\} \in P_{l_p}(X_i)$, $\|x_n + y_n\| \to 2$. Using the properties of l_p norm and Minkowski

inequality, one can see, for each i, that there exists a subsequence of $\{n\}$, $\{n_k^i\}$, such that $\lim_{k\to\infty}\|x_i^{n_k^i}\|=\lim_{k\to\infty}\|y_i^{n_k^i}\|$ and $\lim_{k\to\infty}\|x_i^{n_k^i}+y_i^{n_k^i}\|=\lim_{k\to\infty}\|\|x_i^{n_k^i}\|+\|y_i^{n_k^i}\|$. We now choose a subsequence with the diagonal method, without loss of generality, still use $\{n\}$ as the index such that for each i, we have $\lim_{n\to\infty}\|x_i^n\|-\lim_{n\to\infty}\|y_i^n\|=0$ and $\lim_{k\to\infty}\|\|x_i^n\|+\|y_i^n\|-\|x_i^n+y_i^n\|\|=0$. Since X_i is W*UR for each i, by the lemma, we have

$$x_i^n - y_i^n \xrightarrow{\mathbf{w}^*} \theta. \tag{2.1}$$

Suppose that $P_{l_p}(X_i)$ is not W*UR, then there exist sequences $\{x_n\} \in S(P_{l_p}(X_i)), \{y_n\} \in S(P_{l_p}(X_i)), \|x_n+y_n\| \to 2$, but x_n-y_n does not converge (w*) to θ . So, there must be an $a=(a_1,a_2,...,a_i,...)$ in $P_{l_q}(Y_i)$, with $a_i \in Y_i$, such that $|(x^n-y^n)(a)|$ does not converge to 0. Therefore, there exist $\epsilon > 0$ and a subsequence of $\{n\}$ (for simplicity, we still use $\{n\}$) such that $|(x^n-y^n)(a)| > \epsilon$, which implies that one can find an integer m, sufficiently large, so that

$$\sum_{i=1}^{m} |(x_i^n - y_i^n)(a_i)| > \frac{\epsilon}{2}.$$
 (2.2)

Let (n_k) be the subsequence of $\{n\}$ such that (2.1) holds. By (2.2), we have

$$\sum_{i=1}^{m} |(x_i^{n_k} - y_i^{n_k})(a_i)| > \frac{\epsilon}{2}.$$
 (2.3)

Let $k \to \infty$ in (2.3), we have a contradiction $0 > \epsilon/2$.

The proof is complete.

THEOREM 2.3. Suppose that $X = Y^*$ and A is any w^* closed subspace of X. If X is W^*UR , then X/A is W^*UR .

PROOF. Let $D = \{ y \in Y \mid x(y) = 0 \text{ for any } x \in A \}$, then

$$A = \{ x \in X \mid x(y) = 0 \text{ for any } y \in D \}, \tag{2.4}$$

see [4]. So, We have $D^* \simeq X/A$.

Suppose that X/A is not W*UR, then there exist $\{\tilde{x}_n\}$ and $\{\tilde{y}_n\}$ in X/A such that $\|\tilde{x}_n\| = \|\tilde{y}_n\| = 1$, $\|\tilde{x}_n + \tilde{y}_n\| \to 2$, but $\tilde{x}_n - \tilde{y}_n$ does not converge (w*) to θ . Here, $\tilde{x} = \pi(x)$, where $\pi : X \to X/A$.

Now, for each n, take $x_n \in \tilde{x}_n$ and $y_n \in \tilde{y}_n$, $1 \le \|x_n\| \le 1 + 1/n$, $1 \le \|y_n\| \le 1 + 1/n$, then $\lim_{n \to \infty} \|x_n + y_n\| = 2$. Since X is W^*UR , we have $x_n - y_n \xrightarrow{w^*} \theta$, π is w^*-w^* continuous. So, we must have $\tilde{x}_n - \tilde{y}_n \xrightarrow{w^*} \theta$. That contradicts the above, and the proof is complete.

THEOREM 2.4. Suppose that A is a closed subspace of X and X is WUR (Definition 1.2), then X/A is WUR.

PROOF. The proof is similar to the proof of Theorem 2.3.

REFERENCES

- [1] M. M. Day, *Normed Linear Spaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 21, Springer-Verlag, New York, 1973.
- [2] R. Deville, G. Godefroy, and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow, 1993, copublished in the United States with John Wiley & Sons, New York.
- [3] M. A. Smith, Banach spaces that are uniformly rotund in weakly compact sets of directions, Canad. J. Math. 29 (1977), no. 5, 963-970.
- [4] A. E. Taylor, *Introduction to Functional Analysis*, John Wiley & Sons, New York, 1958.

Wen D. Chang: Department of Mathematics and Computer Science, Alabama State University, Montgomery, AL 36104, USA

E-mail address: wchang@asunet.alasu.edu

Ping Chang: Singapore Air Accounting Center in Beijing, Beijing, China

E-mail address: lovasun@charter.net