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THE DIOPHANTINE EQUATION
ax2+2bxy−4ay2 =±1

LIONEL BAPOUNGUÉ
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We discuss, with the aid of arithmetical properties of the ring of the Gaussian
integers, the solvability of the Diophantine equation ax2 + 2bxy − 4ay2 = ±1,
where a and b are nonnegative integers. The discussion is relative to the solution
of Pell’s equation v2−(4a2+b2)w2 =−4.
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1. Introduction. The objective of this paper is the expansion and also the

extension of [1, Section 2]. More precisely, it deals with the complete treatment

of the solvability of the Diophantine equation

ax2+2bxy−4ay2 =±1, (1.1)

where a and b are positive integers. From [2, Proposition 1], (1.1) is always

solvable if a = 1. Hence, we may assume that a > 1. Moreover, we restrict

oneself to gcd(a,2b)= 1. In the opposite case, (1.1) is insolvable.

We denote by δ = 4a2 +b2 the discriminant of the quadratic form ax2 +
2bxy−4ay2.

If a > 1, b ≥ 0, and gcd(a,2b) = 1, [2, Theorem 1] shows that (1.1) is in-

solvable if δ is a square in Z. Hence, we will assume also that δ = 4a2+b2 is

a nonsquare in Z, which requires b to be odd. Then δ verifies δ ≡ 5(mod8).
Thus, (cf. [4]) the algebraic integers ofQ(

√
δ) are the numbers (1/2)(v+w√δ)

with v,w ∈ Z of the same parity. Consequently, if (1/2)(v+w√δ) is a unit of

Q(
√
δ), we must have

v2−δw2 =±4. (1.2)

Conversely, if (v,w) is an integer solution of (1.2), then (1/2)(v+w√δ) is

an integer of Q(
√
δ) (its trace is v and its norm, by (1.2), is ±1) and, hence, a

unit of Q(
√
δ). Writing (1/2)(v0+w0

√
δ) for the fundamental unit of Q(

√
δ),

we see that the solutions in pairs of natural numbers (v,w) of (1.2) comprise

the values of the sequence (vn,wn) (n≥ 1) defined by setting

1
2

(
vn+wn

√
δ
)
=
(
v0+w0

√
δ

2

)n
. (1.3)
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Hence, we remark easily (cf. [2]) that if (x,y) is a solution of (1.1), then

v =−bx2+8axy+4by2, w = x2+4y2 (1.4)

verify with δ= 4a2+b2 (a > 1, b ≥ 1, and gcd(a,2b)= 1) the Pell’s equation

v2−δw2 =−4 with v,w odd. (1.5)

Hence, our study will be based on (1.5). Thus, assuming its solvability, we

give in Section 2 a necessary and sufficient condition for (1.1) to be solvable

(Theorem 2.3) by methods using the arithmetic of the order Z[2i] of index

2, included in the principal ring Z+ Z[i]. In the remainder of Section 2, we

establish that if (1.1) is solvable, then ±a is the norm of an element of Z[
√
δ]

(Proposition 2.6). Next, we prove in Section 3 that when δ is given, among all

the pairs of positive coprime odd integers (a,b) satisfying δ= 4a2+b2, there

is exactly one pair for which (1.1) is solvable (Theorem 3.1). That unique pair

will be constructed (Theorem 4.1) in Section 4 with the aid of the following

result proved in [5].

Theorem 1.1 (Thue). If α and δ are integers satisfying δ > 1, gcd(α,δ)= 1,

andm the least integer greater than
√
δ, there exist x and y in ]0,m[ such that

αy ≡±x(modδ).

When solutions exist, we show using any of them in Section 5 that (1.1)

possesses an infinity of solutions (Theorem 5.1); afterwards, we describe using

it a family (Proposition 5.2). We give the conclusion of our paper in Section 6

with some numerical examples.

