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The present paper dealing with the nonlinear bifurcation analysis of two-species
oscillatory system consists of three parts. The first part deals with Hopf-bifurcation
and limit cycle analysis of the homogeneous system. The second consists of trav-
elling wave train solution and its linear stability analysis of the system in presence
of diffusion. The last deals with an oscillatory chemical system as an illustrative
example.
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1. Introduction. Periodicity is an inherent phenomenon in living systems.

From the cell cycle, which governs the rate and timing of mitosis (cell division),

to the diurnal cycle that results in sleep-wake, to the ebb and flow of popu-

lations in their natural environment, life proceeds in a rhythmic and periodic

style [6]. Within the nature, several dynamical systems exhibit a large variety

of oscillations. The spring-mass system, electrical circuits, Lotka-Volterra pre-

dation model system, and so forth. exhibit several types of periodic behaviour.

There are some stable periodic behaviours which are not easily disrupted by a

perturbation, deterministic or random. These types of situations lead us to be-

lieve that pattern is a ubiquitous part of the process of growth of biochemical

and metabolic control systems and of ecological systems.

Reaction-diffusion processes play a significant role in the study of pattern

formation in different biological and ecological system [6, 16]. A large class of

nonlinear parabolic partial differential equations are referred to as reaction-

diffusion equations [8]. The systems governed by this type of equations are

known as reaction-diffusion system. For example, if ui(x,t), i = 1,2, . . . ,m
represents the densities or concentrations of several interacting species or

chemicals each of which diffusing with their own diffusion coefficients Di and

interacting according to the vector source term f, then the system is governed

by [16],

∂u

∂t
= f+D∇2u, (1.1)

where D is a simple diagonal matrix of order m for the case of no cross dif-

fusion. Equation (1.1) is referred to as a reaction-diffusion or an interacting
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population diffusion system [16]. It is believed that rotating and spiral waves

are possible solutions of reaction-diffusion equations in appropriate circum-

stances. Rotating spiral waves have been found by Winfree [21] for the

Belousov-Zhabotinskii reaction. Kuramoto and Yamada [15] considered a two-

species reaction-diffusion system exhibiting limit cycle behaviour. Cohen et al.

[3] were the first to demonstrate that the rotating spiral wave can be main-

tained by a reaction-diffusion mechanism alone. They found solutions for the

λ−ω system (see [3])

∂u
∂t
= λ(R)u−ω(R)v+∇2u,

∂v
∂t
=ω(R)u+λ(R)v+∇2v,

(1.2)

where λ,ω are given functions of R = (u2+v2)1/2. Stability of travelling waves

can often be quite difficult to demonstrate analytically. However, some stability

results can be obtained, without long and complicated analysis, in the case of

the wave train solutions of the λ−ω system [16]. Feroe [7] investigated the

systems for which this stability analysis is possible or not.

The object of the present work is to develop a limit cycle solution of a gen-

eral nonlinear two-species model system and then to obtain the criteria of the

stability. In Section 3, we have tried to find the travelling wave train solution of

the above-mentioned problem in presence of diffusive perturbation for both

species. We have also performed the linear stability analysis for the travelling

wave train solution. As an illustrative example, we have considered a nonlinear

reaction-diffusion model equation which governs a certain chemical reaction

system introduced by Dreitlein and Somes [4] for which the criterion of linear

stability for travelling wave train solution have been tested.

2. A nonlinear system: Hopf-bifurcation and limit cycles. We consider a

nonlinear system of two interacting species (ecological or chemical) whose

concentrations are denoted by x1(t) and x2(t) and is governed by the system

of equations [17]

dx1

dt
= γx1−ωx2+

(
mx1−nx2

)(
x2

1+x2
2

)
,

dx1

dt
=ωx1+γx2+

(
nx1+mx2

)(
x2

1+x2
2

)
,

(2.1)

where γ is a scalar control parameter and ω, m, n are constants. This highly

nonlinear planar model is a generalization of various types of nonlinear dif-

ferential equations governing a variety of physical and chemical systems [2].

