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We compute the K-groups for the Cuntz-Krieger algebras �A�(fµ)
, where A�(fµ)

is the Markov transition matrix arising from the kneading sequence �(fµ) of the
one-parameter family of real quadratic maps fµ .
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Consider the one-parameter family of real quadratic maps fµ : [0,1]→ [0,1]
defined by fµ(x)= µx(1−x), with µ ∈ [0,4]. Using Milnor-Thurston kneading

theory [14], Guckenheimer [5] has classified, up to topological conjugacy, a cer-

tain class of maps, which includes the quadratic family. The idea of kneading

theory is to encode information about the orbits of a map in terms of infinite

sequences of symbols and to exploit the natural order of the interval to es-

tablish topological properties of the map. In what follows, I denotes the unit

interval [0,1] and c the unique turning point of fµ . For x ∈ I, let

εn(x)=



−1, if fnµ (x) > c,

0, if fnµ (x)= c,
+1, if fnµ (x) < c.

(1)

The sequence ε(x) = (εn(x))∞n=0 is called the itinerary of x. The itinerary of

fµ(c) is called the kneading sequence of fµ and will be denoted by �(fµ).
Observe that εn(fµ(x)) = εn+1(x), that is, ε(fµ(x)) = σε(x), where σ is the

shift map. Let
∑ = {−1,0,+1} be the alphabet set. The sequences on

∑N are

ordered lexicographically. However, this ordering is not reflected by the map-

ping x → ε(x) because the map fµ reverses orientation on [c,1]. To take this

into account, for a sequence ε = (εn)∞n=0 of the symbols −1, 0, and +1, another

sequence θ = (θn)∞n=0 is defined by θn =
∏n
i=0 εi. If ε = ε(x) is the itinerary

of a point x ∈ I, then θ = θ(x) is called the invariant coordinate of x. The

fundamental observation of Milnor and Thurston [14] is the monotonicity of

the invariant coordinates:

x <y �⇒ θ(x)≤ θ(y). (2)
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We now consider only those kneading sequences that are periodic, that is,

�
(
fµ
)= ε0

(
fµ(c)

)···εn−1
(
fµ(c)

)
ε0
(
fµ(c)

)···εn−1
(
fµ(c)

)···
= (ε0

(
fµ(c)

)···εn−1
(
fµ(c)

))∞ ≡ (ε1(c)···εn(c)
)∞ (3)

for some n ∈ N. The sequences σi(�(fµ)) = εi+1(c)εi+2(c)··· , i = 0,1,2, . . . ,
will then determine a Markov partition of I into n−1 line intervals {I1, I2, . . . ,
In−1} [15], whose definitions will be given in the proof of Theorem 1. Thus, we

will have a Markov transition matrix A�(fµ) defined by

A�(fµ) := (aij) with aij =

1, if fµ

(
intIi

)⊇ intIj,

0, otherwise.
(4)

It is easy to see that the matrix A�(fµ) is not a permutation matrix and no row

or column of A�(fµ) is zero. Thus, for each one of these matrices and following

the work of Cuntz and Krieger [3], one can construct the Cuntz-Krieger algebra

�A�(fµ)
. In [2], Cuntz proved that

K0
(
�A
)� Zr /(1−AT )Zr , K1

(
�A
)� ker

(
I−At : Zr �→ Zr ), (5)

for an r × r matrix A that satisfies a certain condition (I) (see [3]), which is

readily verified by the matrices A�(fµ). In [1], Bowen and Franks introduced the

group BF(A) := Zr /(1−A)Zr as an invariant for flow equivalence of topological

Markov subshifts determined by A.

We can now state and prove the following theorem.

Theorem 1. Let �(fµ)= (ε1(c)ε2(c)···εn(c))∞ for some n∈N\{1}. Thus,

K0

(
�A�(fµ)

)
� Za with a=

∣∣∣∣∣1+
n−1∑
l=1

l∏
i=1

εi(c)

∣∣∣∣∣,

K1

(
�A�(fµ)

)
�

{0}, if a≠ 0,

Z, if a= 0.

(6)

Proof. Set zi = εi(c)εi+1(c)··· for i = 1,2, . . . . Let z′i = f iµ(c) be the point

on the unit interval [0,1] represented by the sequence zi for i = 1,2, . . . . We

have σ(zi) = zi+1 for i = 1, . . . ,n−1 and σ(zn) = z1. Denote by ω the n×n
matrix representing the shift map σ . Let C0 be the vector space spanned by the

formal basis {z′1, . . . ,z′n}. Now, let ρ be the permutation of the set {1, . . . ,n},
which allows us to order the points z′1, . . . ,z′n on the unit interval [0,1], that is,

0< z′ρ(1) < z
′
ρ(2) < ···< z′ρ(n) < 1. (7)
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Set xi := z′ρ(i) with i= 1, . . . ,n and let π denote the permutation matrix which

takes the formal basis {z′1, . . . ,z′n} to the formal basis {x1, . . . ,xn}. We will de-

note by C1 the (n−1)-dimensional vector space spanned by the formal basis

{xi+1−xi : i= 1, . . . ,n−1}. Set

Ii := [xi,xi+1
]

for i= 1, . . . ,n−1. (8)

Thus, we can define the Markov transition matrixA�(fµ) as above. Letϕ denote

the incidence matrix that takes the formal basis {x1, . . . ,xn} of C0 to the formal

basis {x2 −x1, . . . ,xn −xn−1} of C1. Put η := ϕπ . As in [7, 8], we obtain an

endomorphism α of C1, that makes the following diagram commutative:

C0
η

ω

C1

α

C0 η C1.

