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Some sufficient conditions are established for the oscillation of all solutions of the
advanced differential equation x′(t)−p(t)x(t+τ) = 0, t ≥ t0, where the coeffi-
cient p(t)∈ C([t0,∞),R) is oscillatory, and τ is a positive constant.
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1. Introduction. Consider the following advanced differential equation:

x′(t)−p(t)x(t+τ)= 0, t ≥ t0, (1.1)

where the coefficient p(t) ∈ C([t0,∞),R) is an oscillatory function, that is,

p(t) takes both positive and negative values, and τ is a positive constant.

The problem of establishing sufficient conditions for the oscillation of all

solutions of (1.1) has been the subject of many investigations. For example, see

[1, 2, 3, 4, 5, 6] and the references cited therein. With respect to the oscillation

of difference equation with oscillating coefficients, readers can refer to [7, 8,

9, 10].

By a solution of (1.1), we mean a continuously differentiable function defined

on [t0,∞) such that (1.1) is satisfied for t ≥ t0. As is customary, a solution of

(1.1) is called oscillatory if it has arbitrarily large zeros. Otherwise it is called

nonoscillatory. Equation (1.1) is called oscillatory if all its solutions are oscil-

latory.

For (1.1), Ladas and Stavroulakis [4] proved that all solutions of (1.1) oscillate

if

p(t)≥ 0, lim
t→∞

inf
∫ t+τ
t

p(s)ds >
1
e
. (1.2)

For the result, see also Kusano [3] and Koplatadze and Chanturiya [1]. Re-

cently, Li and Zhu [6] improved the above result to the following form.
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Theorem 1.1. Suppose that there exist a t1 > t0+τ and a positive integer k
such that

pk(t)≥ 1
ek
, qk(t)≥ 1

ek
, t ≥ t1+kτ,

∫∞
t1+kτ

p(t)
[

exp
(
ek−1pk(t)− 1

e

)
−1

]
dt =∞.

(1.3)

Then every solution of (1.1) oscillates. Here, p(t) ∈ C([t0,∞),[0,∞)) and the

sequences {pn(t)} and {qn(t)} of functions are defined as follows:

p1(t)=
∫ t+τ
t

p(s)ds,

pn(t)=
∫ t+τ
t

p(s)pn−1(s)ds, n≥ 2, t ≥ t0,

q1(t)=
∫ t
t−τ
p(s)ds, t ≥ t0+τ,

qn(t)=
∫ t
t−τ
p(s)qn−1(s)ds, n≥ 2, t ≥ t0+nτ.

(1.4)

For the studies of the oscillation of (1.1), all the previous works, such as

Ladas and Stavroulakis [4], Kusano [3], Li and Zhu [6], and Koplatadze and

Chanturiya [1], are under the assumption that the coefficient p(t) has con-

stant sign, that is, p(t)∈ C([t0,∞),R+). These investigations, in general, make

use of the observation that if x(t) is an eventually positive solution of (1.1),

then x′(t) = p(t)x(t+τ) ≥ 0 for all large t so that x(t) is eventually nonde-

creasing. However, when the coefficient p(t) is oscillatory, that is, p(t) takes

both positive and negative values, the monotonicity does not hold any longer.

All known results in the literature cannot be applied to the case where the coef-

ficient p(t) is oscillatory. Then, a natural question arises on how to investigate

the oscillation of (1.1) when the coefficient p(t) is oscillatory.

This problem, to the best of our knowledge, does not have any results up to

now. The aim of this paper is to solve the problem. Our work is the continuity of

that in [6], and the result obtained is of significance because a large number of

oscillation criteria for higher-order as well as nonlinear differential equations

can be reduced to oscillation criteria for equations of form (1.1).

2. Main result. As a starting point, we introduce a lemma that is required

for the proof of our main results.

Lemma 2.1. Suppose that r ≥ 0 and that ϕ(·) is a nonnegative function in

R with ϕ(0) = 0. Then ϕ(r)rex ≥ ϕ(r)x+ϕ(r) ln(er +1− sign(r)) for any
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x ∈ R, where the function sign(·) is the usual sign function, that is,

sign(r)=



−1 r < 0,

0 r = 0,

1 r > 0.

