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This paper is concerned with the influence of frequency modulation on the semi-
Fredholm properties of Toeplitz operators with oscillating matrix symbols. The
main results give conditions on an orientation-preserving homeomorphism α of
the real line that ensure the following: if b belongs to a certain class of oscillat-
ing matrix functions (periodic, almost periodic, or semi-almost periodic matrix
functions) and the Toeplitz operator generated by the matrix function b(x) is
semi-Fredholm, then the Toeplitz operator with the matrix symbol b(α(x)) is also
semi-Fredholm.
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1. Introduction. LetH2(R) be the usual Hardy space of the real line, that is,

the Hilbert space of all functions in L2(R) that can be represented in the form

f(x)=
∫∞

0
g(t)eitxdt, x ∈R, (1.1)

with g ∈ L2(0,∞), and let P be the orthogonal projection of L2(R) onto H2(R).
For a function a ∈ L∞(R), the Toeplitz operator T(a) is the bounded linear

operator on H2(R) that acts by the rule f � P(af). The function a is in this

context referred to as the symbol of the operator T(a).
The algebra AP(R) of almost periodic functions is defined as the smallest

closed subalgebra of L∞(R) that contains the set {eλ : λ ∈ R}, where eλ(x) =
eiλx . We denote by PT (R) the set of all T -periodic functions in AP(R) and by

C(R) the set of all continuous functions f on R that have finite one-side limits

f(−∞) and f(+∞) at infinity. Finally, the smallest closed subalgebra of L∞(R)
that contains AP(R)∪C(R) is denoted by SAP(R) and is called the algebra of

semi-almost periodic functions.

For each class of functions X introduced above we denote by Xn×n and Xn
the sets of all n×n and n×1 matrix functions with entries in X, respectively.

We also write L∞n×n(R) := [L∞(R)]n×n, H2
n(R) := [H2(R)]n, and so on. For a ∈

L∞n×n(R), block Toeplitz operator T(a) is defined by T(a) : H2
n(R) → H2

n(R),
f � P(af), where P is the orthogonal projection of L2

n(R) onto H2
n(R).
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A bounded linear operatorA on a Hilbert spaceH is said to be normally solv-

able if its range imA is closed. We put kerA= {f ∈H :Af = 0} and cokerA :=
H/ imA. If A is normally solvable and dimkerA < ∞, then A is called a Φ+-

operator, and if A is normally solvable and dimcokerA<∞, then A is called a

Φ−-operator. A Fredholm operator is an operator that is both Φ− and Φ+. The

index of a Fredholm operator A is the integer indA := dimkerA−dimcokerA.

The operator A is right (left) invertible if there is a bounded linear operator

B on H such that AB = I (BA = I), where I is identity operator on H, and

the operator A is invertible if there is a bounded operator B on H such that

AB = BA= I. Finally the operator A is said to be generalized invertible if there

is a bounded operator B such that ABA = A. It is easy to see that if A is left

(right) invertible, then A is a Φ+(Φ−)-operator. Moreover, it is well known that

generalized invertibility is equivalent to normal solvability.

Let α : R→ R be an orientation-preserving homeomorphism. In this paper,

we study the following problem: if b is in one of the classes of oscillating matrix

functions introduced above and T(b) is Φ±, Fredholm, or normally solvable, is

the operator T(γαb) with the symbol (γαb)(x) := b(α(x)) also Φ±, Fredholm,

or normally solvable?

If b is in Cn×n(R), then the answer to the above question is known to be

positive. However, the symbols b currently emerging are often oscillating,

that is, they belong to APn×n(R) or even SAPn×n(R). For example, in [1, 13],

it is shown that the inverse scattering method for the modified Korteweg-de

Vries equation leads to a Riemann-Hilbert factorization problem and thus to

a Toeplitz operator whose symbol is of the form γαb with b ∈ SAP2×2(R) and

α(x)= c1x3+c2x. Although equations with such symbols can be tackled suc-

cessfully (see, e.g., [5, 6, 7]), the semi-Fredholm properties of the operators

involved are not yet understood sufficiently well. This paper is a first attempt

of systematically exploring the change of the semi-Fredholm properties of

Toeplitz operators with oscillating symbols caused by frequency modulation.

In connection with the problem studied here, we want to mention the pro-

found investigations by Muhly and Xia [19, 20, 21]. Their context is the complex

unit circle T, and to translate their results to the real line, we have to employ

the substitutions

ϕ :R �→ T, ϕ(x)= x−i
x+i , ψ : T �→R, ψ(t)= i1+t

1−t . (1.2)

Ifα is a homeomorphism ofR onto itself, then the mapσ given byσ =ϕ◦α◦ψ
is a homeomorphism of T onto itself such that σ(1) = 1. The result of [20]

implies that if σ is a bi-Lipschitz homeomorphism and σ ′ belongs to VMO,

then T(γαb)−T(b) is compact for every b ∈ L∞n×n(R). In particular, for such

homeomorphisms α, passage from T(b) to T(γαb) preserves Fredholmness

for every b ∈ L∞n×n(R). We here admit only semi-almost periodic matrix sym-

bols b, which, however, allows us to consider homeomorphisms α that are far
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beyond those covered by Muhly and Xia’s result. To see this, note that if σ is bi-

Lipschitz and σ(1)= 1, then the function µ defined by µ(t)= (σ(t)−1)/(t−1)
satisfies

0< inf
t∈T
∣∣µ(t)∣∣≤ sup

t∈T

∣∣µ(t)∣∣<∞. (1.3)

An elementary computation shows that

α(x)= i1+σ
(
ϕ(x)

)
1−σ(ϕ(x)) = x+i

µ
(
ϕ(x)

) −i, (1.4)

and hence

0< liminf
|x|→∞

∣∣∣∣α(x)x
∣∣∣∣≤ limsup

|x|→∞

∣∣∣∣α(x)x
∣∣∣∣<∞. (1.5)

The homeomorphisms α considered in this paper include those with logarith-

mic, polynomial, or exponential behavior at infinity (see Section 3), and it is

clear that such homeomorphisms in general do not satisfy (1.5).