Evidently, (x∗1 ,x
∗
2 ) = (0,0) is the fixed point of (2.1) for all values of the con-

trol parameter γ. Let the matrix A(γ) be the linearized matrix of (2.1) about
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the fixed point (x∗1 ,x
∗
2 ), that is,

A(γ)= [∇XF(X,γ)
]
(X∗) =

(
γ −ω
ω γ

)
, (2.2)

where

X= [x1,x2
]T , F[X,γ]= [F1,F2

]T ,
F1 = γx1−ωx2+

(
mx1−nx2

)(
x2

1+x2
2

)
,

F2 =ωx1+γx2+
(
nx1+mx2

)(
x2

1+x2
2

)
.

(2.3)

The eigenvalues of the corresponding Jacobian matrix (2.2) are

λ1 = γ−iω, λ2 = γ+iω. (2.4)

From these eigenvalues, we note that (0,0) is a nonhyperbolic fixed point

[11, 12, 18, 19] of (2.1) when γ = 0. Further at (x1,x2,γ)= (0,0,0),

dλ1

dγ
= 1,

dλ2

dγ
= 1. (2.5)

Hence, all the conditions required for a Hopf-bifurcation are satisfied [9,

16, 17]. Alternatively, the matrix A(0) has purely imaginary eigenvalues ±iω
(ω≠ 0), that is, the conditions [16]

TrA(0)= 0, detA(0)=ω2 > 0 (2.6)

are satisfied. Also the matrix B(γ) defined by

A(γ)=A(0)+γB(γ) (2.7)

is such that TrB(0)= 2≠ 0, so there must exist a periodic solution of (2.1) for γ
in some neighborhood of γ = 0 and X in some neighborhood of X∗ with approx-

imate period T = 2π/ω for small γ [16]. We can now apply Hopf-bifurcation

and limit cycle theorem [16] to find the periodic solution of the system of (2.1).

Following Murray [16] and without going into the details of calculation, we can

show that the periodic solution of (2.1) is given by

X(γ,t)=
(
x1

x2

)
=
[
− γ

(
1+ω2

)
2m

]1/2(
cos(ωt+α)
sin(ωt+α)

)
+o(γ), (2.8)

where α = arctan(b2/b1) is some arbitrary phase angle. From (2.8), we see

that the amplitude of oscillations depends on the parameters γ, ω, and m.

For the existence of the limit cycle, the amplitude should be positive and this

requires γ andm to be of opposite sign [1]. Now we consider the stability of the

limit cycle (2.8). For this we calculate the Lyapunov-number σ for system (2.1).
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Following Perko [18], we can calculate the Lyapunov-number σ for system (2.1)

about the stationary state X∗ as

σ = 12π
ω

m. (2.9)

If σ ≠ 0, the fixed point (0,0) is a weak focus of multiplicity one. The weak

focus will be stable or unstable according to whether σ < 0 or σ > 0, that

is, according to whether ωm < 0 or ωm > 0. Hopf-bifurcation occurs at the

critical value γ = 0. If σ < 0 or ωm< 0, the Hopf-bifurcation is supercritical

and, on the other hand, if σ > 0 orωm> 0, the Hopf-bifurcation is subcritical.

3. Nonlinear reaction-diffusion system: travelling wave trains and linear

stability analysis. In this section, we consider the behaviour of the system

governed by (2.1) in presence of diffusion. We try to find the wave train solu-

tions for the reaction-diffusion system given by

∂x1

∂t
= γx1−ωx2+

(
mx1−nx2

)(
x2

1+x2
2

)+ ∂2x1

∂x2
,

∂x1

∂t
=ωx1+γx2+

(
nx1+mx2

)(
x2

1+x2
2

)+ ∂2x2

∂x2
.

(3.1)

For our purpose here, we consider the system with the same rate of diffu-

sion for both species and then it is scaled into a new space variable by using

the transformation x→ x/√D, where D is the same rate of diffusion for both

species. We have shown in the previous section that γ is a bifurcation param-

eter and when it passes through the value zero, Hopf-bifurcation takes place.