(2.1)

The proof of Lemma 2.1 is trivial and is omitted here.

Remark 2.2. In Lemma 2.1, the condition “ϕ(0) = 0” is only required to

ensure the inequality holding for r = 0. When r > 0, this condition is unneces-

sary.

The main result of this paper is the following.

Theorem 2.3. Let {an}∞n=1 and {bn}∞n=1 be two sequences in [t0,∞) satisfy-

ing

an+2τ ≤ bn ≤ an+1−2τ. (2.2)

Assume that

p(t)≥ 0, for t ∈∪∞n=1

[
an,bn

]
. (2.3)

Define function P(t) as follows:

P(t)=

p(t), t ∈∪∞n=1

[
an,bn−τ

]
,

0, otherwise.
(2.4)

If

∫∞
t0
P(t) ln

[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt =∞, (2.5)

then every solution of (1.1) is oscillatory.

Proof. Assume, for the sake of contradiction, that there exists an even-

tually positive solution x(t) of (1.1). Without loss of generality, we suppose

that x(t) > 0 for t ≥ a2. With respect to function P(t), we have the following

assertions:

(i)
∫ t
t−τ P(s)ds < 1, t ≥ a2;

(ii) limt→∞ sup
∫ t
t−τ P(s)ds > 0.

We now first prove (i). Indeed, according to the definition of P(t), we derive

0≤ P(t)≤ p(t), t ∈∪∞n=2

[
an,bn

]
. (2.6)

Then, by (1.1), one can see

x′(t)−P(t)x(t+τ)≥ 0, t ∈∪∞n=2

[
an,bn

]
, (2.7)

and so x(t) is nondecreasing for t ∈∪∞n=2[an,bn].
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If t ∈∪∞n=2[an+τ,bn−τ], then [t−τ,t]⊂∪∞n=2[an,bn−τ]. Integrating (2.7)

from t−τ to t and noticing the nondecreasing nature of x(t) give

x(t)≥ x(t−τ)+
∫ t
t−τ
P(s)x(s+τ)ds

>
∫ t
t−τ
P(s)x(s+τ)ds

≥ x(t)
∫ t
t−τ
P(s)ds,

(2.8)

which implies

∫ t
t−τ
P(s)ds < 1, t ∈∪∞n=2

[
an+τ,bn−τ

]
. (2.9)

If t ∉∪∞n=2[an+τ,bn−τ], then one can consider the following three cases.

Case 1. If t ∈∪∞n=2(bn−τ,bn], then, by definition (2.4) of P(t),

∫ t
t−τ
P(s)ds ≤

∫ t
bn−2τ

P(s)ds

=
∫ bn−τ
bn−2τ

P(s)ds+
∫ t
bn−τ

P(s)ds

=
∫ bn−τ
bn−2τ

P(s)ds < 1.

(2.10)

Note that (2.9) is used in getting the last inequality above.

Case 2. If t ∈∪∞n=2[an,an+τ), then

∫ t
t−τ
P(s)ds =

∫ an
t−τ
P(s)ds+

∫ t
an
P(s)ds =

∫ t
an
P(s)ds ≤

∫ an+τ
an

P(s)ds < 1.

(2.11)

Case 3. If t ∈∪∞n=2(bn,an+1], then

∫ t
t−τ
P(s)ds = 0< 1. (2.12)

Thus, we complete the proof of assertion (i).

Next, we will show assertion (ii). If we have limt→∞
∫ t
t−τ P(s)ds = 0, so there

exists a T ≥ t0 such that

∫ t
t−τ
P(t)dt <

1
e

for t ≥ T . (2.13)

It follows from (2.5) that

∫∞
a2

P(t) ln
[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt =∞. (2.14)
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Therefore,

∞=
∫∞
a2

P(t) ln
[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt

=
∞∑
n=2

∫ an+1

an
P(t) ln

[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt

=
∞∑
n=2

(∫ bn−τ
an

+
∫ an+1

bn−τ

)
P(t) ln

[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt

=
∞∑
n=2

∫ bn−τ
an

P(t) ln
[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt.

