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The A-stability properties of continuous and discontinuous Galerkin methods for
solving ordinary differential equations (ODEs) are established using properties of
Legendre polynomials and Gaussian quadrature rules. The influence on the A-
stability of the numerical integration using Gaussian quadrature rules involving a
parameter is analyzed.
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1. Introduction. In this paper, the A-stability of various (continuous and

discontinuous) Galerkin schemes for the solution of an initial value problem in

ordinary differential equation (ODE) is analyzed. Even ifA-stability of a method

for solving ODE is an old well-studied subject, the contribution of this paper is

in the presentation of a new proof ofA-stability in Section 4.1 which points out

the link between A-stability, Legendre polynomials, and Gaussian quadrature

rules.

The stability results are obtained using a variety of Gaussian quadrature for-

mulas of integrals defining the Galerkin finite element methods for problems

of the form

ẏ(t)= f (y(t),t), 0≤ t ≤ T ,
y(0)=y0.

(1.1)

Continuous and discontinuous Galerkin methods have played an important

role in the recently developed approach to global error estimation and control

for numerical approximations of ODEs [8, 15, 16, 24]. In particular, the stability

analysis is an important issue and has motivated our work.

2. Polynomial approximations and Galerkin methods. Galerkin methods

for (1.1) are based on a variational formulation and use a (continuous or dis-

continuous) piecewise polynomial approximation of the solution of the ODE.

They can be briefly described in the following way [3, 5].

The interval [0,T ] is partitioned intoN intervals In = [tn−1, tn] (n= 1, . . . ,N)
by specifying the sequence {tn}Nn=0, 0 = t0 < t1 < ··· < tN−1 < tN = T , of real
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numbers. If PK(In) denotes the set of real polynomials of degree K on In, we

consider the following variational problem.

Problem 2.1. Let U0 = y0, and for n = 1, . . . ,N, find un(·) ∈ PK(In) and

Un ∈ R such that 〈Dun − f(un),vn〉n + [un(tn−1)− Un−1]vn(tn−1)+ [Un −
un(tn)]vn(tn) = 0 for all vn(·) ∈ PK+1−L(In), and un(·) is subject to L ad-

ditional collocation conditions.

In Problem 2.1, f(u) stands for f(u(t),t) and

〈f ,g〉n =
∫ tn
tn−1

f(τ)g(τ)dτ. (2.1)

We say that we have an approximate problem if we use exact integration in

Problem 2.1 and we have a discretized problem if we use a quadrature rule to

deal with the integrals.

Continuous Galerkin methods for ODEs have been introduced in [19, 20]

and discontinuous Galerkin methods in [25]. Discontinuous Galerkin methods

were first analyzed for linear nonstiff ODEs in [4], and later for nonlinear non-

stiff systems in [2, 6]. A general framework and analysis of Galerkin methods

for ODEs have been developed in [3, 5]. In particular, existence, uniqueness,

and convergence results have been obtained for approximate and discretized

problems under appropriate assumptions on f(·,·).
Similarly, Galerkin methods for parabolic problems have been analyzed, for

example, in [1, 14, 23, 26], and later used for finding adaptive finite element

methods for parabolic problems in [9, 10, 11, 12, 13, 17].

3. Gaussian quadrature rules. Let γ be a parameter in [−1,1] and πM(·)
be the Legendre polynomial of degree M on [−1,1] such that πM(1) = 1 =
(−1)MπM(−1). The quadrature rules we consider are based on the following

result.

Lemma 3.1. For γ ∈ [−1,1], theM roots of the polynomialπM(·)−γπM−1(·),
denoted τm(γ) (m= 1, . . . ,M), are all real and distinct. Moreover,

(i) −1≤ τ1(γ) < ···< τm(γ) < ···< τM(γ)≤ 1;

(ii) τm(·)∈ C∞([−1,1];[−1,1]) for m= 1, . . . ,M ;

(iii) (dτm/dγ)(γ) > 0 for any γ ∈ (−1,1);
(iv) τ1(−1)=−1 and τM(1)= 1.

Proof. This result is obtained from the interlacing properties of the roots

of Legendre polynomials and from the implicit function theorem.