2. The case a> 1, δ odd nonsquare, and (1.5) solvable with v , w odd

2.1. Preliminaries. Let v ,w be odd integers greater than or equal to 1 such

that v2−δw2 =−4. It is clear that

gcd(v,w)= 1 (2.1)

because if v and w have a common prime factor d, then d divides v2−δw2 =
−4 and, therefore, d divides also 2. Write (1.5) in the form

δw2 = (v+2i)(v−2i). (2.2)

The two factors of the right-hand side of (2.2) are relatively prime in Z[i] since

any common divisor would divide 4i, but w is odd, hence, gcd(w,4i) = 1.

Hence, in Z[i], we have

gcd(v+2i,v−2i)= 1. (2.3)

Moreover, since (1.5) is written in the form (2.2), we will manipulate the ele-

ments of the nonmaximal order Z[2i] of index 2, for which we have shown



THE DIOPHANTINE EQUATION ax2+2bxy−4ay2 =±1 2243

in [3] that the half group F defined by

F= {v+2i∈ Z[2i] : gcd
(
N(v+2i),2

)= 1
}

(2.4)

is factorial, where N(α) denotes the norm of α. Thus, the remark of [2, Propo-

sition 4] applied to F enables us to state the following definition.

Definition 2.1. An odd solution (v,w)∈ Z2 of (1.5) is said to be

(i) violain if, in F, b+2ai divides v+2i or v−2i;
(ii) monic if, in F, b+2ai= gcd(v+2i,δ) or gcd(v−2i,δ).

Proposition 2.2. Any odd violain solution (v,w)∈ Z2 of (1.5) is monic.

2.2. One criterion of solvability for (1.1). We prove the following theorem.

Theorem 2.3. If a ≥ 3 and b ≥ 1 are odd integers with gcd(a,2b) = 1 and

δ= 4a2+b2 nonsquare in Z, the following statements are equivalent:

(i) (1.1) has a solution (x,y)∈ Z2;

(ii) (1.5) has an odd violain solution (v,w)∈ Z2;

(iii) the odd minimal solution (v0,w0)∈ Z2 (v0 > 0, w0 > 0) of (1.5) is monic.

Proof. (i)⇒(ii). Let (x,y)∈ Z2 be a solution of (1.1). We set

ε = sgn
(
ax2+2bxy−4ay2),

v = ε(bx2−8axy−4by2), w = x2+4y2.
(2.5)

As b and x are odd, v and w are also odd. Then we have

v+2i= ε(bx2−8axy−4by2)+2ε
(
ax2+2bxy−4ay2)i (2.6)

so that

v+2i= ε(b+2ai)(x+2iy)2, (2.7)

where we see that (v,w)∈ Z2 is an odd violain solution of (1.5). Further, taking

the norm of the two sides of (2.7), we obtain

v2+4= (b2+4a2)(x2+4y2)2 = δw2 (2.8)

so that (v,w) is an odd integer solution of (1.5).

(ii)⇒(iii). Let (v,w) ∈ Z2 be an odd integer violain solution of (1.5). Then

from equality (2.7), we have

gcd(v+2i,δ)= (b+2ai)gcd
(
(x+2iy)2,b−2ai

)
. (2.9)

Now, we show that

gcd
(
(x+2iy)2,b−2ai

)= 1. (2.10)
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If there exists α∈ F, α is not a unit, that is, α≠±1 such that

α|x+2iy, α|b−2ai, (2.11)

then as (2.7) implies

v = ε(bx2−8axy−4by2), w = x2+4y2, (2.12)

we deduced that, in F,

v ≡ ε[b(−2iy)2−8a(−2iy)y−4by2]
≡−8εy2(b−2ai)≡ 0(modα),

w ≡ 0(modα),

(2.13)

that is, α is also a divisor of v andw, contradicting the fact that gcd(v,w)= 1

according to (2.1). Hence, we have

gcd(v+2i,δ)= b+2ai. (2.14)