In the scalar case, that is, for n = 1, Toeplitz operators with strongly fre-

quency-modulated symbols, that is, with frequency modulations caused by

homeomorphisms that do not necessarily satisfy (1.5), were studied in [2]. The

first main result of [2] states that frequency modulation can destroy Fredholm-

ness: there exists b ∈AP(R) such that T(b) is invertible but T(γαb) is not even

normally solvable. The second main result of [2] provides us with conditions

on the homeomorphism α :R→R that ensure that T(γαb) is Fredholm when-

ever b ∈ SAP(R) and T(b) is Fredholm. In the present paper, we will establish

analogues of these conditions in the matrix case.

2. Factorization of u-periodic matrix functions. Let H∞(R) be the algebra

of all functions f ∈ L∞(R) that can be analytically extended to the upper half-

plane such that supImz>0 |f(z)| <∞. A function u ∈H∞(R) is called an inner

function if |u(x)| = 1 for almost all x ∈R.

We denote by L2(T) and H2(T), respectively, the usual Lebesgue and Hardy

spaces of the unit circle T. If u is an inner function, then the composition

operator γu given by (γuf) = f(u(x)) sends functions defined on T to func-

tions living on R. A function on R of the form f(u(x)) is called a u-periodic

function. Note that if u(x) = eiλx (λ > 0), then f(u(x)) is simply a periodic

function with the period 2π/λ. Important examples of inner functions are

Blaschke products, that is, functions of the form

u(x)=
∏
j∈I

∣∣1−z2
j
∣∣∣∣1+z2
j
∣∣ x−zjx−zj , (2.1)

where Imzj > 0 and
∑
j∈I Imzj/|zj+i|2 <∞. The set I is finite or countable. In

the former case u is called a finite Blaschke product.
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The following result can be easily derived from well-known results on com-

position operators on the unit circle (see [22, 25]) by conformally mapping the

unit disk onto the upper half-plane.

Theorem 2.1. Let u(x) be an inner function. If f(t) is a function in L2(T),
then (γuf)(x)/|x+ i| is a function in L2(R). Moreover, if f(t) is a function in

H2(T), then (γuf)(x)/(x+ i) is a function belonging to H2(R) and if f(t) is

a function in H2(T), then (γuf)(x)/(x− i) is a function in H2(R). Finally, if

f(t) is a function in H∞(T) or H∞(T), then (γuf)(x) is a function in H∞(R) or

H∞(R), respectively.

We denote by P0 the orthogonal projection of L2
n(T) onto H2

n(T), and for

g ∈ L∞n×n(T), we let T(g) stand for the Toeplitz operator on H2
n(T) : T(g)f =

P0(gf). A matrix function g ∈ L∞n×n(T) is said to admit an L2-factorization (see

[4, 18]) if it can be represented in the form

g(t)= g−(t)d(t)g+(t), (2.2)

where d(t) = diag(tκ1 , . . . , tκn) with integers κ1 ≥ κ2 ≥ ··· ≥ κn (the so-called

partial indices) and where the matrix functions g± satisfy the following condi-

tions:

g±1
+ ∈H2

n×n(T), g±1
− ∈H2

n×n(T), (2.3)

the operator Kg := g−P0g−1
− I is bounded on the space L2

n(T). (2.4)

An L2-factorization of the matrix function g exists if and only if the Toeplitz

operator T(g) is Fredholm (see [4, 18, 26]).

Let now u(x) be an inner function. We say that a matrix function a ∈
L∞n×n(R) has an L2-u-factorization if it is representable in the form

a(x)= a−(x)du(x)a+(x), (2.5)

where du = diag(uκ1 , . . . ,uκn) with integers κ1 ≥ κ2 ≥ ··· ≥ κn and the matrix

functions a±(x) are such that

a±1+ (x)
x+i is a function in H2

n×n(R),

a±1− (x)
x−i is a function in H2

n×n(⇥R),

(2.6)

and

the operator Ka := a−Pa−1
− I is bounded on the space L2

n(R). (2.7)

The following result, which is in principle already in [10, 11], forms the

foundation of our investigation.
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Theorem 2.2. Let u(x) be an inner function. If the matrix function g(t)
admits an L2-factorization, then the matrix function a(x) := g(u(x)) has an

L2-u-factorization and the operator T(a) is generalized invertible on H2
n(R).

Furthermore, if κj ≥ 0 for j = 1, . . . ,n, then T(a) is left-invertible, if κj ≤ 0 for

j = 1, . . . ,n, then T(a) is right-invertible, and if κj = 0 for j = 1, . . . ,n, then T(a)
is invertible. In all cases a generalized inverse is given by

T(−1)(a)= Pa−1
+ d−1

u Pa−1
− P. (2.8)

Moreover, if κn<0 andu(x) is not a finite Blaschke product, then dimkerT(a)=
∞, if κ1 > 0 and u(x) is not a finite Blaschke product, then dimcokerT(a)=∞,

and if u(x) is a finite Blaschke product, then T(a) is a Fredholm operator and

dimkerT(a)=− 1
2π


 n∑
j=l+1

κj


argu(x)

∣∣∣∣∣∣
∞

−∞
,

dimcokerT(a)= 1
2π


 l∑
j=1

κj


argu(x)

∣∣∣∣∣∣
∞

−∞
,

indT(a)=− 1
2π


 n∑
j=1

κj


argu(x)

∣∣∣∣∣∣
∞

−∞
,

(2.9)

where κj ≥ 0 for j = 1,2, . . . , l and κj < 0 for j = l+1, . . . ,n, l≤n.

