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We investigate a boundary value problem for a nonlinear evolution biharmonic
operator motivated by flexion of fully clamped beam in two different physical
situations. In the first, the supports of the ends of the beam are fixed and in the
second one, the supports of the ends of the beam have small displacements.
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1. Introduction. In this paper, we investigate existence and asymptotic be-

havior for a boundary value problem for the operator

�u= a(x)u′′ +∆(b(x)∆u)−M̂(
x,t,

∫
D

∣∣∇u(x,t)∣∣2dx
)
∆u, (1.1)

motivated by the problem of vertical flexion of fully clamped beams. Our main

goal in this paper is to study the properties previously mentioned when the set

D is a time-dependent nonempty bounded subset Ωt of Rn, which means that

the supports of the extremes of the beam have small displacements. Note that

the sets Ωt , where u=u(x,t) is defined, change with the time, which yields a

noncylindrical domain

Q̂=
⋃

0≤t<∞
Ωt×{t}, (1.2)

where we formulate the moving boundary value problem. To reach these ob-

jectives, we initially study a mixed problem associated with the operator �u
when the set D is considered a nonempty bounded open subset Ω of Rn, that

is, when the supports of the extremes of the beam are fixed.

The method we will employ to solve the initial value problem with moving

boundary was idealized by Lions [8], see also Lions [9, Chapter 3, page 413] for

the operator of the type u→ u′′ −∆u+|u|ρu. It consists in transforming the

boundary value problem formulated for the operator �u in a noncylindrical

domain Q̂ into a cylindrical problem for a perturbed operator obtained from
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�u, whose perturbed operator depends on a parameter 0 < ε < 1 destined to

tend to zero. This method was idealized and called penalty method by Lions

[8]. It has its origin in the calculus of variations with vinculums, see Lions [9,

Chapter 3].

The penalty method was also employed by Cooper-Bardos [2] for the same

operator u → u′′ −∆u+ |u|ρu for noncylindrical domains Q̂, but which are

“time like” instead of increasing as in Lions [8]. In Medeiros [11, 12], it is con-

sidered the operator u → u′′ −∆u+ F(u) by penalty method in increasing

domains, see also Strauss [6], Cooper-Medeiros [3], Inoue [7], Nakao-Narazaki

[14], and Rabello [5]. We employ certain techniques for cylindrical domains as

in Hosoya and Yamada [4].

The penalty method reduces the noncylindrical problem into a cylindri-

cal one. For this reason, we open Section 3, studying with certain details, the

boundary value problem for the biharmonic evolution operator in a cylinder

Q. In Section 2, we fix part of the notations.

2. Notations. The scalar product and norm in L2(Ω) and H1
0(Ω) are, re-

spectively, represented by (·,·), ((·,·)), | · |, and ‖ · ‖, where Ω is an open

bounded set of Rn. We represent by |u(x,t)| the absolute value of the real

number u(x,t) and |∇u(x,t)| the norm inRn of the vector∇u(x,t). When we

write |u(t)|, |∇u(t)|, |∆u(t)|, and ‖u(t)‖, we mean the L2(Ω) norm ofu(x,t),
∇u(x,t), and ∆u(x,t) and the H1

0(Ω) norm of u(x,t). Let (x,t) be a point of

Rn×[0,∞[. Thus, we consider the noncylindrical domains

Q̂⊂Rn×]0,∞[ or Q̂⊂Rn×]0,T [, with T > 0, (2.1)

whereΩs represents the sections of Q̂∩{t = s}, for 0≤ s ≤ T , Γs is the boundary

of Ωs , and the lateral boundary of Q̂ is given by Σs =
⋃

0<s<T Γs . The boundary

of Q̂ is given by ∂Q̂=Ω0∪ΣT∪ΩT . We suppose thatΩ0 ⊂Ω and Q̂ is contained

in a cylinderQ=Ω×]0,T [, for 0< t < T . In Section 4, we will fix a fundamental

regularity condition on Q̂.

The spaces L2(Ωt),H1
0(Ωt), andH2(Ωt) are identified to subspaces of L2(Ω),

H1
0(Ω), andH2(Ω). Thus, we define Lp(0,T ;L2(Ωt)), for 1≤ p ≤∞, as the space

of functions v ∈ L2(0,T ;L2(Ωt)) such that v(t) ∈ L2(Ωt) almost everywhere.

By this method we also define Lp(0,T ;H1
0(Ωt)) and Lp(0,T ;H2

0(Ωt)).
The real function M(x,t,λ) is defined by (x,t) ∈ Q and 0 < λ < ∞. The

regularity on M will be fixed in Section 3. Finally, by M̂(x,t,λ) we represent

the restriction of M(x,t,λ) to the noncylindrical domain Q̂.

3. Cylindrical domain

3.1. Weak solutions. According to the notation of Section 2, we represent

by Q the cylinder Ω × ]0,T [ of Rn, for T > 0, with the lateral boundary
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Σ= Γ ×]0,T [. In these conditions, we consider the boundary value problem

a(x)u′′(x,t)+∆(b(x)∆u(x,t))−M(
x,t,

∫
Ω

∣∣∇u(x,t)∣∣2dx
)
∆u(x,t)

+δu′(x,t)= 0 in Q,

u(x,t)= ∂u
∂ν
(x,t)= 0 on Σ,

u(x,0)=u0(x), u′(x,0)=u1(x) in Ω,

(3.1)

where ν is the exterior unit normal vector to Σ, ∂/∂ν the normal derivative,

and δ a positive real parameter. By u = u(x,t) we represent a real function

defined for (x,t)∈Q.