Then we show that (2.14) is true for v0 arising from the odd minimal solution

of (1.5). As (v,w) is an odd solution of (1.5), we have by the theory of the Pellian

equation

v+w√δ
2

=




(
v0+w0

√
δ

2

)2n+1

, if v > 0,

−
(
v0−w0

√
δ

2

)2n+1

, if v < 0,

(2.15)

for some integer n≥ 0. Developing (2.15), we obtain

4nv =




v2n+1
0 +

(
2n+1

2

)
v2n−1

0 w2
0δ+··· , if v > 0,

−v2n+1
0 −

(
2n+1

2

)
v2n−1

0 w2
0δ−··· , if v < 0,

(2.16)

where the terms are all divisible by δ except v2n+1
0 . Hence, as v2

0 ≡−4(modδ),
we have

v ≡

(−1)nv0(modδ), if v > 0,

(−1)n+1v0(modδ), if v < 0.
(2.17)

From (2.14) and (2.17), we deduce that

b+2ai= gcd(v+2i,δ)= gcd
(±v0+2i,δ

)= gcd
(
v0±2i,δ

)
(2.18)

as required. This proves that (v0,w0) is a monic solution of (1.5).
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(iii)⇒(i). Suppose that (v0,w0) is a monic solution of (1.5). The equality

v2
0 −δw2

0 =−4 (2.19)

may be expressed in the form

(
v0+2i
b+2ai

)(
v0−2i
b−2ai

)
=w2

0 , (2.20)

where, from (2.3), (v0+2i)/(b+2ai) and (v0−2i)/(b−2ai) are coprime in F.

Hence, for some unit ε =±1 and integers x, y , we have

v0+2i
b+2ai

= ε(x+2iy)2, w0 = x2+4y2. (2.21)

Taking

v0+2i= ε(b+2ai)(x+2iy)2 (2.22)

and equating coefficients of i on both sides of (2.22), we obtain

ax2+2bxy−4ay2 = ε, (2.23)

showing that (x,y)∈ Z2 is a solution of (1.1).

Remark 2.4. The proof above also confirms the following result.

Theorem 2.5. If a ≥ 3 and b ≥ 1 are odd integers with gcd(a,2b) = 1 and

δ= 4a2+b2 nonsquare in Z, the following statements are equivalent:

(i) (1.1) has a solution (x,y)∈ Z2;

(ii) (1.5) has an odd violain solution (v,w)∈ Z2;

(iii) (1.5) has an odd monic solution (v,w)∈ Z2.

We have also the following proposition.

Proposition 2.6. Let a ≥ 3 and b ≥ 1 be odd integers with gcd(a,2b) = 1

and δ = 4a2 +b2 nonsquare in Z. If the Diophantine equation (1.1) has any

solution (x,y)∈ Z2, then

a=±N(y√δ+µ) or ± 1
4
N
(
x
√
δ+σ), µ,σ ∈ Z. (2.24)

In other words, ±a (resp., ±4a) is the norm of an element of Z[
√
δ].

Proof. We suppose that (x,y)∈ Z2 is any solution of (1.1). Then the equa-

tion

at2+2bty−4ay2−ε = 0 (ε =±1) (2.25)

has an integer root, hence its discriminant is a square in Z:

b2y2+4a2y2−εa= µ2, µ ∈ Z, (2.26)
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whence

εa=y2(b2+4a2)−µ2 = δy2−µ2, µ ∈ Z, (2.27)

so that

εa=N(y√δ+µ), µ ∈ Z. (2.28)

Exchanging the roles of x and y , we obtain also

4εa=N(x√δ+σ), σ ∈ Z. (2.29)

3. Uniqueness of the pair (a,b), δ given. We assume in this section that δ
is given and can be factorized into several sums of two squares in Z. Then we

use Theorem 2.3 to show that among all the pairs of positive integers (a,b),
there is exactly one pair for which (1.1) is solvable.

Theorem 3.1. Let δ be an odd nonsquare positive integer for which (1.5) has

an odd solution (v,w) ∈ Z2. Then among all the pairs of odd positive coprime

integers (a,b) satisfying δ = 4a2+b2, there is exactly one pair (a,b) = (A,B)
such that (1.1) is solvable.