Proof. Let g(t) admit an L2-factorization (2.2), (2.3), and (2.4). Then the

matrix function a(x)= g(u(x)) has the representation

a(x)= g−
(
u(x)

)
d
(
u(x)

)
g+
(
u(x)

)
, (2.10)

whered(u(x))= du(x)= diag(uκ1(x), . . . ,uκn(x)). According to Theorem 2.1,

a±1+ (x)
x+i ,

a±1− (x)
x−i , (2.11)

where a+(x) := g+(u(x)) and a−(x) := g−(u(x)), are matrix functions in

H2
n×n(R) and H2

n×n(R), respectively. We show that condition (2.7) is satisfied.

By [18, Lemma 2.1], d(t)g+(t) = g̃+(t)r(t), where r(t) is a rational matrix

function with detr invertible in L∞(R) and g̃±1+ (t) are functions in H2
n×n(T).

Consider the matrix function

g0(t) := g−(t)g̃+(t)= g(t)r−1(t). (2.12)

Clearly, g0 ∈ L∞n×n(T). Since the factorization g0(t)= g−(t)g̃+(t) satisfies con-

ditions (2.2), (2.3), and (2.4) with d(t)= In (notice that condition (2.4) contains

the matrix function g−(t) only), the operator T(g0) is invertible (see, e.g., [18,

page 117]). This in turn implies a representation

g0(t)= s(t)h(t), (2.13)
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where s(t) is a sectorial matrix function and h±1 ∈ H∞n×n(T) (see [18, page

307]). Put a0(x) = g0(u(x)) = s(u(x))h(u(x)). Obviously, s(u(x)) is a sec-

torial function and h±1(u(x)) are functions in H∞n×n(R). Thus (see [18, page

307]) the operator T(a0) is invertible. Consequently, the matrix function a0(x)
has a factorization

a0(x)= b−(x)b+(x), (2.14)

where b±(x) satisfy conditions (2.6) and (2.7). On the other hand, it is well

known (see, e.g., [18, page 60]) that a factorization of the form

a0(x)= g−
(
u(x)

)
g̃+
(
u(x)

)
, (2.15)

which satisfies only condition (2.6), is unique up to a constant matrix factor.

It follows that the matrix function a−(x) := g−(u(x)) satisfies condition (2.7),

and therefore representation (2.10) is really an L2-u-factorization of the forms

(2.5), (2.6), and (2.7).

Let now κj ≥ 0 for j = 1, . . . ,n. In this case du ∈ H∞n×n(R) and the operator

T(−1)(a) is bounded on the space H2
n×n(R) due to (2.7). Hence

T(−1)(a)T(a)= Pa−1
+ d−1

u Pa−1
− Pa−dua+P = Pa−1

+ d−1
u Pdua+P = I. (2.16)

Here we used the identities

Pa−1
− Pa−P = P, Pa−1

+ d−1
u Pdua+P = P, (2.17)

which can be easily verified taking into account that the functions a−(x)/
(x−i) and du(x)a+(x)/(x+i) belong to H2

n×n(R) and H2
n×n(R), respectively.

Using the property d−1
u ∈ H(n×n)∞ (R), one can consider the case κj ≤ 0

(j = 1, . . . ,n) analogously.

We now pass to the general case. Thus, let κj ≥ 0 for j = 1, . . . , l and κj < 0

for j = l+1, . . . ,n. We want to show that T(−1)(a) is a generalized inverse of

T(a). We put

Z1 =
{
f ∈H2

n(R) : f(x)= a−1
+ (x)ϕ1(x),

ϕ1(x)=
(
ψ1(x), . . . ,ψl(x),0, . . . ,0

)
,

ψj(x)(x+i) is a function in H∞(R)
}
,

Z2 =
{
f ∈H2

n(R) : f(x)= a−1
+ (x)ϕ2(x),

ϕ2(x)=
(
0, . . . ,0,ψl+1(x), . . . ,ψn(x)

)
,

ψj(x)(x+i) is a function in H∞(R)
}
.

(2.18)
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We claim that T(a)T (−1)(a)T(a)|Z1 = T(a)|Z1. Indeed, we have

T(a)T (−1)(a)T(a)
(
a−1
+ ϕ1

)= T(a)Pa−1
+ d−1

u Pa−1
− Pa−duϕ1

= T(a)Pa−1
+ d−1

u Pduϕ1

= T(a)a−1
+ ϕ1.

(2.19)

Here we used equalities (2.17) and the inclusion duϕ1 ∈H2
n(R).

Analogously, as du− := diag(0, . . . ,uκl+1 , . . . ,uκn) ∈ H∞n×n(R) and d−1
u− ∈

H∞n×n(R), we get

T(a)T (−1)(a)T(a)
(
a−1
+ ϕ2

)
= T(a)Pa−1

+ d−1
u Pa−1

− Pa−du−ϕ2

= Pa−dua+Pa−1
+ d−1

u−Pdu−ϕ2

= Pa−Pdu−ϕ2 = Pa−du−ϕ2

= T(a)(a−1
+ ϕ2

)
.

