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This paper is the third in a series of papers studying equivalence classes of fuzzy
subgroups of a given group under a suitable equivalence relation. We introduce
the notion of a pinned flag in order to study the operations sum, intersection and
union, and their behavior with respect to the equivalence. Further, we investigate
the extent to which a homomorphism preserves the equivalence. Whenever the
equivalences are not preserved, we have provided suitable counterexamples.
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1. Introduction. For the benefit of the reader and also to fix notations, we

recall the following from [3].

We use I= [0,1], the real unit interval, as a chain with the usual ordering in

which ∧ stands for infimum (or intersection) and ∨ stands for supremum (or

union).

A fuzzy subset of a set X is a mapping µ : X → I. The union, intersection

of two fuzzy sets, and complementation of a fuzzy set are defined using sup

pointwise, inf pointwise, and 1−µ operator pointwise, respectively. We denote

the set of all fuzzy subsets of X by IX . Further, we denote fuzzy sets by the

Greek letters µ, ν , η, and so forth. If X is a finite group (which is what we will

be interested in this paper), a fuzzy set µ is said to be a fuzzy subgroup if

µ(x+y) ≥ µ(x)∧µ(y) for all x,y ∈ X and µ(x) = µ(−x). Without loss of

generality, we assume that µ(0)= 1. From this assumption, we notice that the

only admissible fuzzy subgroup of the trivial group is µ(0)= 1.

We define an equivalence relation ∼ on IX as follows: µ ∼ ν if and only if

(i) for all x,y ∈X, µ(x) > µ(y) if and only if ν(x) > ν(y),
(ii) µ(x)= 0 if and only if ν(x)= 0.

It is easily checked that this relation is indeed an equivalence relation on IX

and when restricted to 2X , this relation coincides with an equality of sets. We

denote this equivalence relation by µ ∼ ν . Originally, this idea of equivalence

was prompted by [3, 4, 5].

Note 1.1. The condition, µ(x)= 0 if and only if ν(x)= 0, simply says that

the supports of µ and ν are equal, where by support we mean suppµ = {x ∈
X : µ(x) > 0}. The above condition cannot be made redundant since it is an

essential part of the equivalence relation.
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Throughout this paper, by a group G we mean a finite group. By a flag we

mean a chain of subgroups of the form 0 ⊂ G1 ⊂ G2⊂··· ⊂ Gn = G. For some

examples of flags used in this paper, we refer to [1]. In [1], flags were referred

to as series.

We recall from [4] that a keychain l means a set of real numbers in I of the

form 1≥ λ1 ≥ λ2 ≥ ··· ≥ λn ≥ 0, where the λi’s are not all necessarily distinct.

The λi’s are called pins. By a pinned flag, we mean a pair (�, l), of a flag � and

a keychain l, written as follows:

01 ⊂G1
λ1 ⊂G2

λ2⊂··· ⊂Gnλn. (1.1)

We associate the following fuzzy subgroup with such a pinned flag (�, l):

µ(x)=




1, x = 0,

λ1, x ∈G1 \{0},
λ2, x ∈G2 \G1,
...

λn, x ∈Gn \Gn−1,

(1.2)

where the component Gn is the whole group G. We denote this simply by

Gnλn = Gλn . That µ is indeed a fuzzy subgroup on G may be quickly verified

using the definition. In this case we say that µ is represented by the pinned flag

01 ⊂G1
λ1 ⊂G2

λ2⊂··· ⊂Gnλn. (1.3)

Conversely, every fuzzy subgroup µ may be decomposed into a pinned flag

as above by considering suitable α-cuts. For further details, see [3, 4]. Similar

techniques have been used in [2].