If we define the weights

ωm(γ)=
∫ 1

−1

M∏
k=1
k �=m

τ−τk(γ)
τm(γ)−τk(γ)dτ, (3.1)
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for m= 1, . . . ,M , the quadrature rule

∫ 1

−1
ψ(τ)dτ �

M∑
m=1

ωm(γ)ψ
(
τm(γ)

)
, (3.2)

which depends on a parameter γ ∈ [−1,1], is exact for polynomials of degree

M−1. It follows that the formula is also exact for polynomials of degree 2M−2

and for polynomials of degree 2M−1 if γ = 0. Gauss-Legendre quadrature rules

correspond to γ = 0, Gauss-Radau quadrature rules correspond to γ =±1, and

for 0< |γ|< 1, we obtain intermediate quadrature rules.

We will use the following notation for the interval [−1,1]:

〈f ,g〉 =
∫ 1

−1
f(τ)g(τ)dτ,

〈f ,g〉d =
M∑
m=1

ωm(γ)f
(
τm(γ)

)
g
(
τm(γ)

)
.

(3.3)

We remark the following identities for Legendre polynomials:

〈
πi,πj

〉d = 〈πi,πj〉=



0 if i < j,
2

2i+1
if i= j, (3.4)

for j = 0, . . . ,M−1,

〈
πi,πM

〉d =




〈
πi,πM

〉= 0 if i <M−1,
2γ

2M−1
if i=M−1,

2γ2

2M−1
if i=M,

(3.5)

since πM(τm(γ))=γπM−1(τm(γ)) and 〈πi,πM〉d=γ〈πi,πM−1〉d. Also, if i+j≤
2M−1, then

〈
Dπi,πj

〉d = 〈Dπi,πj〉

=



0 if i≤ j,
πiπj

∣∣1
−1−

〈
πi,Dπj

〉= 1−(−1)i+j if i > j.

(3.6)

4. A-stability analysis. We will analyze the A-stability properties of the

methods corresponding to approximate and discretized problems with respect

to the parameter γ for the following cases:

(1) L= 0: the completely discontinuous method introduced in [3];

(2) L = 2 with un(tn−1) = Un−1 and un(tn) = Un: the continuous method

presented in [19, 20];
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(3) L = 1 with un(tn) = Un: the discontinuous method described in [25],

and also a special case of the discontinuous α-method of [4] (αn = 1

for all n);

(4) L= 1 withun(tn)=Un−1: a special case of the discontinuousα-method

of [4] (αn = 0 for all n).

For the A-stability analysis, we consider the following form of (1.1):

ẏ(t)= λy(t), 0≤ t ≤ T ,
y(0)=y0,

(4.1)

and we solve Problem 2.1 to obtain

Un = R
(
λhn

2

)
Un−1, (4.2)

where R(z)= P(z)/Q(z) is a rational function and hn = tn−tn−1.

Definition 4.1. The region of stability of a method is the set

S = {z ∈ C | ∣∣R(z)∣∣≤ 1
}
. (4.3)

Let Re(z) be the real part of z; a method is said to be

(i) A-stable if |R(z)|< 1 whenever Re(z) < 0;

(ii) stiff A-stable if it is A-stable and limRe(z)→−∞ |R(z)| = 0.

To obtain (4.2) from Problem 2.1, let

πni(t)=πi
(

2t−(tn−1+tn
)

tn−tn−1

)
(4.4)

be the polynomial of degree i defined on In = [tn−1, tn] normalized such that

πni(tn) = 1 = (−1)iπni(tn−1). Then {πni}Ki=0 and {πnj}K+1−L
j=0 form a basis for

PK(In) and PK+1−L(In). Hence, the polynomial un(·) that we look for can be

written as un(t) =
∑K
i=0aniπni(t). Then Problem 2.1 becomes the following

problem.

Problem 4.2. Let U0 = y0, and for n = 1, . . . ,N, find an0, . . . ,anK,Un ∈ R,

such that
∑K
i=0[(λhn/2)〈πi,πj〉−〈Dπi,πj〉+1−(−1)i+j]ani =Un−(−1)jUn−1

for j = 0, . . . ,K+1−L, and un(·) is subject to L additional conditions.

In the sequel of this paper, we will use the notation RL,K(z;γ) for the ampli-

fying factor R(λhn/2), and λhn/2 is replaced by z.