(2.20)

Thus, T(a)T (−1)(a)T(a)|Z2 = T(a)|Z2. Since, by (2.7), T(−1)(a) is bounded and

the closure ofZ1⊕Z2 is all ofH2
n(R), it follows that T(a)T (−1)(a)T(a)|H2

n(R)=
T(a)|H2

n(R), which implies that T(−1)(a) is a generalized inverse of T(a).
Suppose now that κn < 0 and thatu is not a finite Blaschke product. Consider

the following infinite set of functions:

gj(x)= u
−κn(x)−u−κn(zj)

x−zj , Imzj > 0, (2.21)

where j = 1,2, . . . and zk 
= zj for k 
= j. It is easy to see that an arbitrary finite

subset of this set is linearly independent. Put fj(x) = a−1+ (x)(0, . . . ,0,gj(x)).
Since uκngj is in H∞(R)∩H2(R), we have

T(a)fj = Pa−
(
0, . . . ,0,uκngj

)= 0. (2.22)

Thus, fj ∈ kerT(a), and it results that dimkerT(a)=∞, as desired.

The case κ1 > 0 can be disposed of by passage to adjoint operators.

Finally, let u be a finite Blaschke product. Then u is continuous on Ṙ, the

one-point compactification of the real line. This implies that a(x) admits an

L2-factorization (2.5), (2.6), and (2.7) with du(x) replaced by

diag
((
x−i
x+i

)κ1

, . . . ,
(
x−i
x+i

)κn)
, (2.23)

and hence the last assertion of our theorem is a consequence of well-known

results (see [4, 18, 26]).

For periodic matrix functions a(x), Theorem 2.2 yields the following theo-

rem.
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Theorem 2.3. Let the matrix function a(x) be in [PT (R)]n×n and suppose

that deta(x) 
= 0 for x ∈ R. Then a(x) admits an L2-uT -factorization with

uT(x) = ei(2π/T)x and the operator T(a) is generalized invertible. In addition,

if κj ≥ 0 for j = 1, . . . ,n, then T(a) is left-invertible, if κj ≤ 0 for j = 1, . . . ,n, then

T(a) is right-invertible, and if κj = 0 for j = 1, . . . ,n, then T(a) is invertible.

Proof. Consider the matrix function

g(t)= a
(
− iT

2π
lnt
)
, t ∈ T, (2.24)

where i−1 lnt is taken in [0,2π). Since g is continuous on T and detg(t)≠ 0 for

t ∈ T, it follows that g(t) admits an L2-factorization (2.2), (2.3), and (2.4) (again

see, e.g., [4, 18]). As a(x)= g(ei(2π/T)x), we therefore infer from Theorem 2.2

that a(x) has an L2-uT -factorization, which gives all the assertions of the the-

orem.

3. α-periodic matrix functions. Let α : R→ R be an orientation-preserving

homeomorphism. Let further H∞(R)+C(Ṙ) be the Banach algebra of all func-

tions of the form h+f with h∈H∞(R) and f ∈ C(Ṙ).
The main condition we impose on the homeomorphism α is that

eiλα ∈H∞(R)+C(Ṙ) ∀λ > 0. (3.1)

We remark that (3.1) holds if α satisfies the following four conditions:

liminf
x→+∞

xα′′(x)
α′(x)

>−2, (3.2)

lim
x→+∞

α′′(x)(
α′(x)

)2 = 0,

lim
x→+∞x

1/2 α′′(x)(
α′(x)

)3/2 = 0,
(3.3)

lim
x→+∞

(
α(x)+α(−x))= 0. (3.4)

Clearly, condition (3.2) is equivalent to saying that the function x2α′(x) is

strictly monotonically increasing.

The sufficiency of (3.2), (3.3), and (3.4) for (3.1) follows from [12, Theorems

2.2 and 2.3] (see also [2]). Conditions (3.2), (3.3), and (3.4) are in fact true for

large classes of functions. Here are some examples:

α(x)= cxγ, γ > 0,

α(x)= c lnδ(x+1), δ > 1,

α(x)= cxγ lnδ(x+1), γ > 0, δ∈ (−∞,∞),
α(x)= c1 exp

(
c2xγ

)
, γ > 0.

(3.5)
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Here we cite the functions α(x) for x > 0 only, and the constants c, c1, and c2

are supposed to be positive.

It is known that every function in H∞(R)+C(Ṙ) that is invertible in L∞(R)
can be written as the product of an H∞(R) function and an invertible function

in C(Ṙ). Indeed, every such f is a product of an outer function f+ with |f+| =
|f | a.e. on R by a unimodular function in H∞(R)+C(Ṙ). According to [28],

this unimodular function is a product of an inner function and yet another

unimodular function w, belonging to QC(= (H∞(R)+C(Ṙ))∩H∞(R)+C(Ṙ)).
Due to [23], w is a product of ((x− i)/(x+ i))n and exp(i(u+ ṽ)), for some

integer n and real-valued functions u,v ∈ C(Ṙ); here˜denotes the harmonic

conjugate. It remains to observe that exp(i(u+ṽ))= exp(−v+iu)·exp(v+iṽ)
with the first multiple on the right-hand side being invertible in C(Ṙ) and the

second in H∞(R).
In [12], an explicit construction of the representation

eiλα(x) =uλ(x)cλ(x), (3.6)

where λ > 0, uλ is an inner function, and cλ ∈ C(Ṙ), was given under the

assumption that α is subject to conditions (3.2), (3.3), and (3.4).