Proof. Let (v,w)∈ Z2 be any odd violain solution of (1.5). We define pos-

itive integers A and B as follows:

A= |a|, B = b. (3.1)

Let g = gcd(a,b). Then

v+2i= g(α+2iβ) �⇒ 1= gβ, (3.2)

hence g = 1. Since (v,w)∈ Z2 is an odd solution of (1.5), we have δ≡ 5(mod8),
and thus a and b are odd. Hence, we have

gcd(A,B)= 1 (3.3)

with both A and B all odd. Then we show that δ= 4A2+B2.

From the definition of A and B, we see that B+2Ai|v+2i or v−2i. Hence,

we may assume, for example, that B+2Ai|v+2i. Then (1.5) may be expressed

in the form

v+2i
B+2Ai

(v−2i)= δ
B+2Ai

w2, (3.4)

where (v+2i)/(B+2Ai) and δ/(B+2Ai) are coprime elements of F (since v ,

δ, and B are odd). Equation (3.4) shows that δ/(B+2Ai) divides v −2i, but
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δ/(B+2Ai) also divides δ, therefore δ/(B+2Ai) divides

gcd(v−2i,δ)= B−2Ai, (3.5)

in F, and so

δ|B2+4A2. (3.6)

On the other hand, since B+2Ai|δ, taking conjugates, we obtain B−2Ai|δ.

Let π ∈ Z[i] be any prime factor of B+2Ai and B−2Ai. Then we have

B2+4A2

π

∣∣∣∣δ. (3.7)

Since (v,w) is any odd violain solution of (1.5), we have

π
∣∣∣∣ v+2i
B+2Ai

, π
∣∣∣∣ v−2i
B−2Ai

, (3.8)

and as v ≡ B(mod2), [2, Lemma 2] applied to Z[i] shows that π = 1, then the

relation (3.7) becomes

B2+4A2|δ. (3.9)

Thus, δ= 4A2+B2 follows from (3.6) and (3.9). Hence, δ= 4A2+B2 is a decom-

position of δ which satisfies statement (ii) of Theorem 2.3. So, by Theorem 2.3,

the equation

Ax2+2Bxy−4Ay2 =±1 (3.10)

is solvable. A and B are unique.

Applying Theorems 2.3 (or 2.5) and 3.1, we obtain the following corollary.

Corollary 3.2. If δ ≡ 5(mod8) is a prime number for which (1.5) is solv-

able, d, e denote integers such that δ = 4d2 + e2 (they are odd, unique, and

positive), then the Diophantine equation

dx2+2exy−4dy2 =±1 (3.11)

is solvable.

Proof. This results from the fact that any prime number δ of the form

4m+1 may be represented as the sum of two squares (cf. [5]).

4. Construction of (A,B), δ given. We show in this section how the pair

(A,B) can be constructed.
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Theorem 4.1. Let δ be an odd nonsquare positive integer such that (1.5) is

solvable in odd integers (v,w)∈ Z2. Then there exists a unique pair of coprime

odd integers (a,b) satisfying

b±av ≡ 0(modδ),

0<a<
√
δ, 0< b <

√
δ,

δ= 4a2+b2.

(4.1)

Then, for that unique pair (a,b), (1.1) is solvable in (x,y)∈ Z2.

Proof. Taking α= v in Theorem 1.1, we see that there exist integers a> 0

and b > 0 such that

b±av ≡ 0(modδ), a <
√
δ, b <

√
δ. (4.2)

Since (v,δ)= 1, we have

b2+4a2 ≡ a2v2+4a2 ≡−4a2+4a2 ≡ 0(modδ). (4.3)

But 0< b2+4a2 < 5δ, hence the equations

b2+4a2 = 2δ,3δ,4δ (4.4)

are insolvable in Z since, modulus 4, the first and the second congruences

b2 ≡ 2,3 are impossible and the third imposes b to be even. Hence, we have

δ= 4a2+b2, (4.5)

which verifies δ ≡ 5(mod8) since (v,w) ∈ Z2 is an odd solution of (1.5), and

thus a and b are both odd.

Next, we show that if (a,b) satisfies (4.2) and (4.5), then gcd(a,b)= 1.