(2.15)

And so there exists a positive integer sequence {ni}∞i=1 such that

∫ bni−τ
ani

P(t) ln
[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt > 0, i= 1,2, . . . .

(2.16)

Since P(t) is nonnegative and continuous in t ∈ [ani ,bni − τ], i ≥ 1, there

exists an interval [ki,li]⊂ [ani ,bni−τ],i≥ 1, such that

P(t) ln
[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt > 0, t ∈ [ki,li], i= 1,2, . . . .

(2.17)

From this, we know

∫ t
t−τ
P(t)dt >

1
e
, t ∈ [ki,li], i= 1,2, . . . , (2.18)

which is contrary to (2.13). So, assertion (ii) is true. Accordingly, there exist

a constant d > 0 and a sequence {tn} of points such that tn → ∞ as n → ∞,

tn ∈ [an,bn−τ], and

∫ tn
tn−τ

P(t)dt ≥ d, n= 1,2, . . . . (2.19)

We now set

λ(t)= x
′(t)
x(t)

, t ≥ a2. (2.20)

Then, by (2.7),

λ(t)≥ 0, t ∈∪∞n=2

[
an,bn

]
. (2.21)
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Integrating (2.20) from t ≥ a2 to t+τ and noting (1.1), one can obtain

λ(t)= p(t)exp
(∫ t+τ

t
λ(s)ds

)
, t ≥ a2, (2.22)

λ(t)
∫ t
t−τ
P(s)ds = p(t)

∫ t
t−τ
P(s)ds exp

(∫ t+τ
t

λ(s)ds
)
, t ≥ a2. (2.23)

Notice that P(t) is nonnegative and continuous restricted to ∪∞n=2[an,bn−τ].
We can show that

∫ t
t−τ P(s)ds = 0 for any t ∈∪∞n=2[an,bn−τ] is equivalent to

P(t)= 0 for any t ∈∪∞n=2[an,bn−τ]. Now, we simply verify this as follows.

If
∫ t
t−τ P(s)ds = 0 for any t ∈ ∪∞n=2[an,bn−τ], then there must be P(t) = 0

for any t ∈ ∪∞n=2[an,bn−τ]. We only prove P(t) = 0 at the point an and the

proofs for the other points are similar and are omitted. Otherwise, P(an) >
0. Since P(t) is right-continuous at the point an, there exists a δ > 0 such

that P(t) > 0 for t ∈ [an,an + δ). Hence, for any given ε ∈ (0,min{τ,δ}),∫ an+ε
an+ε−τ P(s)ds =

∫ an+ε
an P(s)ds > 0, which contradicts the known assumption.

Conversely, if P(t)= 0 for any t ∈∪∞n=2[an,bn−τ], then, according to def-

inition (2.4) of P(t), one can see that P(t) ≡ 0 for t ≥ a2, which means that∫ t
t−τ P(s)ds = 0 for any t ∈∪∞n=2[an,bn−τ], and so the conclusion above holds.

Therefore, by using Lemma 2.1 with r = ∫ tt−τ P(s)ds, ϕ(r) = P(t), and x =∫ t+τ
t λ(s)ds, we derive

λ(t)
∫ t
t−τ
P(s)ds

≥ P(t)
∫ t
t−τ
P(s)ds exp

(∫ t+τ
t

λ(s)ds
)

≥ P(t)
∫ t+τ
t

λ(s)ds+P(t) ln
[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
,

(2.24)

that is, for t ∈∪∞n=2[an,bn−τ],

λ(t)
∫ t
t−τ
P(s)ds

≥ P(t)
∫ t+τ
t

λ(s)ds+P(t) ln
[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
.