(9)

We have α = ηωηT(ηηT )−1. Remark that if we neglect the negative signs on

the matrix α, then we will obtain precisely the Markov transition matrix A�(fµ).

In fact, consider the (n−1)×(n−1) matrix

β :=
[

1nL 0

0 −1nR

]
, (10)

where 1nL and 1nR are the identity matrices of ranks nL and nR , respectively,

with nL (nR) being the number of intervals Ii of the Markov partition placed

on the left- (right-) hand side of the turning point of fµ . Therefore, we have

A�(fµ) = βα. (11)

Now, consider the following matrix:

γ�(fµ) := (γij) with



γii = εi(c), i= 1, . . . ,n,

γin =−εi(c), i= 1, . . . ,n,

γij = 0, otherwise.

(12)

The matrix γ�(fµ) makes the diagram

C0
η

γ�(fµ)

C1

β

C0 η C1

(13)
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commutative. Finally, set θ�(fµ) := θ�(fµ)ω. Then, the diagram

C0
η

θ�(fµ)

C1

A�(fµ)

C0 η C1

(14)

is also commutative. Now, notice that the transpose of η has the following

factorization:

ηT = YiX, (15)

where Y is an invertible (over Z) n×n integer matrix given by

Y :=




1 0 ··· 0

0 1 0 ··· 0
... 0

. . .
. . .

...
... 0

0 0 ··· 0 1 0

−1 −1 ··· −1 1



, (16)

i is the inclusion C1 ↩ C0 given by

i :=




1 0 0

0
. . .

. . .
...

...
. . . 0

1

0 ··· 0



, (17)

and X is an invertible (over Z) (n−1)× (n−1) integer matrix obtained from

the (n− 1)×n matrix ηT by removing the nth row of ηT . Thus, from the

commutative diagram

C1
ηT

AT
�(fµ)

C0

θT
�(fµ)

C1
ηT

C0,

(18)
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we will have the following commutative diagram with short exact rows:

0 C1
i

A′

C0
p

θ′

C0/C1

0

0

0 C1
i

C0 p C0/C1 0,

(19)

where the map p is represented by the 1×n matrix [0 ··· 0 1] and

A′ =XAT�(fµ)X−1, θ′ = Y−1θT�(fµ)Y , (20)

that is, A′ is similar to AT�(fµ) over Z and θ′ is similar to θT�(fµ) over Z. Hence,

for example, by [10] we obtain, respectively,

Zn−1/
(
1−A′)Zn−1 � Zn−1/

(
1−A�(fµ)

)
Zn−1,

Zn/
(
1−θ′)Zn � Zn/(1−θ�(fµ)

)
Zn.

(21)

Now, from the last diagram we have, for example, by [9],

θ′ =
[
A′ ∗
0 0

]
. (22)

Therefore,

Zn−1/
(
1−A′)Zn−1 � Zn/(1−θ′)Zn,

Zn−1/
(
1−A�(fµ)

)
Zn−1 � Zn/(1−θ�(fµ)

)
Zn.

(23)

Next, we will compute Zn/(1−θ�(fµ))Zn. From the previous discussions and

notations, the n×n matrix θ�(fµ) is explicitly given by

θ�(fµ) :=




−ε1(c) ε1(c) 0 ··· 0
... 0

. . .
. . .

...
...

. . . 0

−εn−1(c) εn−1(c)
0 0 ··· 0



. (24)

Notice that the matrix θ�(fµ) completely describes the dynamics of fµ . Finally,

using row and column elementary operations over Z, we can find invertible
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(over Z) matrices U1 and U2 with integer entries such that

1−θ�(fµ) =U1




1+
n−1∑
l=1

l∏
i=1

εi(c)

1
. . .

1



U2. (25)

Thus, we obtain

K0

(
�A�(fµ)

)
� Zn−1/

(
1−AT�(fµ)

)
Zn−1 � Za, (26)

where

a=
∣∣∣∣∣1+

n−1∑
l=1

l∏
i=1

εi(c)

∣∣∣∣∣, n∈N\{1}. (27)

Example 2. Set

�
(
fµ
)= (RLLRRC)∞, (28)

where R = −1, L = +1, and C = 0. Thus, we can construct the 5×5 Markov

transition matrix A�(fµ) and the matrices θ�(fµ), ω, ϕ, and π :

A�(fµ) =




0 1 1 0 0

0 0 0 1 1

0 0 0 0 1

0 0 1 1 0

1 1 0 0 0



, θ�(fµ) =




1 −1 0 0 0 0

−1 0 1 0 0 0

−1 0 0 1 0 0

1 0 0 0 −1 0

1 0 0 0 0 −1

0 0 0 0 0 0



,

ω=




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0



, ϕ =




−1 1

−1 1

−1 1

−1 1

−1 1



,

π =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 0



.

(29)
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We have

K0

(
�A�(fµ)

)
� Z2, K1

(
�A�(fµ)

)
� {0}. (30)

Remark 3. In the statement of Theorem 1 the case a = 0 may occur. This

happens when we have a star product factorizable kneading sequence [4]. In

this case the correspondent Markov transition matrix is reducible.

Remark 4. In [6], Katayama et al. have constructed a class of C∗-algebras

from the β-expansions of real numbers. In fact, considering a semiconjugacy

from the real quadratic map to the tent map [14], we can also obtain Theorem 1

using [6] and the λ-expansions of real numbers introduced in [4].

Remark 5. In [13] (see also [12]) and [11], the BF-groups are explicitly cal-

culated with respect to another kind of maps on the interval.
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