2. Homomorphisms and equivalences. In this section, given a homomor-

phism between two groups, we look at the equivalence classes of homomorphic

images and preimages of fuzzy subgroups. Firstly, we recall that if f : G→H
is a homomorphism, by f(µ) we mean the image of a fuzzy subset µ of G
and it is a fuzzy subset of H defined by, for h ∈ H, (f (µ))(h) = sup{µ(g) :

g ∈ G, f(g) = h} if f−1(h) ≠∅ and f(µ)(h) = 0 if f−1(h) = ∅. Similarly, if

ν is a fuzzy subset of H, the preimage of f−1(ν) is a fuzzy subset of G and

is defined by (f−1(ν))(g) = ν(f(g)). The subgroup property is transferred

to images and preimages by a homomorphism between groups. For further

properties of images and preimages of fuzzy sets under a mapping, see [6].

Throughout this section, we suppose that f :G→H is a homomorphism from

a group G to H.

Proposition 2.1. If µ ∼ ν , then f(µ)∼ f(ν).
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Proof. Clearly, suppµ = suppν implies f(suppµ) = f(suppν), which in

turn implies suppf(µ)= suppf(ν). For the other part, let x,y ∈H such that

f(µ)(x) > f(µ)(y). It is enough to show that f(ν)(x) > f(ν)(y). Now, there

is an x′ ∈ G such that f(x′) = x and µ(x′) > µ(y ′) for all y ′ ∈ G such that

f(y ′)=y . Since µ ∼ ν , ν(x′) > ν(y ′). This in turn implies f(ν)(x) > f(ν)(y).
Thus, f(µ)∼ f(ν).

It is straightforward to check that if µ ∼ ν in H, then f−1(µ)∼ f−1(ν) in G.

Also, one could consider the behavior of inequivalent fuzzy subgroups under

a homomorphism. In general, one would expect inequivalent fuzzy subgroups

to have inequivalent images, but the following example illustrates that two

inequivalent fuzzy subgroups may have equivalent images under a homomor-

phism.

For the next two examples, consider Z6 = {0,1,2,3,4,5} as a given group

and f : Z6 → Z6 defined by f(1)= 2 as a given homomorphism.

Example 2.2. Let

µ(x)=




1, x = 0,
1
2
, x ∈ Z2 \0,

1
4
, otherwise,

ν(x)=




1, x = 0,
1
2
, x ∈ Z3 \0,

1
4
, otherwise.

(2.1)

Clearly, µ is inequivalent to ν . But

f(µ)(x)=



1, x = 0,
1
4
, otherwise,

f (ν)(x)=



1, x = 0,
1
2
, otherwise,

(2.2)

which are clearly equivalent.

Similarly, we may have inequivalent fuzzy subgroups giving rise to equiva-

lent preimages under a homomorphism.

Example 2.3. Let

µ(x)=




1, x = 0,
1
2
, x ∈ Z2 \0,

1
3
, otherwise,

ν(x)=




1, x = 0,
1
2
, x ∈ Z3 \0,

1
3
, otherwise.

(2.3)

Clearly, µ is inequivalent to ν . But

f−1(µ)(x)=



1, x = 0,
1
3
, otherwise,

f−1(ν)(x)=



1, x = 0,
1
2
, otherwise,

(2.4)

which are equivalent.
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It is clear that if f :G→H is an epimorphism, then f(f−1(µ))= µ; therefore,

if µ and ν are inequivalent fuzzy subgroups of H, then f−1(µ) and f−1(ν) are

inequivalent fuzzy subgroups of G. Similarly, it is clear that if f : G → H is

a monomorphism, then f−1(f (µ)) = µ; therefore, if µ and ν are inequivalent

fuzzy subgroups of G, then f(µ) and f(ν) are inequivalent fuzzy subgroups

of H. Therefore, equivalences and unequivalences of fuzzy subgroups are pre-

served under an isomorphism, but the notion of a fuzzy isomorphism is very

different (see [3]).

3. Equivalences under operation. In general, the operations of infimum

(the intersection), supremum (the union), and sum of fuzzy subgroups need

not preserve the equivalence classes of fuzzy subgroups. We have the following

example.

Example 3.1. Suppose that µ ∼ ν and µ′ ∼ ν′. Then it is not necessary that

µ∧µ′ ∼ ν∧ν′.
Let G be the group of integers Z under addition.