On the functions of system (3.1), we assume the hypothesis

a(x),b(x)∈ L∞(Ω), with 0<a0 <a(x) < 1, 0< b0 < b(x) < b1. (3.2)

The functionM(x,t,λ) is a C1-real function in the variables x ∈Ω, t ≥ 0, λ≥ 0,

where

M(x,t,λ)≥ 0,
∣∣∣∣∂M∂λ

∣∣∣∣≤ C1|λ|p−1,

∣∣∇xM∣∣≤ C2|λ|p,
∣∣∣∣∂M∂t

∣∣∣∣≤ C3|λ|p for p ≥ 1.
(3.3)

Definition 3.1. A weak solution of the boundary value problem (3.1) is

called a real function u=u(x,t), defined for (x,t)∈Q such that

u∈ L2(0,T ;H2
0(Ω)

)
, u′ ∈ L2(0,T ;L2(Ω)

)
, for T > 0, (3.4)

satisfying the identity integral

−
∫ T

0

∫
Ω
a(x)u′(x,t)v(x)θ′(t)dxdt

+
∫ T

0

∫
Ω
b(x)∆u(x,t)∆v(x)θ(t)dxdt

+
∫ T

0

∫
Ω
M
(
x,t,

∥∥u(t)∥∥2)∇u(x,t)·∇v(x)θ(t)dxdt
+
∫ T

0

∫
Ω
∇xM

(
x,t,

∥∥u(t)∥∥2)·∇u(x,t)v(x)θ(t)dxdt
+δ

∫ T
0

∫
Ω
u′(x,t)v(x)θ(t)dxdt = 0 ∀v ∈H2

0(Ω), θ ∈�(0,T ),

(3.5)

and the initial conditions

u(x,0)=u0(x), u′(x,0)=u1(x). (3.6)

Note that �(0,T ) is the space of C∞-functions with compact support in

]0,T [.
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Theorem 3.2. Supposing u0 ∈H2
0(Ω), u1 ∈ L2(Ω), and

C6Hp(0) <
δb0

10
, (3.7)

where the function H(t) and the constant C6 are defined in (3.21) and (3.31),

respectively, then there exists only one real function u = u(x,t) defined for

all (x,t) ∈ Q, solution of the boundary value problem (3.1) in the sense of

Definition 3.1.

Proof. We employ Faedo-Galerkin approximate method with a Hilbertian

basis (wj)j∈N of the Sobolev space H2
0(Ω) (cf. Brezis [1]). If Vm is the subspace

ofH2
0(Ω) spanned by them first vectors {w1,w2,w3, . . . ,wn}, we will formulate

the approximate problem as it proceeds.

Find a function

um(x,t)=
m∑
j=1

gjm(t)wj(x) (3.8)

in Vm solution of the following initial value problem:(
au′′m(t),w

)+(
b∆um(t),∆w

)+(
M
(
t,
∥∥u(t)∥∥2

)
∇um(t),∇w

)
+
(
∇xM

(
t,
∥∥um(t)∥∥2

)
·∇um(t),w

)
+δ(u′m(t),w)= 0,

um(x,0)=u0m(x) �→u0(x) in H2
0(Ω),

u′m(x,0)=u1m(x) �→u1(x) in L2(Ω),

(3.9)

for all w ∈ Vm. There exists a local solution um = um(x,t) of (3.9) on the

interval [0, tm[. The estimates that follow permit to extend the solution um to

the interval [0,T [ for all T > 0 and to take the limit in (3.9).

Henceforth, in order to make the notation better, we will write u instead of

um.

Estimate 1. Setting w =u′ into (3.9) and using the hypothesis (3.3) yield

(
au′′(t),u′(t)

)= 1
2
d
dt

∫
Ω
a(x)

∣∣u′(x,t)∣∣2dx, (3.10)

(
b∆u(t),∆u′(t)

)= 1
2
d
dt

∫
Ω
b(x)

∣∣∆u(x,t)∣∣2dx, (3.11)∫
Ω
M
(
x,t,

∥∥u(t)∥∥2
) d
dt

∣∣∇u(x,t)∣∣2dx

= d
dt

[∫
Ω
M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2dx

]
−
∫
Ω

∂
∂t
M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2dx

−2
[∫

Ω

∂
∂λ
M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2dx

](∇u′(t),∇u(t)),
(3.12)
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Ω

[
∇xM

(
x,t,

∥∥u(t)∥∥2
)
·∇u(x,t)

]
u′(x,t)dx

∣∣∣∣
≤ C2

∥∥u(t)∥∥2p
∫
Ω

∣∣∇u(x,t)∣∣∣∣u′(x,t)∣∣dx ≤ C2

∥∥u(t)∥∥2p+1∣∣u′(t)∣∣, (3.13)

where we have used in the last step of (3.13) both Cauchy-Schwarz and Sobolev

inequalities. The two last integrals of the right-hand side of (3.12) can be esti-

mated by

∣∣∣∣∫
Ω

∂
∂λ
M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2dx

∣∣∣∣≤ C1

∥∥u(t)∥∥2p−2
∫
Ω

∣∣∇u(x,t)∣∣2dx,

(3.14)∣∣∣∣∫
Ω

∂
∂t
M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2dx

∣∣∣∣≤ C3

∥∥u(t)∥∥2p
∫
Ω

∣∣∇u(x,t)∣∣2dx.