We assume the travelling wave train solution of system (3.1) in the form

v(x,t)=
(
x1(x,t)
x2(x,t)

)
=V(z), where z = σt−kx, (3.2)

with σ (> 0) being the frequency of the wave train, k the wave number, and V

a periodic function of z with period 2π . Then the wavelength isω= 2π/k and

the wave propagates with the speed c = σ/k. Substitution of (3.2) into (3.1)

results in a system of ordinary differential equations for V given by

k2V′′ −σV′ +f(V)= 0, (3.3)

where prime denotes the differentiation of V with respect to the independent

variable z. We want to find σ and k so that the last equation has a 2π -periodic

solution for V. We can rewrite system (3.1) as follows:

∂
∂t

(
x1

x2

)
=
(
λ(r) µ(r)
−µ(r) λ(r)

)(
x1

x2

)
+ ∂2

∂x2

(
x1

x2

)
, (3.4)

where

r 2 = x2
2+x2

2 , λ(r)= γ+mr 2, µ(r)=−(ω+nr 2). (3.5)
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Now changing the system of equations (3.4) into polar (r ,θ) form, we can

write it as follows:

∂r
∂t
= rλ(r)+rxx−rθ2

x,

∂θ
∂t
= µ(r)+ 1

r 2

∂
∂x

(
r 2θx

)
.

(3.6)

As we are looking for the travelling wave train solutions of the type (3.2) in

polar form, so we substitute

r =α, θ = σt−kx (3.7)

into (3.6) to get the necessary and sufficient condition for the existence of

travelling wave solution. These conditions are obtained after substitution of

(3.7) into (3.6) as

σ = µ(α), k2 = λ(α). (3.8)

Considering α as a parameter, the one-parameter family of travelling wave

train solutions of (3.4) is given by

x1 =αcos
[
µ(α)t−xλ1/2(α)

]
, x2 =αsin

[
µ(α)t−xλ1/2(α)

]
, (3.9)

with wave speed

c = σ
k
= µ(α)
λ1/2(α)

. (3.10)

Such travelling wave trains are of importance, for example, to the target

patterns or circular waves generated by the pace-maker nuclei in the Belousov-

Zhabotinski reactions [5, 16, 20].

After finding the travelling wave train solution of the λ−µ system described

by (3.4), we now perform the linear stability analysis of the wave train solution.

The simplicity of the plane wave solutions in the polar forms (3.6), (3.7), (3.8),

and (3.9) gives us the opportunity to do the linear stability analysis. For this

linear stability analysis, we consider the perturbations described by

r =α+ρ(x,t), θ = σt−kx+φ(x,t), (3.11)

where |ρ|,|φ|� 1. Substituting this relation into (3.6) and then linearizing, we

get the following equations in terms of the perturbation variables ρ and φ as

∂ρ
∂t
=α

[
2mαρ+2k

∂φ
∂x

]
+ ∂

2ρ
∂x2

,

∂φ
∂t

=−2nαρ− 2k
α
∂ρ
∂x

+ ∂
2φ
∂x2

.
(3.12)
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The conditions satisfied by k and σ under which the solutions of (3.12) is to

be determined tend to zero as t approaches infinity. As coefficients involved

with the system of equations (3.12) are constants, we can assume the solution

of the system in the Fourier form
(
ρ
φ

)
=
(
ρ0

φ0

)
exp(st+iqx), (3.13)

where s is the growth rate of perturbation, q is the perturbation wave number,

and ρ0 and φ0 are constants. The stability of the linearized system demands

that Re(s) < 0. Substituting (3.13) into (3.12), we get

s+q

2−2mα2 −2ikαq

2nα+2ik
q
α

s+q2



(
ρ0

φ0

)
=
(

0
0

)
. (3.14)

As we are searching for nontrivial solution, then we are not interested in the

solution ρ0,φ0 = 0, so we must have the determinant value of the 2×2 matrix

involved with (3.14) equal to zero, which is a quadratic equation in s. If we

denote the roots of the quadratic equation by s1 and s2, then the expressions

for the roots are given by

s1,s2 =−q2+α2m±[m2α4+4k2q2−2iknqα2]1/2. (3.15)

Depending upon the parameters of the system which are involved in (3.15),

the real parts of both s1 and s2 or of either s1 or s2 may be positive, and then the

plane wave solutions will be linearly unstable. As s and q are perturbation from

the plane wave solutions (3.7), then the perturbation wave number q = 0 leads

to the fact that s1 = 2α2m and s2 = 0. The later corresponds to the neutral

stability while the former implies the stability or instability depending upon

the condition satisfied by m, and is given by m< 0 or m> 0, respectively. For

positive perturbation in wave number, that is, q > 0, the maximum real parts of

the roots come from s1 and this leads to the necessary and sufficient condition

for linear stability, namely, Re(s1) < 0. From (3.15), after some calculations

involving complex variable algebra, we find that

Re
(
s1(q)

)=−q2+α2m+ 1√
2

[(
mα2)2+4k2q2

+
[((
mα2)2+4k2q2

)2+4
(
knqα2)2

]1/2]1/2
.

