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We compute the K-groups for the Cuntz-Krieger algebras 04, ) where Ay (s,
is the Markov transition matrix arising from the kneading sequence ¥ (f,) of the
one-parameter family of real quadratic maps fj,.
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Consider the one-parameter family of real quadratic maps f, : [0,1] = [0,1]
defined by f,(x) = ux(1—x), with u € [0,4]. Using Milnor-Thurston kneading
theory [14], Guckenheimer [5] has classified, up to topological conjugacy, a cer-
tain class of maps, which includes the quadratic family. The idea of kneading
theory is to encode information about the orbits of a map in terms of infinite
sequences of symbols and to exploit the natural order of the interval to es-
tablish topological properties of the map. In what follows, I denotes the unit
interval [0,1] and ¢ the unique turning point of f,. For x €I, let

-1, if f}(x) >c,
en(x) =40, if fi'(x) =c, (1)
+1, iff;l(x) <c.

The sequence &(x) = (&,(x));_o is called the itinerary of x. The itinerary of
fu(c) is called the kneading sequence of f, and will be denoted by (f,).
Observe that &, (f,(x)) = en11(x), that is, e(fu(x)) = o&(x), where o is the
shift map. Let >’ = {—1,0,+1} be the alphabet set. The sequences on XN are
ordered lexicographically. However, this ordering is not reflected by the map-
ping x — £(x) because the map f, reverses orientation on [c,1]. To take this
into account, for a sequence € = (&,);,_, of the symbols —1, 0, and +1, another
sequence 0 = (0,)5_, is defined by 0,, = [l &. If € = &(x) is the itinerary
of a point x € I, then 0 = 0(x) is called the invariant coordinate of x. The
fundamental observation of Milnor and Thurston [14] is the monotonicity of
the invariant coordinates:

x<y=0(x)=<0(y). (2)
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We now consider only those kneading sequences that are periodic, that is,

S7{(fu) = EO(fu(C)) tr '5n—1(fu(C))30(fu(C)) " 'Sn—l(fu(c)) Tt

o o (3)

= (e0(fu(c)) -+ en1(fu(€)))” = (e1(c) - - - €n(0))
for some n € N. The sequences o (H(fy)) = &i+1(c)&2(c)--+,1=0,1,2,...,
will then determine a Markov partition of I into n — 1 line intervals {I,1,...,
In-1} [15], whose definitions will be given in the proof of Theorem 1. Thus, we
will have a Markov transition matrix Ay, defined by

1, if f,(intl;) 2 intl;,
0, otherwise.

Ag{(fu) = (aij) with aij = { 4)

It is easy to see that the matrix Ay, is not a permutation matrix and no row
or column of Ay, is zero. Thus, for each one of these matrices and following
the work of Cuntz and Krieger [3], one can construct the Cuntz-Krieger algebra
Oayy,,- I [2], Cuntz proved that

Ko(04) =77 /(1-AT)Z",  Ki(04) =ker(I-A':7" —7"), (5)

for an r X » matrix A that satisfies a certain condition (I) (see [3]), which is
readily verified by the matrices Ay y,). In [1], Bowen and Franks introduced the
group BF(A) :=7"/(1-A)Z" as an invariant for flow equivalence of topological
Markov subshifts determined by A.

We can now state and prove the following theorem.

THEOREM 1. LetH(fy) = (e1(c)ex(c) - - - €n(c))® for somen € N\{1}. Thus,

n-1

l
Ko(Oay ) =Za witha = ’1+lzlqei(c)
i

(6)

1

K, <©Ar7((fu)) {;0}’ l.fa f 0
, ifa=0.

PROOF. Set z; = &i(c)&j41(c)--- fori=1,2,....Let z; = fj(c) be the point
on the unit interval [0, 1] represented by the sequence z; for i = 1,2,.... We
have o(z;) = zj41 fori=1,...,n—1 and 0(z,) = z;. Denote by w the nxn
matrix representing the shift map o. Let Cy be the vector space spanned by the
formal basis {z1,...,z;,}. Now, let p be the permutation of the set {1,...,n},
which allows us to order the points z,...,z;, on the unit interval [0, 1], that is,

0<z,q) <z, < '+ <Zyp <L (7)
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’

Set xj:=z (i) with i = 1,...,n and let ™ denote the permutation matrix which
takes the formal basis {z],...,z,} to the formal basis {x1,...,x,}. We will de-
note by C; the (n—1)-dimensional vector space spanned by the formal basis
{xijs1—xi:i=1,...,mn—1}. Set

I = [xi,xi41] fori=1,...,n-1. (8)

Thus, we can define the Markov transition matrix Ay y,) as above. Let @ denote
the incidence matrix that takes the formal basis {x1,...,x,} of Cy to the formal
basis {x» — x1,...,xn — Xxn_1} of C;. Put n:= @m. As in [7, 8], we obtain an
endomorphism « of Ci, that makes the following diagram commutative:

Co—1 = 9)

C() T‘ Cl.