(2.25)

Notice that P(t) = 0 for t ∈ ∪∞n=2(bn−τ,an+1). Accordingly, we have, for t ∈
∪∞n=2(bn−τ,bn],

∫ t
t−τ P(s)ds =

∫ bn−τ
t−τ P(s)ds > 0. This, together with (2.23) and

Lemma 2.1, implies the validity of (2.25). For t ∈∪∞n=2(bn,an+1),
∫ t
t−τ P(s)ds =

0, which also indicates that (2.25) holds. So, (2.25) is true for t ≥ a2.
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Integrating (2.25) from a2 to tn for n> 2 produces

∫ tn
a2

λ(t)
∫ t
t−τ
P(s)dsdt−

∫ tn
a2

P(t)
∫ t+τ
t

λ(s)dsdt

≥
∫ tn
a2

P(t) ln
[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt.

(2.26)

Put

D1 =
{
(s,t) | a2+τ ≤ s ≤ tn, s−τ ≤ t ≤ s

}
,

D2 =
{
(s,t) | tn ≤ s ≤ tn+τ, s−τ ≤ t ≤ tn

}
,

D3 =
{
(s,t) | a2 ≤ t ≤ a2+τ, t ≤ s ≤ a2+τ

}
.

(2.27)

It is clear that P(t)λ(s)≥ 0 for (t,s)∈D2∪D3. Thus,

∫ tn
a2

P(t)
∫ t+τ
t

λ(s)dsdt =
3∑
i=1

∫ ∫
Di
P(t)λ(s)dsdt

≥
∫ ∫

D1

P(t)λ(s)dsdt =
∫ tn
a2+τ

∫ s
s−τ

P(t)λ(s)dsdt

=
∫ tn
a2+τ

λ(s)
∫ s
s−τ

P(t)dtds =
∫ tn
a2+τ

λ(t)
∫ t
t−τ
P(s)dsdt.

(2.28)

This, together with (2.26), leads to

∫ tn
a2

P(t) ln
[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt

≤
∫ tn
a2

λ(t)
∫ t
t−τ
P(s)dsdt−

∫ tn
a2+τ

λ(t)
∫ t
t−τ
P(s)dsdt

=
∫ a2+τ

a2

λ(t)
∫ t
t−τ
P(s)dsdt <∞,

(2.29)

whereas, according to (2.5), we have

lim
n→∞

∫ tn
a2

P(t) ln
[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt =∞, (2.30)

which contradicts (2.29) and completes the proof.
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3. Example. As an application of Theorem 2.3, we consider the oscillation

of the following equation:

x′(t)−p(t)x(t+1)= 0, t ≥ 0, (3.1)

where τ = 1 and the function p(t) is 6-periodic one with

p(t)=




−t, 0≤ t ≤ 1,

t−2, 1< t ≤ 4,

6−t, 4< t ≤ 6.

(3.2)

Obviously, limt→∞ inf
∫ t+τ
t p(t)ds =−1/2< 0. Therefore, the results in [1, 2, 3,

4, 5, 6] cannot be applied to (3.1). But, if we denote an = 2+6(n−1), bn = 6n,

n≥ 1, then, clearly, an,bn ∈ [0,∞),

an+2τ ≤ bn ≤ an+1−2τ, n= 1,2, . . . , (3.3)

and p(t)≥ 0 for t ∈∪∞n=1[an,bn]. Furthermore, if we set

P(t)=


p(t), t ∈∪∞n=1

[
an,bn−τ

]
,

0, otherwise,
(3.4)

then we have

∫ bn−τ
an

P(t) ln
[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt

=
∫ 5

2
P(t) ln

[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt

=
∫ 4

2
P(t) ln

[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt

+
∫ 5

4
P(t) ln

[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt

=
∫ 4

2
(t−2) ln

[
e
(∫ 2

t−1
P(s)ds+

∫ t
2
P(s)ds

)
+1−sign

(∫ t
t−τ
P(s)ds

)]
dt

+
∫ 5

4
(6−t) ln

[
e
(∫ 2

t−1
P(s)ds+

∫ 4

2
P(s)ds+

∫ t
4
P(s)ds

)