(3.15)

Thus, after setting w = u′ into (3.9) and considering the expressions from

(3.10) to (3.15), we have

1
2
d
dt

[∫
Ω

(
a(x)

∣∣u′(x,t)∣∣2+b(x)∣∣∆u(x,t)∣∣2

+2M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2

)
dx

]
+δ∣∣u′(t)∣∣2

≤ C1

∥∥u(t)∥∥2p∣∣∆u(t)∣∣∣∣u′(t)∣∣+C2

∥∥u(t)∥∥2p+1∣∣u′(t)∣∣+C3

∥∥u(t)∥∥2p+2

≤ C4

∣∣∆u(t)∣∣2p+1∣∣u′(t)∣∣+C3

∣∣∆u(t)∣∣2p+2,
(3.16)

where we have used the inequality ‖u(t)‖2 ≤ C0|∆u(t)|2 for all u∈H2
0(Ω) in

the last step of (3.16).

Estimate 2. Setting w =u into (3.9), we get

(
au′′(t),u(t)

)= d
dt

∫
Ω
a(x)u′(x,t)u(x,t)dx

−
∫
Ω
a(x)

∣∣u′(x,t)∣∣2dx,
(3.17)

∣∣∣∣∫
Ω

[
∇xM

(
x,t,

∥∥u(t)∥∥2
)
·∇u(x,t)

]
u(x,t)dx

∣∣∣∣
≤ C2

∥∥u(t)∥∥2p
∫
Ω

∣∣∇u(x,t)∣∣∣∣u(x,t)∣∣dx
≤ C2

∥∥u(t)∥∥2p+1∣∣u(t)∣∣≤ C5

∣∣∆u(t)∣∣2p+2,

(3.18)

where we have used in (3.18) the hypothesis (3.3), both Cauchy-Schwarz and

Sobolev’s inequalities and ‖u(t)‖2 ≤ C0|∆u(t)|2 for all u∈H2
0(Ω).
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Thus, after settingw =u into (3.9) and taking (3.17) and (3.18) into account,

we obtain

d
dt

∫
Ω
a(x)u′(x,t)u(x,t)dx−

∫
Ω
a(x)

∣∣u′(x,t)∣∣2dx

+
∫
Ω

(
b(x)

∣∣∆u(x,t)∣∣2+M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2

)
dx

+ δ
2
d
dt

∫
Ω

∣∣u(x,t)∣∣2dx ≤ C5

∣∣∆u(t)∣∣2p+2.

(3.19)

Multiplying (3.19) by δ/4 and summing to (3.16) yield

1
2
d
dt

[∫
Ω

(
a(x)

∣∣u′(x,t)∣∣2+b(x)∣∣∆u(x,t)∣∣2+ δ
2
a(x)u′(x,t)u(x,t)

+ δ
2

4

∣∣u(x,t)∣∣2+2M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2

)
dx

]

+δ
∫
Ω

∣∣u′(x,t)∣∣2dx+ δ
4

∫
Ω

(
−a(x)∣∣u′(x,t)∣∣2+b(x)∣∣∆u(x,t)∣∣2

+M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2

)
dx

≤ C4

∣∣∆u(t)∣∣2p+1∣∣u′(t)∣∣+C3

∣∣∆u(t)∣∣2p+2+ C5δ
4

∣∣∆u(t)∣∣2p+2.
(3.20)

Denoting by H(t)=H(u(t)) the function

H(t)= 1
2

∫
Ω

(
a(x)

∣∣u′(x,t)∣∣2+b(x)∣∣∆u(x,t)∣∣2

+ δ
2
a(x)u′(x,t)u(x,t)+ δ

2

4

∣∣u(x,t)∣∣2

+2M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2

)
dx

(3.21)

and using the hypothesis a(x)≤ 1, we get from usual inequality that

∣∣∣∣δ4
∫
Ω
a(x)u′(x,t)u(x,t)

∣∣∣∣≤ δ4
∫
Ω
a(x)

∣∣u′(x,t)∣∣∣∣u(x,t)∣∣dx
≤ 1

4

∫
Ω
a(x)

∣∣u′(x,t)∣∣2dx+ δ
2

16

∫
Ω

∣∣u(x,t)∣∣2dx.

(3.22)

Hence we have

δ
4

∫
Ω
a(x)u′(x,t)u(x,t)≥−1

4

∫
Ω
a(x)

∣∣u′(x,t)∣∣2dx− δ
2

16

∫
Ω

∣∣u(x,t)∣∣2dx.

(3.23)



REMARKS ON NONLINEAR BIHARMONIC EVOLUTION EQUATION 2041

Substituting (3.23) into (3.21), we obtain

H(t)≥
∫
Ω

(
1
4
a(x)

∣∣u′(x,t)∣∣2+ 1
2
b(x)

∣∣∆u(x,t)∣∣2

+ δ
2

16

∣∣u(x,t)∣∣2+2M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2

)
dx

≥min
{

1
4
a0,

1
2
b0

}∫
Ω

(∣∣u′(x,t)∣∣2+∣∣∆u(x,t)∣∣2
)
dx ≥ 0,

(3.24)

where we have used in the last step of (3.24) the hypotheses (3.2) and (3.3).

Modifying both the sixth and the seventh terms of the left-hand side of (3.20)

and using the hypothesis (3.2), we get

δ
∫
Ω

(∣∣u′(x,t)∣∣2− 1
4
a(x)

∣∣u′(x,t)∣∣2
)
dx

≥ δ
4

∫
Ω

(
1−a(x))∣∣u′(x,t)∣∣2dx ≥ 0.