Let

µ(x)=



1, x ∈ 2Z,
1
3
, otherwise,

µ′(x)=



1, x ∈ 2Z,
1

10
, otherwise,

ν(x)=



1, x ∈ 3Z,
1
2
, otherwise,

ν′(x)=



1, x ∈ 3Z,
1

20
, otherwise.

(3.1)

Then

(µ∧ν)(x)=




1, x ∈ 6Z,
1
2
, x ∈ 2Z\6Z,

1
3
, otherwise,

(µ′ ∧ν′)(x)=




1, x ∈ 6Z,
1

10
, x ∈ 3Z\6Z,

1
20
, otherwise.

(3.2)

Firstly, we notice that

µ ∼ µ′, ν ∼ ν′. (3.3)

Secondly, it is easily seen that

(µ∧ν) 
∼ (µ′ ∧ν′) (3.4)

because

(µ∧ν)(3)= 1
3
< (µ∧ν)(2)= 1

2
, (3.5)
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while

(µ′ ∧ν′)(3)= 1
10
> (µ′ ∧ν′)(2)= 1

20
. (3.6)

Similarly, we can show by an example that in general µ ∼ µ′ and ν ∼ ν′ do

not imply µ∨ν ∼ µ′ ∨ν′.
The next example deals with the operation of sum.

Example 3.2. Suppose that µ ∼ ν and µ′ ∼ ν′. Then it is not necessary that

µ+µ′ ∼ ν+ν′.
Let G be the group of integers Z under addition.

Let

µ(x)=




1, x ∈ 6Z,
1
2
, x ∈ 2Z\6Z,

1
4
, otherwise,

µ′(x)=




1, x ∈ 6Z,
3
4
, x ∈ 2Z\6Z,

1
10
, otherwise,

ν(x)=




1, x ∈ 6Z,
2
3
, x ∈ 3Z\6Z,

1
6
, otherwise,

ν′(x)=




1, x ∈ 6Z,
1
2
, x ∈ 3Z\6Z,

1
6
, otherwise.

(3.7)

Then

(µ+ν)(x)=




1, x ∈ 6Z,
2
3
, x ∈ 3Z\6Z,

1
2
, otherwise,

(µ′ +ν′)(x)=




1, x ∈ 6Z,
3
4
, x ∈ 2Z\6Z,

1
2
, otherwise.

(3.8)

Firstly, we notice that

µ ∼ µ′, ν ∼ ν′. (3.9)

Secondly, it is easily seen that

(µ+ν) 
∼ (µ′ +ν′) (3.10)

because

(µ+ν)(3)= 2
3
> (µ+ν)(2)= 1

2
, (3.11)

while

(µ′ +ν′)(3)= 1
2
< (µ′ +ν′)(2)= 3

4
. (3.12)
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Note 3.3. Although in this example µ+ ν ∼ ν , this needs not be true in

general. For example, if 1/6 is replaced by 0 in both ν and ν′ above, then

µ+ν 
∼ ν and µ+ν 
∼ µ.

In contrast to the above examples, if we take two fuzzy subgroups µ and ν
from the same equivalence class � determined by µ and ν , then the inf, sup,

and sum of µ and ν determine the same equivalence class �.

Proposition 3.4. If µ ∼ ν , then µ∧ν ∼ µ. Consequently, µ∧ν ∼ ν .

Proof. Since µ ∼ ν , suppµ = suppν , and also supp(µ ∧ ν) = suppµ ∩
suppν , we have supp(µ∧ν)= suppµ. For the other part of equivalence, clearly,

if µ(x) > µ(y), then ν(x) > ν(y) implies (µ∧ν)(x) > (µ∧ν)(y).
Now, suppose that (µ∧ν)(x) > (µ∧ν)(y).
Case 1. Assume that µ(x) = (µ∧ν)(x) and µ(y) = (µ∧ν)(y), then there

is nothing to prove.

Case 2. If µ(x)= µ∧ν(x) and ν(y)= µ∧ν(y), then ν(x)≥ µ(x) > ν(y),
which in turn implies µ(x) > µ(y). Other cases are dealt with similarly.