A bounded linear operator A acting on a Hilbert space H is said to admit

a right (left) regularization if there exists a bounded linear operator R on H
such that AR = I+K (RA= I+N), where K and N are compact operators. The

operator R is called a right (left) regularizer. The following facts are well known

(see, e.g., [8, 9]).

Theorem 3.1. (1) An operator admits a right (left) regularization if and only

if it is a Φ+ (Φ−)-operator. It admits both a right and a left regularization if and

only if it is a Φ-operator.

(2) If A is a Φ+, Φ−, or Φ-operator and B is a Φ-operator, then AB and BA are

Φ+, Φ−, or Φ-operators, respectively. In the last case,

indAB = indBA= indA+ indB. (3.7)

(3) If A is a Φ+ (Φ−)-operator, then every right (left) regularizer is a Φ− (Φ+)-

operator. If A is a Φ-operator, then every right (left) regularizer R is also a left

(right) regularizer and R is a Φ-operator.

(4) If A is a Φ+, Φ−, or Φ-operator and K is a compact operator, then A+K is

a Φ+, Φ−, or Φ-operator, respectively.

We say that a matrix function a(x) is α-periodical (and we write a∈
[PT,α(R)]n×n), α-almost periodical (a ∈ [APα(R)]n×n), and α-semi-almost pe-

riodical (a∈ [SAPα(R)]n×n) if a has the form

a(x)= b(α(x)) (3.8)

with b ∈ [PT (R)]n×n, b ∈APn×n(R), and b ∈ SAPn×n(R), respectively.
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Here is the main result of this section.

Theorem 3.2. Assume that eiλTα ∈ H∞(R)+C(Ṙ) for λT = 2π/T . Let a ∈
[PT,α(R)]n×n and suppose that infx∈R |deta(x)|> 0. Then the matrix function

b given by a(x) = b(α(x)) admits an L2-uT -factorization with uT(x) = eiλT x
and

(i) if κ1 = ··· = κn = 0, then the operator T(a) is a Φ-operator on the space

H2
n(R);

(ii) if κ1 > 0, κ2 ≥ 0, . . . ,κn ≥ 0, then the operator T(a) is a Φ+-operator on

the space H2
n(R) and dimcokerT(a)=∞;

(iii) if κ1 ≤ 0, . . . ,κn−1 ≤ 0, κn < 0, then T(a) is a Φ−-operator on the space

H2
n(R) and dimkerT(a)=∞;

(iv) if κ1 > 0, κ2 ≥ 0, . . . ,κl ≥ 0, κl+1 ≤ 0, . . . ,κn−1 ≤ 0, κn < 0, then the op-

erator T(a) is neither a Φ−-operator nor a Φ+-operator on the space

H2
n(R).

Proof. Since b ∈ [PT (R)]n×n and detb(x) 
= 0 for x ∈ R, Theorem 2.3

shows that the matrix function b admits an L2-uT -factorization. It is easy to

see that there exists a continuous matrix function g on T such that b(x) =
g(eiλT x). As detg(t) 
= 0 for t ∈ T, the matrix function g possesses an L2-

factorization with the same numbers κj as in the L2-u-factorization of the

matrix function b. Using (3.6) for λT , we get the representation

a(x)= b(α(x))= g(eiλTα(x)), (3.9)

whence

a(x)= g(uλT (x)cλT (x)), (3.10)

where uλT is an inner function and cλT ∈ C(Ṙ). Define a∞ by

a∞(x)= g
(
u∞(x)

)
, (3.11)

where u∞ is the inner function u∞(x) := uλT (x)cλT (∞). The matrix function

a∞ is u∞-periodic and Theorem 2.2 can be applied to the operator T(a∞).
From (3.10) and (3.11) we get the representation

a(x)= a∞(x)c(x), (3.12)

where c(x) = In+a−1∞ (x)(a(x)−a∞(x)) is a continuous matrix function be-

cause limx→∞(a(x)−a∞(x)) = On. (Here In is the identity matrix and On is

the zero matrix of order n.)
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Thus, in view of the classical theorem on the compactness of the so-called

Hankel operator (I − P)cP for continuous matrix functions c (see, e.g., [18,

page 172]),

T(a)= T(a∞)T(c)+K, (3.13)

where K is a compact operator.

We now prove (i). In this case, by (3.11) and Theorem 2.2, the operator T(a∞)
is invertible. Since detc(x) 
= 0 forx ∈R (recall (3.12)), the operator T(c) is aΦ-

operator (see, e.g., [18, page 176]). By Theorem 3.1(3) and (4), we can therefore

conclude from (3.13) that the operator T(a) is also a Φ-operator.

Analogously, we can tackle (ii) and (iii): according to Theorem 2.2, T(a∞) is a

Φ+ (Φ−)-operator, and from the representation (3.13) and Theorem 3.1(2) and

(4) we see that T(a) is also a Φ+ (Φ−)-operator.

Now assume that dimcokerT(a) < ∞ in the case (ii). Then T(a) is a Φ-

operator. Since T(c) is a Φ-operator, it admits a right regularization T(c)R =
I+K1, where K1 is compact (Theorem 3.1(1)). Thus, from (3.13) we get

T
(
a∞
)= T(a)R−K2, (3.14)

where K2 = T(a∞)K1+K1R is compact. Equality (3.14) shows that the operator

T(a∞) is a Φ-operator. But uT cannot be a finite Blaschke product because

lim
x→±∞arguT(x)=±∞ (3.15)

due to (3.6). Hence, dimcokerT(a) = ∞ by Theorem 2.2. This contradiction

proves that dimcokerT(a) = ∞. Having recourse to left regularization, one

can analogously show that dimkerT(a)=∞ in case (iii).