(3.25)

Thus, from (3.20), (3.21), (3.25), and hypothesis (3.2), we obtain

d
dt
H(t)+∣∣∆u(t)∣∣2

(
δb0

8
−C3

∣∣∆u(t)∣∣2p−C4

∣∣∆u(t)∣∣2p−1∣∣u′(t)∣∣
− C5δ

4

∣∣∆u(t)∣∣2p
)
+ δb0

8

∣∣∆u(t)∣∣2

+ 3δ
4

∣∣u′(t)∣∣2+ δ
4

∫
Ω
M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2dx ≤ 0.

(3.26)

We define γ(t)= γ(u(t)) by

γ(t)= C3

∣∣∆u(t)∣∣2p+C4

∣∣∆u(t)∣∣2p−1∣∣u′(t)∣∣+ C5δ
4

∣∣∆u(t)∣∣2p. (3.27)

Thus, (3.26) and (3.27) yield

d
dt
H(t)+∣∣∆u(t)∣∣2

(
δb0

8
−γ(t)

)
≤ 0. (3.28)

From (3.24), we can write

∣∣∆u(t)∣∣≤√
2
b0

√
H(t),

∣∣u′(t)∣∣≤ 2√a0

√
H(t). (3.29)

Then, from (3.27) and (3.29), we obtain

γ(t)≤ C6Hp(t) ∀t ≥ 0, (3.30)

where

C6 = 2
b0
+C4

(
2
b0

)p−1/2(
2√
a0

)
+ C0δ

4
. (3.31)
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Our next task is to show that H(t) is bounded for all t ≥ 0. In fact, if γ(t)≤
δb0/8 for all t ≥ 0, it follows from (3.28) that (d/dt)H(t) ≤ 0, and hence,

H(t) ≤ H(0) for all t ≥ 0. This gives global estimates for the approximate

solutions, which is sufficient to take the limits in system (3.9).

Otherwise we have γ(t) > δb0/8 for some t > 0, and thus, we will prove that

this hypothesis imply a contradiction. In fact, from (3.7) and (3.30), γ(0) <
δb0/10. As the function γ(t) is continuous for t > 0, there exists t∗ > 0 such

that t∗ =min{t > 0; γ(t)= δb0/8}. Thus, we have

γ(t) <
δb0

8
if 0≤ t < t∗, (3.32a)

γ
(
t∗

)= δb0

8
. (3.32b)

From (3.28) and (3.32a), we have H(t) ≤ H(0) for all 0 ≤ t ≤ t∗. Therefore,

H(t∗)≤H(0). From (3.7) and (3.30), we have

γ
(
t∗

)≤ C6Hp(t∗)≤ C6Hp(0) <
δb0

10
<
δb0

8
, (3.33)

which is a contradiction with (3.32b). It then follows that

0< γ(t) <
δb0

8
∀t ≥ 0, (3.34)

H(t)≤H(0)≤
(
δb0

10C3

)1/p
∀0≤ t, including when t �→∞. (3.35)

Hence, returning to the notation u=um(x,t) we obtain from (3.24) the global

estimate in t for um(x,t) given by

∣∣u′m(t)∣∣2+∣∣∆um(t)∣∣2 ≤ C7 ∀t ≥ 0. (3.36)

Observing that ‖um‖2 ≤ C0|∆um|2 for all um ∈H2
0(Ω), and from Aubin-Lions’

theorem (cf. Lions [9]), we obtain a subsequence, still represented by (um)m∈N,

such that um → u strongly in L2(0,T ;H1
0(Ω)) and almost everywhere in Q.

Therefore, we can take the limit asm→∞ for this subsequence in the approx-

imate problem (3.9) and obtain the proof of Theorem 3.2.

3.2. Exponential decay. Our goal is to show that the total energy of system

(3.1) decays exponentially as t→+∞. Thus, we will initially show the exponen-

tial decay of the energy associated with the approximate solutions um. The

estimates obtained in (3.36) allows us to conclude the same result for the so-

lutions u. Here, we also write u instead of um. Thus, we have the following

theorem.
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Theorem 3.3. Assuming all the hypotheses of Theorem 3.2, then the energy

E(t) of system (3.1) satisfies

E(t)≤ 2K4 exp
{−K3t

} ∀t ≥ 0, (3.37)

where

E(t)= 1
2

∫
Ω

(
a(x)

∣∣u′(x,t)∣∣2+b(x)∣∣∆u(x,t)∣∣2

+2M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2

)
dx,

(3.38)

K3 and K4 are real positive constants defined in (3.43) and (3.44), respectively.

Proof. From (3.26), (3.27), and (3.34), we have

d
dt
H(t)+ δ

4

∫
Ω

(∣∣u′(x,t)∣∣2+ b0

2

∣∣∆u(x,t)∣∣2

+M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2

)
dx ≤ 0.

(3.39)

Denoting by K1 = (δ/4)min{1,b0/2}, we can write, from (3.39),

d
dt
H(t)+K1

∫
Ω

(∣∣u′(x,t)∣∣2+∣∣∆u(x,t)∣∣2

+M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2

)
dx ≤ 0.