(3.16)

From the above relation, we get

Re
(
s1(0)

)=α2m+∣∣α2m
∣∣, (3.17)[

dRes1

dq2

]
q=0

=−1+ 4k2
(
1+n2/m2

)
2α2 |m | . (3.18)
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Relation (3.17) states that Res1(0) = 2α2m for m > 0 and Res1(0) = 0 for

m< 0. Thus for small enough q2, Res1(q) < 0 if and only if the last derivative

[dRes1/dq2]q=0 < 0. For m< 0, the relation (3.18) gives the condition as

4k2
(

1+ n2

m2

)
+2α2m≤ 0, (3.19)

whereas, for m > 0, Res1(0) > 0 and consequently the travelling wave train

solution of system (3.4) is unstable.

4. Travelling wave in an oscillatory chemical system: linear stability anal-

ysis. In this section, we now consider a model chemical reaction as an illus-

trative example of the general nonlinear system whose different characteristic

features we have discussed in the previous section. This model for oscillatory

chemical kinetic system was discussed and analyzed by Dreitlein and Somes

[4]. Here we analyze its travelling wave solution and its stability. The model is

described by the system of nonlinear equations as follows:

∂x1

∂t
= Ex1+2x2−x1

(
x2

1+x2
2

)+ ∂2x1

∂x2
,

∂x1

∂t
=−2x1+Ex2−x2

(
x2

1+x2
2

)+ ∂2x2

∂x2
.

(4.1)

Comparing this equation with (3.1), we find that γ = E,ω=−2,m=−1, and

n = 0. The system of equations (4.1) can be written as a λ−ω model system

as follows:

∂
∂t

(
x1

x2

)
=
(
λ(r) µ(r)
−µ(r) λ(r)

)(
x1

x2

)
+ ∂2

∂x2

(
x1

x2

)
, (4.2)

where

r 2 = x2
2+x2

2 , λ(r)= E−r 2, µ(r)= 2. (4.3)

Now r = r0 =
√
E is an isolated zero of λ(r) and, consequently, λ′(r0) =

−2
√
E < 0, µ(r0) = −2 ≠ 0. This leads to the conclusion that the spatially ho-

mogeneous system has a limit cycle solution [16]. Changing the variables from

(x1,x2) to the polar variables (r ,θ) and using (3.6), the system of equations

(4.1) becomes

∂r
∂t
= r(E−r 2)+ ∂2r

∂x2
−r

(
∂θ
∂x

)2

,

∂θ
∂t
= 2+ 1

r 2

∂
∂x

(
r
∂θ
∂x

)
.

(4.4)

As r0 =
√
E > 0 and λ′(

√
E) < 0, then the asymptotically stable limit cycle

solution of the kinetic system is given by

r =√E, θ = θ0+2t, (4.5)
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where θ0 is some arbitrary phase. Next, we look for travelling wave solution of

the form (3.3) of the system governed by the system of differential equation

(4.1). Substituting r = α, θ = σt − kx in (4.4), we can obtain the necessary

and sufficient conditions for the solution of the above-mentioned type. The

conditions are

σ = 2, k2 = E−α2. (4.6)

The one-parameter family of travelling wave train solutions of (4.4) or, equiv-

alently, for (4.1), is given by

x1 =αcos
[
2t−x(E−α2)1/2

]
, x2 =αsin

[
2t−x(E−α2)1/2

]
, (4.7)

with α as the convenient parameter. As the parameter α approaches the value

r0 =
√
E, the wave number of the plane waves tends to zero and this indicates

the existence of travelling plane wave train solutions near the limit cycle. The

system governed by (4.1) has a steady state at (0,0) which is stable for E > 0

and unstable for E < 0. Note that E = Ec = 0 is the bifurcation value of the sys-

tem. At the critical value Ec = 0, the eigenvalues of the linearized system about

the steady state are ±2i. This satisfies the requirements of Hopf-bifurcation

that we have discussed in Section 2.