Let g = gcd(a,b), and set a= ga′, b = gb′. Then (4.5) becomes

(b′)2+4(a′)2 = δ1 (4.6)

with δ1 = δ/g2. Relations (4.2) show that there exists λ ∈ Z such that b =
±av+λδ, and thus b′ = ±a′v+λgδ1. Replacing b′ in (4.6), we obtain

(±a′v+λgδ1
)2+4(a′)2 = δ1, (4.7)

and, using (1.5), we deduce from it that

g
(
w2(a′)2±2a′λv+λ2gδ1

)= 1, (4.8)

proving that g = 1.
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Now, we show that (a,b) is unique. We suppose that (a1,b1) is another

solution of (4.2). Then from congruences

b+av ≡ b1+a1v ≡ 0(modδ) (4.9)

or

b−av ≡ b1−a1v ≡ 0(modδ), (4.10)

we see that

bb1+4aa1 ≡ 0(modδ), ab1−a1b ≡ 0(modδ). (4.11)

From the product of the two following expressions:

b2+4a2 = δ, b2
1+4a2

1 = δ, (4.12)

we deduce that

(
bb1+4aa1

)2+4
(
ab1−a1b

)2 = δ2 (4.13)

so that (dividing by δ2)

(
bb1+4aa1

δ

)2

+4
(
ab1−a1b

δ

)2

= 1, (4.14)

which gives

bb1+4aa1 =±δ, ab1−a1b = 0. (4.15)

Relations (4.15) impose

(
a1,b1

)=±(a,b). (4.16)

Thus, there exists a unique solution of (4.2) satisfying a> 0, b > 0.

Finally, our last assertion is to prove that (a,b) defined by (4.1) satisfies

Theorem 2.3(ii). We suppose that

b±av ≡ 0(modδ). (4.17)

As v2 ≡−4(modδ), multiplying (4.17) by v , we obtain

bv ≡±av2 ≡±4a(modδ), (4.18)

and so

v±2i
b+2ai

= bv±4a
δ

−2
(±b+av

δ

)
i (4.19)
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is an element of F. Thus

b+2ai|v±2i. (4.20)

This proves that (v,w) is an odd violain solution of (1.5). So, from Theorem

2.3, (1.1) is solvable in integers (x,y)∈ Z2.

Remark 4.2. Denoting by (v0,w0) the odd minimal solution of (1.5), we

can easily determine A and B, such that B+2Ai is the gcd(v0±2i,δ), using

the following algorithm:

(1) (i) factorize δ in Z;

(ii) calculate the norm of v0+2i and factorize it in Z;

(2) factorize the prime factors obtained in F;

(3) deduce from (2) the common divisors of δ and v0+2i.

5. Complete set of solutions of (1.1). First of all, we prove the following

theorem.

Theorem 5.1. Under the conditions of Theorem 2.3, the Diophantine equa-

tion (1.1) has an infinity of solutions in Z.

Proof. We assume that (1.1) has a solution (x0,y0) ∈ Z2. Then we have

gcd(x0,y0)= 1, hence there exists (a,b)∈ Z2 such that

ax0+by0 = 1. (5.1)

We set

(
x
y

)
=
(
x0 −β
y0 α

)(
X
Y

)
,

g(X,Y)= f(x,y)= ax2+2bxy−4ay2.

(5.2)

Then g and f are two equivalent quadratic forms. Further

g(X,Y)= εX2−2BXY −CY 2, B,C ∈ Z, (5.3)

with

ε = ax2
0+2bx0y0−4ay2

0 ,

B = (aβ−bα)x0+(bβ+4aα)y0,

C = aβ2+2bαβ+4aα2.

(5.4)

But the equations

f(x,y)= ε, g(X,Y)= ε (5.5)
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are equivalent, hence as

g(X,Y)= εN(X−θY), (5.6)

where θ is a root of the equation

t2−εBt+εC = 0, (5.7)

we conclude that if f(x,y)= ε has a solution in Z, it has an infinity of solutions

in Z.

Now, we describe the family of solutions of (1.1).