(3.40)

On the other hand, from the definition of H in (3.21), hypothesis (3.2), in-

equality |u(t)|2 ≤ C0|∆u(t)|2 for all H2
0(Ω), and usual inequalities, we obtain

H(t)≤ 1
2

∫
Ω

(∣∣u′(x,t)∣∣2+b1

∣∣∆u(x,t)∣∣2+ δ
4

∣∣u(x,t)∣∣2

+δ
4

∣∣u′(x,t)∣∣2+δ
2

4

∣∣u(x,t)∣∣2+2M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2

)
dx

= 1
2

∫
Ω

[(
1+ δ

4

)∣∣u′(x,t)∣∣2+
(
b1+ δC0

4
+ δ

2C0

4

)∣∣∆u(x,t)∣∣2

+2M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2

]
dx.

(3.41)

Hence, denoting by K2 = (1/2)max{1+δ/4,b1+δC0/4+δ2C0/4,2}, we get

1
K2
H(t)≤

∫
Ω

(∣∣u′(x,t)∣∣2+∣∣∆u(x,t)∣∣2

+M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2

)
dx.

(3.42)

Thus, from (3.40) and (3.42), we can write

d
dt
H(t)+K3H(t)≤ 0, where K3 = K1

K2
. (3.43)
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As u0 and u1 belong to H2
0(Ω) and L2(Ω), respectively, then, from (3.43), we

have

H(t)≤K4 exp
{−K3t

} ∀t ≥ 0. (3.44)

From (3.44), we can conclude inequality (3.37). In fact, from the first inequality

in (3.24), we obtain

2H(t)≥ 1
2

∫
Ω

(
a(x)

∣∣u′(x,t)∣∣2+2b(x)
∣∣∆u(x,t)∣∣2

+ δ
2

4

∣∣u(x,t)∣∣2+8M
(
x,t,

∥∥u(t)∥∥2
)∣∣∇u(x,t)∣∣2

)
dx ∀t ≥ 0.

(3.45)

Hence, observing the definition of E(t) in (3.38) and that (δ2/4)|u(x,t)|2 ≥ 0,

we have

2H(t) > E(t) ∀t ≥ 0. (3.46)

Finally, from (3.44) and (3.46), we get the desired proof of Theorem 3.3.

Remark 3.4. As said before in Section 1, our main objective in this work is

the study presented in Section 4. Thus, the results of Theorems 3.2 and 3.3 are

sufficient to reach such objectives. However, it is not difficult to show that if

we assume more restrictions, besides (3.2) and (3.3), about a(x), b(x), ∂M/∂t,
and ∂M/∂λ, we obtain strong solutions for the boundary value problem (3.1).

4. Noncylindrical domains

4.1. Weak solutions. In the conditions of the notations of Section 2, we look

for a real function u = u(x,t) defined for all (x,t) ∈ Q̂ solving the boundary

value problem

a(x)u′′(x,t)+∆(b(x)∆u(x,t))
−M̂

(
x,t,

∫
Ωt

∣∣∇u(x,t)∣∣2dx
)
∆u(x,t)+δu′(x,t)= 0 in Q̂,

u(x,t)= ∂u
∂ν
(x,t)= 0 on Σ̂,

u(x,0)=u0(x), u′(x,0)=u1(x) in Ω0.

(4.1)

We consider M̂(x,t,λ) as the restriction of M(x,t,λ) to (x,t) ∈ Q̂ and λ > 0,

where M(x,t,λ) is the function defined on the cylinder Q = Ω×]0,T [ which

contains Q̂.

As was said in Section 1, we are going to study the noncylindrical bound-

ary value problem (4.1) by means of the penalty method idealized by Lions

[8]. Thus, we assume certain hypotheses on the domain Q̂ to apply the Lions’
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method. One condition is about the geometry of Q̂ and the other is on the reg-

ularity of its boundary Σ̂. Therefore, we consider the sections Ωt = Q̂∩{t = s}
to be increasing with s. This condition means that if s1 ≤ s2, the projections of

Ωs1 , Ωs2 on the hyperplane t = 0 are increasing, that is,

proj|t=0Ωs1 ⊆ proj|t=0Ωs2 if s1 ≤ s2. (4.2)

As we have assumed in Section 2 that Q̂⊂Q=Ω×]0,T [, we need the following

regularity condition:

(RC) if v ∈ H2
0(Ω), v(x,t) = ∂v/∂xi = 0 a.e. in Ω−Ωt , for i = 1,2, . . . ,n and

for almost all t ∈]0,T [, then v ∈H2
0(Ωt).

Note that v ∈H2
0(Ωt) is the restriction of v to Ωt .

Remark 4.1. In the original idea of Lions [8], he wanted to solve the bound-

ary value problem for the operator

u �→u′′ −∆u+|u|ρu (4.3)

in a noncylindrical domain Q̂. Thus he needed a regularity similar to (RC) for

H1
0(Ω). Then, he supposed in [8] that if v ∈ H1

0(Ω) and v(x,t) = 0 in Ω−Ωt ,
then v ∈H1

0(Ωt). One example of this type of boundary is the case when Γt =
∂Ωt is of class C1 almost everywhere in ]0,T [. In fact, in this case, we can apply

trace theorem of order zero, that is, the trace γ0 : H1(Ω−Ωt) → H1/2(Γ ∪ Γt)
(cf. [10, 13]). Note that Γ ∪Γt is the boundary of Ω−Ωt . We also have, by trace

theorem, ∥∥γ0v
∥∥
H1/2(Γ∪Γt) ≤ C‖v‖H1(Ω−Ωt). (4.4)