We finally turn to the case (iv). Assume first that T(a) is a Φ+-operator.

Multiplying equality (3.13) from the right by the operator R we get again (3.14),

and by Theorem 3.1(2) and (3) the operator T(a∞) must be a Φ+-operator,

which contradicts Theorem 2.2 (note that dimkerT(a)=∞). Analogously, one

can show that T(a) is not a Φ−-operator.

4. α-almost periodic matrix functions. Let APW(R) be the collection of all

f ∈AP(R) that can be written in the form

f(x)=
∑
j∈Z
cjeiλjx, (4.1)

where λj ∈R, cj ∈ C, and
∑
j∈Z |cj|<∞.

The set APW(R) is a subalgebra of AP(R) and the closure of APW(R) in the

norm of L∞(R) is AP(R). If, in (4.1), λj ≥ 0 (λj ≤ 0) for all j, we will write

f ∈APW+(R) (f ∈APW−(R)). It is easy to see that

APW+(R)=APW(R)∩H∞(R), APW−(R)=APW(R)∩H∞(R). (4.2)
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Given some class X of matrix functions, we write f ∈ GX if f ∈ X and

f−1 ∈X. The following two results will be needed later.

Theorem 4.1 (see [27]). Let the matrix function b ∈ GAPWn×n(R) be positive

definite for almost all x ∈R. Then

(i) T(b) is invertible on H2
n(R),

(ii) there is an h∈ GAPW+
n×n(R) such that b = h∗h.

A full proof is given in [3, Corollary 9.15].

A matrix function u ∈ L∞n×n(R) is called unitary valued if u∗(x)u(x) =
u(x)u∗(x)= In for almost all x ∈R.

Theorem 4.2 (see [14]). Let u ∈ APWn×n(R) be unitary valued and let the

operator T(u) be left-invertible. Then there exists a matrix function w ∈
APW+

n×n(R) such that

‖u−w‖∞ ≤ 1−ε for some ε > 0. (4.3)

A full proof can be found in [3, Theorem 20.4]. A check of the proof shows

that we can choose

ε = ∥∥T−1
l (u)

∥∥−1
2 , (4.4)

where T−1
l (u) is a left inverse of T(u).

A matrix function s ∈ L∞n×n(R) is called strongly sectorial if ‖In−s‖∞ < 1.

Lemma 4.3. Let b ∈ APWn×n(R) and suppose that the operator T(b) is left-

invertible. Then there exists a representation

b = (w∗)−1sh, (4.5)

wherew ∈APW+
n×n(R),h∈ GAPW+

n×n(R), and s is strongly sectorial, and where

‖w‖∞ ≤ 2,∥∥h−1
∥∥∞ = ∥∥b−1

∥∥∞, (4.6)

∥∥In−s∥∥∞ ≤ 1−ε0 with ε0 = ‖b‖−1
∞
∥∥T−1
l (b)

∥∥−1
2 . (4.7)

Here ‖·‖∞ denotes the norm of the operator of multiplication by a matrix func-

tion on the space L2
n(R) and ‖·‖2 is the operator norm on L2

n(R).

Proof. Consider the positive definite matrix function b∗b. According to

Theorem 4.1, there exists a matrix function h∈ GAPW+
n×n(R) such that b∗b =

h∗h. The matrix function

u= bh−1 (4.8)
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is unitary valued and the operator T(u) is left-invertible, a left inverse being

T−1
l (u)= T(h)T−1

l (b). (4.9)

Hence,

∥∥T−1
l (u)

∥∥
2 ≤ ‖h‖∞

∥∥T−1
l (b)

∥∥
2 = ‖b‖∞

∥∥T−1
l (b)

∥∥
2. (4.10)

By virtue of Theorem 4.2, there exists a matrix function w ∈APW+
n×n(R) such

that

‖u−w‖∞ ≤ 1−ε, (4.11)

where, by (4.4),

ε = ∥∥T−1
l (u)

∥∥−1
2 ≥ ‖b‖−1

∞
∥∥T−1
l (b)

∥∥−1 = ε0. (4.12)

The matrix function

s :=w∗u (4.13)

is strongly sectorial, and from (4.11), (4.12) we obtain inequality (4.7). But (4.8)

and (4.13) give (4.5) since b = uh = (w∗)−1sh. Now (4.6) are implications of

(4.11) and (4.8).

Lemma 4.4. Let b ∈ APWn×n(R) and suppose that the operator T(b) is left-

invertible onH2
n(R). Let further condition (3.1) be satisfied. Put a(x)= b(α(x)).

Then the operator T(a) is a Φ+-operator on H2
n(R) and there exists a left regu-

larizer Rl(a) such that

∥∥Rl(a)∥∥2 ≤ 2‖b‖∞
∥∥b−1

∥∥∞∥∥T−1
l (b)

∥∥
2. (4.14)

Proof. From Lemma 4.3 we obtain (4.5), and it is easy to see that

T−1
l (b)= T

(
h−1)T−1(s)T

(
w∗), (4.15)

where h−1 ∈ APW+
n×n(R) and w∗ ∈ APW−

n×n(R). Therefore condition (3.1) im-

plies that

γαh−1 ∈H∞n×n(R)+Cn×n
(
Ṙ
)
,

γαw∗ ∈H∞n×n(R)+Cn×n
(
Ṙ
)
.