4.1. The case L= 0. For the interval In, we use the quadrature formula (3.2)

withM =K+1. Consequently, 〈Dπi,πj〉d is always exact, and 〈πi,πj〉d is exact

for i+j ≤ 2K or for i+j ≤ 2K+1 if γ = 0. Hence, for the stability analysis, the

approximate problem is equivalent to the discretized problem for γ = 0.
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In this case, we have the following system:

j∑
i=0

[
1−(−1)i+j

]
ani+ 2z

2j+1
anj =Un−(−1)jUn−1 (4.5a)

for j = 0, . . . ,K, and

K∑
i=1

[
1−(−1)i+K+1]ani+ 2γz

2K+1
anK =Un−(−1)K+1Un−1, (4.5b)

which is equivalent to

Un =Un−1+2zan0 (4.6a)

and




1−z z
−z 3 z 0

. . .
. . .

. . .

−z 2i+1 z
. . .

. . .
. . .

0 −z 2K−1 z
−z [

(2K+1)+γz]







an0
an1

3
...
ani

(2i+1)
...
anK

(2K+1)




=




Un−1

0
...

0
...

0




.

(4.6b)

The computation of R0,K(z;γ) is based on the following two lemmas.

Lemma 4.3. Let Ak,k−1 = 1, Ak,k−2 = 0, and for k≤ �

Ak� =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2k+1 z
−z 2k+3 z 0

. . .
. . .

. . .

0 −z 2�−1 z
−z 2�+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.7)

Then, for k≤ �
Ak� = (2k+1)Ak+1,�+z2Ak+2,�,

Ak� = (2�+1)Ak,�−1+z2Ak,�−2.
(4.8)
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Lemma 4.4. For � ≥ k, Ak� is a polynomial in z2. More precisely,

(i) if �−k= 2n+1, then Ak� = z2n+2+pn(z2),
(ii) if �−k= 2n, then Ak� = (n+1)(2k+2n+1)z2n+pn−1(z2),

forn= 0,1,2, . . . , and where pj(z) is a polynomial of degree j in z (p−1(z)= 0).

As a direct consequence of Cramer’s rule, we have

an0 =Un−1
A1K+γzA1K−1(

A0K+γzA0K−1
)−z(A1K+γzA1K−1

) (4.9)

and from the properties of Ak�, we obtain

R0K(z;γ)=
(
A0K+γzA0K−1

)+z(A1K+γzA1K−1
)

(
A0K+γzA0K−1

)−z(A1K+γzA1K−1
) (4.10a)

or

R0K(z;γ)=
(
A0K+zA1K

)+γz(A0K−1+zA1K−1
)

(
A0K−zA1K

)+γz(A0K−1−zA1K−1
) . (4.10b)

Let

QK(z)=A0K−1+zA1K−1 (4.11)

for K = 0,1,2, . . . . From Lemma 4.4,

QK(−z)=A0K−1−zA1K−1 (4.12)

and we have the following results.

Lemma 4.5. The polynomialsQk(z) can be generated recursively byQ0(z)=
1, Q1(z)= 1+z, and for K ≥ 1

QK+1(z)= (2K+1)QK(z)+z2QK−1(z). (4.13)

Proof. The proof is a direct consequence of Lemma 4.3.

Lemma 4.6. For K ≥ 0, QK(z)=
∑K
i=0((2K−i)!/2K−i(K−i)!i!)zi.

Proof. Since QK(z) is a polynomial of degree K, let QK(z) =
∑K
i=0aKizi.

Then a00 = a10 = a11 = 1, and for K ≥ 2, we have

aKi = (2K−1)aK−1,i+aK−2,i−2, (4.14)

for i = 0, . . . ,K, considering aKj = 0 if j < 0 or j > K. Then the result follows

by induction.
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Theorem 4.7. Let PK+1(z;γ)=QK+1(z)+γzQK(z). Then

PK+1(z;γ)=
K+1∑
i=0

(
2(K+1)−i)!

2K+1−i(K+1−i)!i!
[

1+γ i
2(K+1)−i

]
zi,

R0K(z;γ)= PK+1(z;γ)
PK+1(−z;−γ) .

(4.15)

Moreover, the following limits exist:

lim
|z|→−∞

∣∣R0K(z;γ)
∣∣= 1+γ

1−γ for γ ∈ [−1,1),

lim
|z|→+∞

∣∣R0K(z;1)
∣∣=+∞ for γ = 1.