As v = 0 almost everywhere in Ω−Ωt , and γ0v = 0 on Γ because v ∈ H1
0(Ω),

it follows from the inequality above that γ0v = 0 on Γt , which proves that

v ∈H1(Ωt) and γ0v = 0 on Γt , that is, v ∈H1
0(Ωt). For the case v ∈H2

0(Ω),

v(x,t)= ∂v
∂xi

= 0 a.e. in Ω−Ωt , (4.5)

for i = 1,2, . . . ,n. If we suppose Γt to be of class C2, we can employ the trace

theorem of order two, that is, {γ0,γ1}, and obtain v ∈H2
0(Ωt). Another method

is to observe that ∂u/∂xi ∈H1
0(Ω) and ∂u/∂xi = 0 almost everywhere inΩ−Ωt

for i= 1,2, . . . ,n and apply the trace γ0 as done above.

Remark 4.2. Note that a(x) and b(x) in (4.1) are restrictions to Q̂ of

a(x) and b(x) defined in Section 3 satisfying hypothesis (3.2). Note also that

M̂(x,t,λ) satisfies hypothesis (3.3).

Due to the characteristics of the penalty method, it is only possible to ob-

tain weak solutions for problem (4.1), which means solutions for (4.1) in the

following sense.
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Definition 4.3. A weak solution for the initial boundary value problem

(4.1) is a real function u=u(x,t), defined for (x,t)∈ Q̂ with

u∈ L2(0,T ;H2
0

(
Ωt

))
, u′ ∈ L2(0,T ;L2(Ωt)), for T > 0, (4.6)

satisfying the integral identity

−
∫ T

0

∫
Ωt
a(x)u′(x,t)φ′(x,t)dxdt

+
∫ T

0

∫
Ωt
b(x)∆u(x,t)∆φ(x,t)dxdt

+
∫ T

0

∫
Ωt
M
(
x,t,

∫
Ωt

∣∣∇u(x,t)∣∣2dx
)
∇u(x,t)·∇φ(x,t)dxdt

+
∫ T

0

∫
Ωt

[
∇xM

(
x,t,

∫
Ωt

∣∣∇u(x,t)∣∣2dx
)
·∇u(x,t)

]
φ(x,t)dxdt

+δ
∫ T

0

∫
Ωt
u′(x,t)φ(x,t)dxdt = 0 ∀φ such that

φ∈ L2(0,T ;H2
0

(
Ωt

))
, φ′ ∈ L2(0,T ;L2(Ωt)) with φ(x,0)=φ(x,T)= 0,

(4.7)

and the initial conditions

u(x,0)=u0(x), u′(x,0)=u1(x) for x ∈Ω0. (4.8)

Theorem 4.4. Suppose u0 ∈H2
0(Ω0), u1 ∈ L2(Ω0), and

C6Hp(0) <
δb0

10
, (4.9)

where the function H(t) and the constant C6 are defined in (3.24) and (3.36),

respectively. Then there exists at least one function u : Q̂→R as a weak solution

of the boundary value problem (4.1) in the sense of Definition 4.3.

Proof. We employ the penalty method to transform the noncylindrical

problem in Q̂ into a cylindrical problem in Q and then we use the Faedo-

Galerkin method as done in Section 3 with the necessary modifications.

Defining the function

χ(x,t)=
1 in Ω×]0,T [\Q̂∪{

Ω0×{0}
}
,

0 in Q̂∪{
Ω0×{0}

}
,

(4.10)

we have χ ∈ L∞(Ω×]0,T [).
Denoting by ũ0, ũ1 the extension of u0, u1 to Ω defined zero outside of

Ω−Ω0, we have ũ0 ∈ H2
0(Ω) and ũ1 ∈ L2(Ω). Thus, we define the following

penalized problem.
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Given ε > 0, we look for uε =uε(x,t) in the class

uε ∈ L2(0,T ;H2
0(Ω)

)
, u′ε ∈ L2(0,T ;L2(Ω)

)
for T > 0, (4.11)

satisfying the integral identity

−
∫
Q
a(x)u′ε(x,t)φ′(x,t)dxdt+

∫
Q
b(x)∆uε(x,t)∆φ(x,t)dxdt

+
∫
Q
M
(
x,t,

∥∥uε(t)∥∥2
)
∇uε(x,t)·∇φ(x,t)dxdt

+
∫
Q

[
∇xM

(
x,t,

∥∥uε(t)∥∥2
)
·∇uε(x,t)

]
φ(x,t)dxdt

+δ
∫
Q
u′ε(x,t)φ(x,t)dxdt

+ 1
ε

∫
Q
χ(x,t)u′ε(x,t)φ(x,t)dxdt

+ 1
ε

∫
Q
χ(x,t)∇uε(x,t)·∇φ(x,t)dxdt = 0

(4.12)

for all φ such that φ ∈ L2(0,T ;H2
0(Ωt)), φ′ ∈ L2(0,T ;L2(Ωt)) with φ(x,0) =

φ(x,T)= 0, and the initial conditions

uε(x,0)= ũ0(x), u′ε(x,0)= ũ1(x) for x ∈Ω0. (4.13)