(4.16)

Further, condition (4.7) gives ‖In−γαs‖ ≤ 1−ε0, and hence the operator T(γαs)
is invertible and

∥∥T−1(γαs)∥∥2 ≤ ε−1
0 . (4.17)
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We claim that the operator

Rl(a)= T
(
γαh−1)T−1(γαs)T(γαw∗) (4.18)

is a left regularizer of the operator T(a). Indeed, we have

Rl(a)T(a)= Rl(a)T
((
γα
(
w∗)−1

)(
γαs

)(
γαh

))
= P(γαh−1)T−1(γαs)P(γαs)(γαh)P−K1,

(4.19)

where K1 := P(γαh−1)T−1(γαs)P(γαw∗)(I − P)T(a) is compact (notice that

the Hankel operator Pc(I−P) is compact for every c ∈ H∞n×n(R)+Cn×n(Ṙ)).
Further,

Rl(a)T(a)= P
(
γαh−1)T−1(γαs)P(γαs)P(γαh)P+K2−K1

= P(γαh−1)P(γαh)P+K2−K1,
(4.20)

where

K2 := P(γαh)T−1(γαs)P(γαs)(I−P)(γαh)P (4.21)

is compact (because the Hankel operator (I − P)dP is compact for arbitrary

d∈H∞n×n(R)+Cn×n(Ṙ)). Finally,

Rl(a)T(a)= I−K3K2−K1, (4.22)

where K3 := P(γαh−1)(I − P)(γαh)P is compact since γαh ∈ H∞n×n(R) +
Cn×n(Ṙ). Thus, Rl(a) is really a left regularizer of T(a), and the estimate (4.14)

follows from (4.6) and (4.17).

We are now in a position to prove the main result of this section.

Theorem 4.5. Let b ∈APn×n(R) and suppose that condition (3.1) holds. Put

a(x)= b(α(x)). Then

(i) if T(b) is invertible, then T(a) is a Φ-operator;

(ii) if T(b) is left-invertible, then T(a) is a Φ+-operator;

(iii) if T(b) is right-invertible, then T(a) is a Φ−-operator.

Proof. We begin with the proof of (ii). Let {bj}∞j=1 ⊂ APWn×n(R) be a se-

quence such that

lim
j→∞

∥∥bj−b∥∥∞ = 0. (4.23)

Then, obviously,

lim
j→∞

∥∥γαbj−γαb∥∥∞ = 0. (4.24)
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By virtue of (4.23), the operators T(bj) are left-invertible for all sufficiently

large j and

∥∥T−1
l
(
bj
)∥∥

2 ≤ 2
∥∥T−1
l (b)

∥∥
2. (4.25)

For these j’s we infer from Lemma 4.4 that

∥∥Rl(γαbj)∥∥2 ≤ 2
∥∥bj∥∥∞∥∥b−1

j
∥∥∞∥∥T−1

l
(
bj
)∥∥

2

≤ C‖b‖∞
∥∥b−1

∥∥∞∥∥T−1
l (b)

∥∥
2,

(4.26)

where C is some constant independent of j. We have

Rl
(
γαbj

)
T(a)= Rl

(
γαbj

)
T
(
γαbj

)+Rl(γαbj)T(γαb−γαbj)
= I+Rl

(
γαbj

)
T
(
γαb−γαbj

)+Kj, (4.27)

where Kj are compact operators. By virtue of (4.24) and (4.26), the norm of the

operator

Ej := Rl
(
γαbj

)
T
(
γαb−γαbj

)
(4.28)

can be made as small as desired by choosing j large enough. Thus, for suffi-

ciently large j, the operator I+Ej is invertible. From equality (4.27) we deduce

that

(
I+Ej

)−1Rl
(
γαbj

)
T(a)= I+(I+Ej)−1Kj. (4.29)

Consequently, T(a) has a left regularizer and hence T(a) is a Φ+-operator.

Assertion (iii) follows from (ii) by passage to adjoints, and (i) obviously re-

sults from (ii) and (iii).

It should be noted that if b ∈APn×n(R) and T(b) is a Φ−, Φ+, or Φ-operator,

then T(b) is right-invertible, left-invertible, or invertible, respectively (see [16]).

Thus, both Fredholmness and semi-Fredholmness of Toeplitz operators with

symbols APn×n(R) are preserved after the change of variables x→α(x) in the

symbol provided (3.1) holds.

5. α-semi-almost periodic matrix functions. From [24] we know that every

matrix function b ∈ SAPn×n(R) can be represented in the form

b(x)= v(x)bl(x)+
(
1−v(x))br(x)+c0(x), (5.1)

where bl,br ∈ APn×n(R), c0 ∈ Cn×n(Ṙ) with c0(∞) = 0, and v is a scalar func-

tion from C(R) such that

v(−∞)= 1, v(+∞)= 0. (5.2)
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The matrix functions bl and br are determined uniquely and are called, respec-

tively, the left and right almost periodic representatives of b.

In this section we change condition (3.1) to the conditions

veiλα ∈H∞(R)+C(Ṙ) ∀λ > 0,

(1−v)eiλα ∈H∞(R)+C(Ṙ) ∀λ > 0,
(5.3)

where v ∈ C(R) is a fixed function subject to (5.2). For a fixed number δ > 1,

we introduce the functions

β+(x) :=α(x)−(logx)δ, x > 1,

β−(x) :=α(−x)+(logx)δ, x > 1.
(5.4)

We call a function β regular if it satisfies conditions (3.2), (3.3) with α replaced

by β.

Sufficient conditions for (5.3) are given by the following result of [2].

Theorem 5.1. If the functions β+ and β− are regular for some δ > 1, then

the homeomorphism α :R→R satisfies conditions (5.3).