(4.16)

From the properties of Ak� of Lemma 4.3, we obtain the following expres-

sion.

Lemma 4.8. For any complex number z,

z
(
A1K+γzA1K−1

)(
A0K+γzA0K−1

)

= γ|z|2K+2+
K∑
i=0

(2i+1)zi|z|2i
∣∣Ai+1,K+γzAi+1,K−1

∣∣2,
(4.17)

where zi = z for i even and zi = z̄ for i odd.

Lemma 4.9. Let X and Y be two complex numbers, then

|X+Y |
|X−Y | < 1 iff Re(Y X̄) < 0. (4.18)

Theorem 4.10. Let L= 0 and K ≥ 0.

(i) The method corresponding to the approximate problem (4.5) is A-stable

but not stiff A-stable.

(ii) Let γ ∈ [−1,1] and M = K+1 in (3.2). Then the method corresponding

to the discretized problem (4.5) is A-stable for γ = [−1,0] and stiff A-stable for

γ =−1.

Proof. We recall that the result for the approximate problem corresponds

to the result for the discretized problem for γ = 0. For the A-stability, using

Lemma 4.9, we observe that |R0K(z;γ)|< 1 is equivalent to

Re
{
z
(
A1K+γzA1K−1

)(
A0K+γzA0K−1

)}
< 0. (4.19)

From (4.10) and the expression in Lemma 4.8, (4.19) is satisfied for Re(z) < 0

if γ ≤ 0. From the limits of Theorem 4.7, it follows that for any γ > 0, there

exists z such that Re(z) < 0 and |R0K(z;γ)|> 1. Then the result on A-stability

follows. The stiff A-stability for γ =−1 follows also from Theorem 4.7.
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Example 4.11. (i) K = 0,

R00(z;γ)= 1+(1+γ)z
1−(1−γ)z ; (4.20)

(ii) K = 1,

R01(z;γ)= 3+(3+γ)z+(1+γ)z2

3−(3−γ)z+(1−γ)z2
; (4.21)

(iii) K = 2,

R02(z;γ)= 15+(15+3γ)z+(6+3γ)z2+(1+γ)z3

15−(15−3γ)z+(6−3γ)z2−(1−γ)z3
; (4.22)

(iv) K = 3,

R03(z;γ)= 105+(105+15γ)z+(45+15γ)z2+(10+6γ)z3+(1+γ)z4

105−(105−15γ)z+(45−15γ)z2−(10−6γ)z3+(1−γ)z4
.

(4.23)

Remark 4.12. SinceR0K(z;γ)=1/R0K(−z;−γ), the stability region for−1≤
γ < 0 is the exterior of the mirror image in the imaginary axis of the corre-

sponding region for −γ. For γ = 0, the stability region is the left half-plane.

Thus, it is sufficient to describe the bounded regions for 0< γ ≤ 1.

Remark 4.13. When γ =−1,0, and 1, the ratios of Example 4.11 correspond

to the subdiagonal, diagonal, and superdiagonal element of the Padé table for

e2z, respectively. Other values of γ give intermediate rational approximations

of the exponential. These rational approximations of e2z have already been

analyzed; they appear in [7, 18, 27, 28].

Remark 4.14. The proof of the A-stability presented here seems to be new

in the sense that it uses only elementary properties of Legendre polynomials

and Gaussian quadrature rules. However, we do not obtain the stability region

in the case γ ∈ (0,1], we obtain only the fact that it is not A-stable. One way

to obtain the stability region is to use the order stars approach [21, 22].

4.2. The case L= 2: un(tn−1)=Un−1 and un(tn)=Un. In this case, we use

the quadrature formula (3.2) with M = K. Hence, 〈Dπi,πj〉d is always exact,

and 〈πi,πj〉d is exact for i+j ≤ 2K−2 or for i+j ≤ 2K−1 if γ = 0.