The penalized problem is cylindrical. Then we are in the case of Section 3. In

fact, we consider a Hilbertian basis with vectors (wj)j∈N inH2
0(Ω) (cf. [1]), such

that w1 = ũ0. By using the same notation of Section 3 we look for uεm ∈ Vm,

for ε fixed, such that

∫
Ω
a(x)u′′εm(x,t)w(x)dx+

∫
Ω
b(x)∆uεm(x,t)∆w(x)dx

+
∫
Ω
M
(
x,t,

∥∥uεm(t)∥∥2
)
∇uεm(x,t)·∇w(x)dx

+
∫
Ω

[
∇xM

(
x,t,

∥∥uεm(t)∥∥2
)
·∇uεm(x,t)

]
w(x)dx

+δ
∫
Ω
u′εm(x,t)w(x)dx+

1
ε

∫
Ω
χ(x,t)u′εm(x,t)w(x)dx

+ 1
ε

∫
Ω
χ(x,t)∇uεm(x,t)·∇w(x)dx = 0 ∀w ∈ Vm,

(4.14)

uεm(x,0)= ũ0, u′εm(x,0)=u1m �→ ũ1 in L2(Ω). (4.15)

The initial value problem (4.14) and (4.15) has a local solution uεm defined

on the interval [0, tm[ for each ε > 0 fixed. The extension to the whole interval
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[0,T [ for each T > 0 depends on the estimates that we will find below. These

estimates are also sufficient to pass to the limits as m → ∞ and ε → 0. The

computations are those that were done in Section 3, however, we will make

a summary. In fact, initially, we set both w = u′εm(x,t) and w = uεm(x,t)
into (4.14). After that, multiplying the second estimate, which comes from the

substitution of w by uεm(x,t), by δ/4 and proceeding adding to the first one

yields

d
dt
H(t)+∣∣∆uεm(t)∣∣2

(
δb0

8
−C3

∣∣∆uεm(t)∣∣2p

−C4

∣∣∆uεm(t)∣∣2p−1∣∣u′εm(t)∣∣− C5δ
4

∣∣∆uεm(t)∣∣2p
)

+ 1
ε

∫
Ω
χ(x,t)

∣∣u′εm(x,t)∣∣2dx

+ 1
ε

∫
Ω
χ(x,t)u′εm(x,t)uεm(x,t)dx

+ 1
ε

∫
Ω
χ(x,t)∇u′εm(x,t)·∇uεm(x,t)dx

+ 1
ε

∫
Ω
χ(x,t)

∣∣∇uεm(x,t)∣∣2dx+ δb0

8

∣∣∆uεm(t)∣∣2

+ 3δ
4

∣∣u′εm(t)∣∣2+ δ
4

∫
Ω
M
(
x,t,

∥∥uεm(t)∥∥2
)∣∣∇uεm(x,t)∣∣2dx ≤ 0,

(4.16)

where H(t)=H(uεm(t)) is defined in (3.24) with uεm(t) in the place of u(t),
and hence, we have from (3.26) that

H(t)≥ 1
4

∫
Ω

(
a(x)

∣∣u′εm(x,t)∣∣2+ 1
2
b(x)

∣∣∆uεm(x,t)∣∣2

+ δ
2

16

∣∣uεm(x,t)∣∣2+M
(
x,t,

∥∥uεm(t)∥∥2
)∣∣∇uεm(x,t)∣∣2

)
dx ≥ 0.

(4.17)

As in Section 3, we define

γ(t)= C3

∣∣∆uεm(t)∣∣2p+C4

∣∣∆uεm(t)∣∣2p−1∣∣u′εm(t)∣∣+ C5δ
4

∣∣∆uεm(t)∣∣2p.

(4.18)

As in (3.34) and hypothesis (4.9), we can write

γ(t)≤ C6Hp(t), C6Hp(0) <
δb0

10
. (4.19)
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Thus, by the same way of Section 3, we obtain from (4.16) and the hypothesis

on initial data ũ0, ũ1 that

d
dt
H(t)+ 1

ε

∫
Ω
χ(x,t)

∣∣u′εm(x,t)∣∣2dx

+ 1
ε

∫
Ω
χ(x,t)u′εm(x,t)uεm(x,t)dx

+ 1
ε

∫
Ω
χ(x,t)∇u′εm(x,t)·∇uεm(x,t)dx

+ 1
ε

∫
Ω
χ(x,t)

∣∣∇uεm(x,t)∣∣2dx ≤ 0 ∀t ≥ 0.

(4.20)

By using the idea of Nakao and Narazaki [14] or Rabello [5], we have∫ t
0

∫
Ω
χ(x,t)u′εm(x,t)uεm(x,t)dxdt

≥ ∣∣χ(t)uεm(t)∣∣2−∣∣χũ0

∣∣2,∫ t
0

∫
Ω
χ(x,t)∇u′εm(x,t)·∇uεm(x,t)dxdt

≥ ∣∣χ(t)∇uεm(t)∣∣2−∣∣χ∇ũ0

∣∣2.

(4.21)

Observe that, from the definition of ũ0 and χ(x,t), we have

∣∣χũ0

∣∣2 =
∫
Ω
χ(x,0)ũ0(x)dx = 0,

∣∣χ∇ũ0

∣∣2 =
∫
Ω
χ(x,0)∇ũ0(x)dx = 0.