Put

AP+(R) := AP(R)∩H∞(R), AP−(R) := AP(R)∩H∞(R). (5.5)

We say that a matrix function b ∈ APn×n(R) admits a canonical AP-factor-

ization if it can be represented in the form

b(x)= b̃−(x)b̃+(x) (5.6)

with b̃±(x) ∈ GAP±n×n(R). The Bohr mean value of a matrix function f in

APn×n(R) is defined by

M(f ) := lim
T→∞

1
2T

∫ T
−T
f (x)dx. (5.7)

The matrix

d(b) :=M
(
b̃−
)
M
(
b̃+
)
∈ Cn×n (5.8)

is called the geometric mean of the matrix function (5.6). It is well known (see,

e.g., [16] or [3, Section 8.2]) that d(B) is independent of the particular choice

of the canonical AP-factorization. Furthermore, it is easy to see that if we have

(5.6), then b can be written in the form

b(x)= b−(x)d(b)b+(x), (5.9)

where b± ∈ GAP±n×n(R) and

M
(
b+
)=M

(
b−
)= I. (5.10)
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Here is the main result of this section.

Theorem 5.2. Let α be a homeomorphism satisfying conditions (5.3) and let

b ∈ GSAPn×n(R) be a matrix function whose left and right almost periodic rep-

resentatives bl and br admit canonical AP-factorizations. Put a(x) = b(α(x)).
Then the operator T(a) is a Φ-operator if and only if

sp
(
d−1(br

)
d
(
bl
))∩(−∞,0]=∅, (5.11)

where sp(·) denotes the spectrum (= set of eigenvalues) of matrices in Cn×n.

Proof. We write the matrix functions bl and br in the form (5.9), (5.10):

bl(x)= bl−(x)d
(
bl
)
bl+(x), br(x)= br−(x)d

(
br
)
br+(x). (5.12)

Suppose first that

bl± ∈ GAPW±
n×n(R), br± ∈ GAPW±

n×n(R). (5.13)

Then we have the series representations

bl(r)±(x)= I+
∑
c±jl(r)e

iλ±jl(r)x, b−1
l(r)±(x)= I+

∑
d±jl(r)e

iκ±jl(r)x, (5.14)

where λ+jl(r) > 0, κ+jl(r) > 0, λ−jl(r) < 0, κ−jl(r) < 0,

∑∣∣c±jl(r)∣∣<∞, ∑∣∣d±jl(r)∣∣<∞. (5.15)

By virtue of conditions (5.3),

f+ := v ·γαbl++(1−v)·γαbr+ ∈H∞n×n(R)+Cn×n
(
Ṙ
)
,

g+ := v ·γαb−1
l+ +(1−v)·γαb−1

r+ ∈H∞n×n(R)+Cn×n
(
Ṙ
)
,

f− := v ·γαbl−+(1−v)·γαbr− ∈H∞n×n(R)+Cn×n
(
Ṙ
)
,

g− := v ·γαb−1
l− +(1−v)·γαb−1

r− ∈H∞n×n(R)+Cn×n
(
Ṙ
)
.

(5.16)

Moreover, since b ∈ GAPn×n(R), there exist matrix functions c+, c− in Cn×n(R)
such that c−(±∞)= 0, c+(±∞)= 0,

f̃+ := f++c+ ∈G
(
H∞n×n(R)+Cn×n

(
Ṙ
))
,

f̃− := f−+c− ∈G
(
H∞n×n(R)+Cn×n

(
Ṙ
))
.

(5.17)

Clearly, the matrix function a= γαb can be represented in the form

a(x)= f̃−(x)d(x)f̃+(x), (5.18)

where d ∈ Cn×n(R) and d(−∞) = d(bl), d(+∞) = d(br). Suppose that condi-

tion (5.11) is satisfied. Then T(d) is a Φ-operator (see [18, page 196]) with a
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regularizer R(d). Proceeding as in the proof of Lemma 4.4, one can show that

R(a) := T
(
f̃−1
+
)
R(d)T

(
f̃−1
−
)

(5.19)

is a regularizer of T(a), which implies that T(a) is a Φ-operator.

We now remove the extra assumption (5.13), that is, we merely assume that

bl± ∈ GAP+n×n(R), br± ∈ GAP±n×n(R). (5.20)

Since the sets APW±
n×n(R) are dense in the spaces AP±n×n(R), we obtain from

what has already been proved that the inclusions (5.16) and (5.17) are also true

in the general case, which implies that the operator (5.19) is a regularizer in

the general case, too. At this point we have proved the sufficiency of (5.11).

Finally, suppose that T(a) is a Φ-operator and that R(a) is a regularizer. It is

easy to see that the operator R(d) := T(f̃+)R(a)T(f̃−) is a regularizer of T(d).
Thus, T(d) is also a Φ-operator, and the well-known Fredholm criterion for

Toeplitz operators with symbols in C(R) (see, e.g., [18, page 196]) gives (5.11).

Let SAPWn×n(R) be the set of all functions b ∈ SAPn×n(R) whose almost

periodic representatives bl and br are in APWn×n(R).

Theorem 5.3. Let the homeomorphismα satisfy conditions (5.3) and let b be

a matrix function in SAPWn×n(R). Put a(x)= b(α(x)). If T(b) is a Φ-operator,

then T(a) is also a Φ-operator.

Proof. If T(b) with b ∈ SAPWn×n(R) is a Φ-operator, then T(bl) and T(br)
are invertible operators (see [14, 17], [3, Corollary 10.5]). Consequently, the

matrix functions bl and br admit canonical AP-factorizations with factors in

APW±
n×n(R) (see [14, 15] and [3, Lemma 9.7]). By virtue of Theorem 5.2, T(a)

is therefore a Φ-operator.
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