Then the system is

j∑
i=0

[
1−(−1)i+j

]
ani+ 2z

2j+1
anj =Un−(−1)jUn−1 (4.24a)
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for j = 0, . . . ,K−2,

K−1∑
i=0

[
1−(−1)i+K−1]ani+ 2z

2K−1
anK−1+ 2γz

2K−1
anK =Un−(−1)K−1Un−1,

(4.24b)

K∑
i=0

(−1)iani =Un−1, (4.24c)

K∑
i=0

ani =Un, (4.24d)

which is equivalent to

Un =Un−1+2zan0, (4.25a)

K∑
i=0

(−1)i+1ani =−Un−1, (4.25b)

−2zanj+(2j+1)
K∑

i=j+1

[
1−(−1)i+j

]
ani = 0, (4.25c)

for j = 0,2, . . . ,K−2, and

−zanK−1+
[
(2K−1)−γz]anK = 0. (4.25d)

Solving (4.25) for an0 using Cramer’s rule, we obtain

an0 =Un−1
A1K−1−γzA1K−2(

A0K−1−γzA0K−2
)−z(A1K−1−γzA1K−2

) ,

R2K(z;γ)=
(
A0K−1−γzA0K−2

)+z(A1K−1−γzA1K−2
)

(
A0K−1−γzA0K−2

)−z(A1K−1−γzA1K−2
) ,

(4.26)

and the next result follows.

Theorem 4.15. For any γ ∈ [−1,1],

R2,K+1(z;γ)= R0K(z;−γ). (4.27)

Theorem 4.16. Let L= 2, un(tn)=Un, un(tn−1)=Un−1, and K ≥ 1.

(1) The method corresponding to the approximate problem (4.24a) is A-stable

but not stiff A-stable.

(2) Let γ ∈ [−1,1] and M =K in (3.2). Then the method corresponding to the

discretized problem (4.24a) is A-stable for γ ∈ [0,1] and stiff A-stable for γ = 1.

4.3. The case L = 1: un(tn) = Un. In this case, using the quadrature rule

(3.2) with M = K + 1, any term of the forms 〈πi,πj〉d or 〈Dπi,πj〉d is inte-

grated exactly for i,j ≤K. Hence, the approximate problem and the discretized

problems have the same A-stability property.
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The system is

j∑
i=0

[
1−(−1)i+j

]
ani+ 2z

2j+1
anj =Un−(−1)jUn−1 (4.28a)

for j = 0, . . . ,K, and

K∑
i=0

ani =Un. (4.28b)

But, this system is equivalent to

Un =Un−1+2zan0, (4.29a)

(1−z)an0+ z
3
an1 =Un−1, (4.29b)

− z
2j−1

anj−1+anj+ z
2j+1

anj+1 = 0, (4.29c)

for j = 1, . . . ,K−1, and

− z
2K−1

anK−1+
(

1− z
2K+1

)
anK = 0. (4.29d)

Hence,

an0 =Un−1
A1K−zA1K−1(

A0K−zA0K−1
)−z(A1k−zA1K−1

) ,

Rr1K(z;γ)=
(
A0K−zA0K−1

)+z(A1K−zA1K−1
)

(
A0K−zA0K−1

)−z(A1K−zA1K−1
) ,

(4.30)

and we have the next result.

Theorem 4.17. For any γ ∈ [−1,1],

Rr1K(z;γ)= R0K(z;−1), (4.31)

and the methods corresponding to the approximate and the discretized problems

(4.28) are stiff A-stable.

4.4. The case L= 1: un(tn−1)=Un−1. In this case, we have

j∑
i=0

[
1−(−1)i+j

]
ani+ 2z

2j+1
anj =Un−(−1)jUn−1 (4.32a)

for j = 0, . . . ,K, and

K∑
i=0

(−1)iani =Un−1. (4.32b)
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This system is equivalent to

Un =Un−1+2zan0, (4.33a)

(1−z)an0+ z
3
an1 =Un−1, (4.33b)

− z
2j−1

anj−1+anj+ z
2j+1

anj+1 = 0, (4.33c)

for j = 1, . . . ,K−1, and

− z
2K−1

anK−1+
(

1+ z
2K+1

)
anK = 0. (4.33d)

Then

an0 =Un−1
A1K+zA1K−1(

A0K+zA0K−1
)−z(A1k+zA1K−1

) ,

R�1K(z;γ)=
(
A0K+zA0K−1

)+z(A1K+zA1K−1
)

(
A0K+zA0K−1

)−z(A1K+zA1K−1
) ,

(4.34)

and we obtain the last result.

Theorem 4.18. For any γ ∈ [−1,1],

R�1K(z;γ)= R0K(z;1), (4.35)

and the methods corresponding to the approximate and the discretized problems

(4.32) are not A-stable.
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