(4.22)

Thus, the integrals in (4.21) are positives. Then, from (4.20), integrating from

0 to t, we obtain

H(t)≤H(0) ∀t > 0, ε > 0. (4.23)

From (4.23), we extract a subsequence, still represented by (uεm)m∈N, such

that

uεm ⇀uε weak star in L∞
(
0,T ;H2

0(Ω)
)

as m �→∞, (4.24)

u′εm ⇀u′ε weak star in L∞
(
0,T ;L2(Ω)

)
as m �→∞. (4.25)

From (4.24), (4.25), and Aubin-Lions theorem on compactness (cf. Lions [9]),

we obtain a subsequence, still represented by (uεm)m∈N, such that

uεm �→uε strongly in L2(0,T ;H1
0(Ω)

)
as m �→∞. (4.26)

We also have

χu′εm ⇀ χu′ε weak star in L∞
(
0,T ;L2(Ω)

)
as m �→∞, (4.27)

χ∇uεm ⇀ χ∇uε weak star in L∞
(
0,T ;L2(Ω)

)
as m �→∞. (4.28)
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Setting v ∈H2
0(Ω) into (4.14), multiplying by θ ∈�(0,T ), taking the limit as

m→∞, and observing the convergence from (4.24) to (4.28), we conclude that

uε is a weak solution of the penalized problem (4.12) and (4.13).

The next step is the study of the penalized problem (4.12) and (4.13) as

ε→ 0 in order to conclude the proof of Theorem 4.4. In fact, from convergence

(4.24), (4.25), (4.26), and Banach-Steinhaus theorem, we obtain a net (uε)0<ε<1

and a function ω :Q→R satisfying

uε ⇀ω weak star in L∞
(
0,T ;H2

0(Ω)
)

as ε �→ 0, (4.29)

u′ε ⇀ω′ weak star in L∞
(
0,T ;L2(Ω)

)
as ε �→ 0, (4.30)

uε �→ω strongly in L2(0,T ;H1
0(Ω)

)
as ε �→ 0 and a.e. in Q. (4.31)

From (4.21), we get from (4.20) that∫
Ω×]0,T [

χ
∣∣u′εm(x,t)∣∣2dxdt ≤ εC,∫

Ω×]0,T [
χ
∣∣∇uεm(x,t)∣∣2dxdt ≤ εC,

(4.32)

where C is a real positive constant independent of ε and m. Thus, from (4.27)

and Banach-Steinhaus theorem, we have ‖χu′ε‖L2(0,T ;L2(Ω)) < εC . Hence we af-

firm that χu′ε converges weakly in L2
(
0,T ;L2(Ω)

)
to zero. Therefore, from

(4.30), we get ∫ T
0

∫
Ω
χ(x,t)

∣∣ω′(x,t)
∣∣2dxdt = 0. (4.33)

By similar argument, we obtain from (4.29) that∫ T
0

∫
Ω
χ(x,t)

∣∣∇ω(x,t)∣∣2dxdt = 0. (4.34)

From (4.33), we have

χ(x,t)ω′(x,t)= 0 a.e. in Ω×]0,T [=Q, (4.35)

and then,

ω′(x,t)= 0 in Q−Q̂∪Ω0×{0}. (4.36)

Since Q̂ is increasing, we have∫ t
0
ω′(x,s)ds = 0 ∀0< t < T, x ∈Ω−Ω0. (4.37)

But, as w(x,0)= ũ0(x)= 0 in Ω−Ω0, by virtue of ω as a solution in Q, then

ω(x,t)= 0 a.e. in Ω−Ωt for 0< t < T. (4.38)
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From (4.34) and by a similar way, we get

χ(x,t)
∣∣∇ω(x,t)∣∣= 0 in Q−Q̂∪Ω0×{0}, (4.39)

and then it implies that

∂ω(x,t)
∂xi

= 0 a.e. Ω−Ωt for 0< t < T. (4.40)

From (4.38), (4.40), and if u is the restriction of ω to Q̂, then we get by using

(4.29),

u belongs to L∞
(
0,T ;H2

0

(
Ωt

))
, (4.41)

where we have used to obtain (4.41) the hypothesis of regularity on Q̂ estab-

lished in (RC).

In a similar way, if u′ is the restriction of ω′ to Q̂, then we get by using

(4.30)

u′ belongs to L∞
(
0,T ;L2(Ωt)). (4.42)

Thus, by restriction to Q̂ of the penalized equation (4.12), we obtain

−
∫
Q̂
a(x)û′ε(x,t)φ′(x,t)dxdt

+
∫
Q̂
b(x)∆ûε(x,t)∆φ(x,t)dxdt

+
∫
Q̂
M̂
(
x,t,

∥∥ûε(t)∥∥2
)
∇ûε(x,t)·∇φ(x,t)dxdt

+
∫
Q̂

[
∇xM̂

(
x,t,

∥∥ûε(t)∥∥2
)
·∇ûε(x,t)

]
φ(x,t)dxdt

+δ
∫
Q̂
û′ε(x,t)φ(x,t)dxdt = 0

(4.43)

for all φ such that φ ∈ L2(0,T ;H2
0(Ωt)), φ′ ∈ L2(0,T ;L2(Ωt)) with φ(x,0) =

φ(x,T)= 0.

Thus, M̂(x,t,λ) is the restriction of M(x,t,λ) to Q̂ for λ > 0 and u is the

restriction of ω to Q̂. From the convergence (4.29), (4.30), (4.31), and passing

to the limit in (4.43) as ε→ 0, it follows that u is a solution of (4.1) in the sense

of Definition 4.3. And this way, the proof of Theorem 4.3 is concluded.

4.2. Exponential decay. By using the same method employed in Section 3.2,

we obtain the exponential decay for the energy associated with the system (4.1)

as t→+∞, that is, the exponential decay within of the noncylindrical domain.
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