Our next task is to investigate the linear stability of the wave train solution

that we have discussed for system (3.1) in Section 3. In a similar manner as

that we have adopted in the previous section, we will deal with the polar form

(4.4) and the perturbations will be of the form

r =α+ρ(x,t), θ = σt−kx+φ(x,t), (4.8)

where |ρ|,|φ|� 1. Substituting this relation into (4.4) and linearizing, we get

∂ρ
∂t
=α

[
−2αρ+2k

∂φ
∂x

]
+ ∂

2ρ
∂x2

,

∂φ
∂t

=−2k
α
∂ρ
∂x

+ ∂
2φ
∂x2

.
(4.9)

The coefficients involved in the linearized system (4.9) are all constants and

this situation enable us to take the solution of this system in the form(
ρ
φ

)
=
(
ρ0

φ0

)
exp(st+iqx), (4.10)

where ρ0, φ0 are constants and q, s play the same role as that involved in

(3.13). Substituting (4.10) into the system of equations (4.9), we get relations

of the form (3.14) as follows:
s+q

2+2α2 −2ikαq

2ik
q
α

s+q2



(
ρ0

φ0

)
=
(

0
0

)
. (4.11)
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As we are interested in the nontrivial solution of system (4.11), then we must

have the determinant value of the coefficient matrix involved in (4.11) equal to

zero. This determinant value of the above-mentioned matrix equal to zero

gives a quadratic equation for the variable s. The stability of the linearized

system requires that the roots of the quadratic equation in s have negative

real parts. If we denote the two roots of the quadratic equation by s1, s2, then

the expressions for them can be given as follows (using the expression (3.15)):

s1,s2 =−q2−α2±[α4+4k2q2]1/2. (4.12)

From the above relation we get s1(0),s2(0) = 0,−2α2. Thus, for vanishingly

small perturbation in the wave number, the linearized system exhibits a neutral

stability. Now, for small perturbation, both roots s1 and s2 will be negative if

and only if

2k2−α2 < 0. (4.13)

This is the condition for stability of the linearized system and it is indepen-

dent of the parameter E involved with system (4.1).

5. Conclusion. The bifurcation theory plays a significant role in the be-

haviour of nonlinear systems. The bifurcating behaviour for a nonlinear sys-

tem is a self-developed phenomena for the deterministic system [10]. The first

problem in this paper is the study of an interacting homogeneous population

system governed by the nonlinear system of differential equations (2.1). The

Hopf-bifurcation analysis of the system leads to an unstable or a stable limit

cycle according to whether the bifurcation parameter is negative or positive.

The limit cycle solution (2.8) of the nonlinear system (2.1) shows an interest-

ing characteristic that the existence of the limit cycle solution depends upon

the sign of the parameter γ and m involved with the system. The existence of

limit cycle solution of system (2.1) demandsmγ < 0. However, whenm= 0, al-

though the conditions for Hopf-bifurcation are satisfied, there are no periodic

orbits in the vicinity of the bifurcating point.

The next problem is concerned with the study of travelling wave train solu-

tion of the diffusive nonlinear dynamical system and the linear stability criteria

of this wave train solution. Equation (3.9) represents the one-parameter family

of wave train solution for system (3.1), where α is the arbitrary parameter. If

r = r0 is an isolated zero of λ(r) (given by (3.5)), then the limiting approach

r0 → α gives the small amplitude travelling wave train solution near the limit

cycle arising from Hopf-bifurcation. Kopell and Howard [13, 14] showed how

to do this in general. Feroe [7] has discussed the difficulties in the stability of

travelling wave train solution for excitable FHN waves. However, we are able to
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find this criteria for system (3.1) given by (3.19) without long and complicated

calculations due to the simplicity of the travelling wave train [16].

As an illustrative example, we have considered the chemical reaction-diffu-

sion model introduced by Dreitlein and Somes [4]. The travelling wave train

solution of the model system (4.1) given by (4.7) is quite similar to the result

introduced by Dreitlein and Somes. Condition (4.13) is the linear stability con-

dition of the wave train solution (4.7) and it should be noted that (4.13) does

not contain the parameter E of the model system (4.1). The stability condition

(4.13) may be derived from (3.19) by substituting the values of m and n for

the model system (4.1).
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