We have « = nwonT(nnT)~!. Remark that if we neglect the negative signs on
the matrix «, then we will obtain precisely the Markov transition matrix Ay,
In fact, consider the (n—1) X (n—1) matrix

1, O
B:= [ 0 ] (10)

1,

where 1,, and 1, are the identity matrices of ranks n; and ng, respectively,
with n; (ng) being the number of intervals I; of the Markov partition placed
on the left- (right-) hand side of the turning point of f,. Therefore, we have

Ag]((fu) :BO(. (11)

Now, consider the following matrix:

Yii = &i(c), i=1,...,n,
Yaho i= (yij) with 1y, =—¢(c), i=1,...,n, (12)
Yij =0, otherwise.

The matrix yy(s,) makes the diagram

Co——( (13)

Y (fu) L lﬁ

CO*H>Cl
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commutative. Finally, set 0yf,) := 0y(s,)w. Then, the diagram

C() $— Cl (14)

O3 (fu) L L Age(f)

COT'CI

is also commutative. Now, notice that the transpose of n has the following
factorization:

nT =YiX, (15)

where Y is an invertible (over Z) n X n integer matrix given by

0 1 0 0
S0 . :
Y = _ , (16)
0 0 0 1 0
1 -1 11

1 0 0
0 . .o
i:= S ol (17)
1
0 0

and X is an invertible (over Z) (n—1) X (n — 1) integer matrix obtained from
the (n — 1) x n matrix n’ by removing the nth row of n’. Thus, from the
commutative diagram

T

a——=q (18)

T T
sz(fu) L Lemfu)

€ ——— Co,
'7T
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we will have the following commutative diagram with short exact rows:

i p

0 C1 Co C()/C1 —0 (19)
N
0 C1 ; Co P C()/C1 H—O,

where the map p is represented by the 1 X7 matrix [0--- 01] and

A= XAy X 0 =Y 05, (20)

that is, A’ is similar to AaT(( ) over 7 and 0’ is similar to QaTC( ) over Z. Hence,
for example, by [10] we obtain, respectively,

7" (=AD" =7 (1 - Agp) 2

7"/ (1-0)Z" =7/ (1 - Ox(s,)) I" 1)
Now, from the last diagram we have, for example, by [9],
0= [f(‘)' ﬂ (22)
Therefore,
7l -ANzv =7 (1-0) 7",
(23)

7" (1= Ay 2V = 7 (1= Op,) ) 27

Next, we will compute Z" /(1 — Oy £,0)Z". From the previous discussions and
notations, the n xn matrix 0y y,) is explicitly given by

-&((c) &) 0 - 0
0 :
Oxfy) = 0 . (24)
—&n-1(c) En1(c)
0 0 0

Notice that the matrix 6y y,) completely describes the dynamics of f,. Finally,
using row and column elementary operations over Z, we can find invertible
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(over Z) matrices U; and U, with integer entries such that

n-1 1

1+ > []eio)
1=1i=1
1
1= 0yf,) = Ui ) U,. (25)
1
Thus, we obtain
Ko(Oayy, ) 22771 (1AL, )2V = 24, (26)
where
n-1 1
a=’1+ gi(c)|, meN\{1}. 27)
1=1i=1
O
EXAMPLE 2. Set
H(fu) = (RLLRRC)®, (28)
where R = -1, L = +1, and C = 0. Thus, we can construct the 5 x 5 Markov
transition matrix Ay s,) and the matrices Oq fu)» W, @, and TT:
0110 0 1 -1 0 O 0 0
-1 0 1 O 0 0
0 0 0 1 1
-1 0 0 1 0 0
Agy{(fu)Z 0 0 0 0 1 5 Gg((fu)= 1 0 0 0 1 0 y
0O 0 1 1 0
1100 0 1 0 0 O 0 -1
0 0 0 O 0 0
0O 1 0 0 0 O 1
0O 01 0 0 O 3
|00 0 1 0 O B 3 1
““looo o1 o 7 B + (29
0O 0 0 0 0 1 1 1
1 0 0 00 O
01 0 0 0 O
0O 0 1 0 0 O
0 0 0 0 0 1
'[T:
0O 0 01 0 O
0O 0 0 0 1 O
1 0 0 0 0 O
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We have
Ko(Oagp, ) =22 Ki(Oayy, ) = {03, (30)

REMARK 3. In the statement of Theorem 1 the case a = 0 may occur. This
happens when we have a star product factorizable kneading sequence [4]. In
this case the correspondent Markov transition matrix is reducible.

REMARK 4. In [6], Katayama et al. have constructed a class of C*-algebras
from the B-expansions of real numbers. In fact, considering a semiconjugacy
from the real quadratic map to the tent map [14], we can also obtain Theorem 1
using [6] and the A-expansions of real numbers introduced in [4].

REMARK 5. In [13] (see also [12]) and [11], the BF-groups are explicitly cal-
culated with respect to another kind of maps on the interval.
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