+1−sign
(∫ t

t−τ
P(s)ds

)]
dt
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=
∫ 4

2
(t−2) ln

(
e
∫ t

2
(s−2)ds

)
dt+

∫ 5

4
(6−t) ln

(
e
(

2+
∫ t

4
(6−s)ds

))
dt

=
[∫ t

2
(s−2)ds ln

(
e
∫ t

2
(s−2)

)
ds−

∫ t
2
(s−2)ds

]∣∣∣∣∣
4

2

+
[(

2+
∫ t

4
(6−s)ds

)
ln

(
e
(

2+
∫ t

4
(6−s)ds

))
−
(

2+
∫ t

4
(6−s)ds

)]∣∣∣∣∣
5

4

= 2ln2+
(

7
2

ln
7
2
−2ln2

)
= 7

2
ln

7
2
> 0,

(3.5)

which means that

∫∞
a2

P(t) ln
[
e
∫ t
t−τ
P(s)ds+1−sign

(∫ t
t−τ
P(s)ds

)]
dt =∞. (3.6)

By Theorem 2.3, every solution of (3.1) is oscillatory.

Acknowledgment. This work was supported by NNSFC, Grant 10071022,

Mathematical Tianyuan Foundation of China, Grant TY10026002-01-05-03, and

Shanghai Priority Academic Discipline.

References

[1] R. G. Koplatadze and T. A. Chanturiya, Oscillating and monotone solutions of
first-order differential equations with deviating argument, Differentsial’nye
Uravneniya 18 (1982), no. 8, 1463–1465.

[2] M. R. Kulenovíc and M. K. Grammatikopoulos, Some comparison and oscillation
results for first-order differential equations and inequalities with a deviating
argument, J. Math. Anal. Appl. 131 (1988), no. 1, 67–84.

[3] T. Kusano, On even-order functional-differential equations with advanced and
retarded arguments, J. Differential Equations 45 (1982), no. 1, 75–84.

[4] G. Ladas and I. P. Stavroulakis, Oscillations caused by several retarded and ad-
vanced arguments, J. Differential Equations 44 (1982), no. 1, 134–152.

[5] G. S. Ladde, V. Lakshmikantham, and B. G. Zhang, Oscillation Theory of Differ-
ential Equations with Deviating Arguments, Monographs and Textbooks in
Pure and Applied Mathematics, vol. 110, Marcel Dekker, New York, 1987.

[6] X. Li and D. Zhu, Oscillation and nonoscillation of advanced differential equations
with variable coefficients, J. Math. Anal. Appl. 269 (2002), no. 2, 462–488.

[7] X.-H. Tang and S. S. Cheng, An oscillation criterion for linear difference equations
with oscillating coefficients, J. Comput. Appl. Math. 132 (2001), no. 2, 319–
329.

[8] W. P. Yan and J. R. Yan, Comparison and oscillation results for delay difference
equations with oscillating coefficients, Int. J. Math. Math. Sci. 19 (1996),
no. 1, 171–176.



2118 XIANYI LI ET AL.

[9] J. S. Yu, B. G. Zhang, and X. Z. Qian, Oscillations of delay difference equations with
oscillating coefficients, J. Math. Anal. Appl. 177 (1993), no. 2, 432–444.

[10] G. Zhang and S. S. Cheng, Elementary oscillation criteria for a three term recur-
rence relation with oscillatory coefficient sequence, Tamkang J. Math. 29
(1998), no. 3, 227–232.

Xianyi Li: School of Mathematics and Physics, Nanhua University, Hengyang 421001,
China

Current address: Department of Mathematics, East China Normal University,
Shanghai 200062, China

E-mail address: xianyili6590@sina.com.cn

Deming Zhu: Department of Mathematics, East China Normal University, Shanghai
200062, China

E-mail address: dmzhu@math.ecnu.edu.cn

Hanqing Wang: School of Architectural Engineering, Resources and Environment,
Nanhua University, Hengyang 421001, China

E-mail address: hqwang888@sina.com.cn

mailto:xianyili6590@sina.com.cn
mailto:dmzhu@math.ecnu.edu.cn
mailto:hqwang888@sina.com.cn