Proposition 5.2. Under the conditions of Theorem 2.3, let (x0,y0) be a

particular solution of (1.1). Then the set of solutions (x,y) of (1.1) is given by

ax+by+y
√
δ=±

(
v0+w0

√
δ

2

)3n(
ax0+by0+y0

√
δ
)

(5.8)

in which (v0,w0) is the minimal solution of (1.5) and n∈ Z.

Proof. Let (x0,y0) be a particular solution of (1.1). We show how all the

solutions (x,y) of (1.1) may be obtained in terms of (x0,y0) and the minimal

solution (v0,w0) of (1.5). If (x,y) is any solution of (1.1) and if we set

J = ax+by+y√δ
ax0+by0+y0

√
δ
, (5.9)

the norm of J is

(ax+by)2−δy2(
ax0+by0

)2−δy2
0

= a
(
ax2+2bxy−4ay2

)
a
(
ax2

0+2bx0y0−4ay2
0

) , (5.10)

that is, ±1.

Moreover, J is of the form D+E√δ, where D and E are integers given by

D = axx0+b
(
xy0+x0y

)−4ayy0,

E = x0y−xy0.
(5.11)

Hence, by the theory of the Pellian equation, we have

J =±
(
v0+w0

√
δ

2

)3n

, (5.12)

where n∈ Z. Thus, we have shown the existence of an integer n such that we

have (5.8).

Conversely, let x and y be defined by (5.8) for some n ∈ Z. Taking norms

of both sides of (5.8), we see that x and y verify (1.1). It remains to show that

they are both integers.
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Define integers M and N by

M+N
√
δ=±

(
v0+w0

√
δ

2

)3n

. (5.13)

Then equating coefficients in (5.8), we obtain

ax+by =M(ax0+by0
)+δNy0,

y =My0+N
(
ax0+by0

)
.

(5.14)

Clearly, y ∈ Z. Using δ = 4a2 + b2, we obtain

x = (M−bN)x0+4aNy0, (5.15)

so that x is also an integer.

6. Numerical examples

Example 6.1. Ifa= 19 andb = 71, thenδ= 4(19)2+712 = 6485≡ 5(mod8)
is nonsquare such that (v0,w0)= (1369,17) is the minimal solution of (1.5). In

this case, gcd(1369+2i,6485)= 71+38i and Theorem 2.3 shows that (1.1) is

solvable; in fact, it is 19x2+142xy−76y2 =−1 ((x,y)= (1,2) is a solution).

Example 6.2. If a = 3 and b = 5, then δ = 4(3)2 + 52 = 61 ≡ 5(mod8)
is prime such that (v,w) = (39,5) is a solution of (1.5); Corollary 3.2 shows

that (1.1) is solvable; in fact, it is 3x2+10xy −12y2 = 1 ((x,y) = (1,1) is a

solution).

Example 6.3. In case δ = 2941 = 4(25)2+212 = 4(27)2+52, we have δ ≡
5(mod8) nonsquare such that (v0,w0) = (705,13) is the minimal solution of

(1.5). As gcd(7054+2i,2941)= 21− 50i, Theorems 2.3 and 3.1 show that (1.1)

is solvable only in the case when (a,b)= (25,21); in fact, it is 25x2+42xy−
100y2 =−1 ((x,y)= (−3,1) is a solution).

The equation 27x2+10xy−108y2 =±1 is insolvable.

Example 6.4. Take δ = 3077. We have δ ≡ 5(mod8) nonsquare such that

(v0,w0) = (943,17) is the minimal solution of (1.5). The candidates for the

unique pair (a,b) satisfying (4.1) must be solutions of δ = 4a2+b2. That is,

(a,b) = ±(13,49),±(23,31). The only pair satisfying b+av0 ≡ 0(modδ) is

(a,b) = (13,49) so that (13,49) is the unique pair for which (1.1) is solvable;

in fact, it is 13x2+98xy−52y2 = 1 ((x,y)= (1,2) is a solution).

The equation 23x2+62xy−92y2 =±1 is insolvable.
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