Proposition 3.5. If µ ∼ ν , then µ∨ν ∼ µ. Consequently, µ∨ν ∼ ν .

For the following proposition, we require both µ and ν to be fuzzy subgroups

of a finite group.

Proposition 3.6. If µ ∼ ν , then µ+ν ∼ µ. Consequently, µ+ν ∼ ν .

Proof. Suppose that

(µ+ν)(x) > (µ+ν)(y). (3.13)

Then there are x1 and x2 with x = x1+x2 such that

µ
(
x1
)∧ν(x2

)
> (µ+ν)(y). (3.14)

Suppose that µ(x1)= µ(x1)∧ν(x2). Then µ(x1) > µ(y) and ν(x2)≥ µ(x1) >
ν(y). These imply µ(x2) > µ(y). Therefore, µ(x) ≥ µ(x1)∧ µ(x2) > µ(y).
Similarly, the other case ν(x2)= µ(x1)∧ν(x2) leads to µ(x) > µ(y).

Conversely, suppose that µ(x) > µ(y). Then (µ+ ν)(x) > (µ+ ν)(y) be-

cause if (µ+ν)(x) < (µ+ν)(y), then by the above argument, we have µ(y) >
µ(x), a contradiction. On the other hand, (µ+ν)(x) = (µ+ν)(y) also leads

to a contradiction in the following way: there exist y1 and y2 such that (µ+
ν)(x) = µ(y1)∧ν(y2) and y = y1+y2. So, µ(y1) ≥ (µ+ν)(x) ≥ µ(x) and

ν(y2) ≥ ν(x) implying µ(y2) ≥ µ(x). Thus, µ(y) ≥ µ(y1)∧ µ(y2) ≥ µ(x).
This completes the proof.

But, as for Zadeh’s complement [6], we have the following proposition.
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Proposition 3.7. If µ ∼ ν , then 1−µ ∼ 1−ν .

4. Intersection and sums of fuzzy subgroups. In this section, we deter-

mine the equivalence class of fuzzy subgroups corresponding to intersection

and sum of two fuzzy subgroups in terms of pinned flags associated with given

fuzzy subgroups. Throughout this section, we require the number of compo-

nents in a pinned flag to be at least 3, otherwise the discussions become trivial.

Consequently, we assume that n≥ 2.

Firstly, in the next proposition, we look at a special case, namely the char-

acterization of intersection and sum of two equivalence classes of fuzzy sub-

groups whose pinned flags (�, l) have the same underlying flag of subgroups

(�).

Proposition 4.1. Let G be a group with a flag � of subgroups {0} = G0 ⊂
G1 ⊂G2 ⊂ ··· ⊂Gn =G. Suppose that µ and ν are two fuzzy subgroups whose

pinned flags have the same underlying flag � but have different keychains of

the forms µ = 1λ1λ2 ···λn and ν = 1β1β2 ···βn, respectively. Then

(i) µ∧ν ∼ 1λ1∧β1 ···λn∧βn,

(ii) µ+ν ∼ 1λ1∨β1 ···λn∨βn.

Note 4.2. We emphasize in this note that µ and ν are not necessarily equiv-

alent.

Proof. Let x ∈G. Then there is an index i such that 1≤ i≤n with x ∈Gi,
but x 
∈Gi−1. Then µ(x)= λi and ν(x)= βi.

(i) To prove this part, it suffices to check that (µ∧ν)(x) = λi∧βi, which is

clearly true.

(ii) For this part, we first observe that (µ+ν)(x)≥ λi∨βi. Suppose that (µ+
ν)(x) > λi∨βi, then there exist x1 and x2 such that x = x1+x2 with µ(x1)∧
ν(x2) > λi∨βi. This implies µ(x1) > λi and ν(x2) > βi, which in turn implies

x1 ∈ Gi−1 and x2 ∈ Gi−1. Thus, x ∈ Gi−1, a contradiction. This completes the

proof.

Suppose that we have two flags differing in only one component, such as

�µ : {0} =G0 ⊂G1 ⊂G2 ⊂ ··· ⊂Gk−1 ⊂Gk ⊂Gk+1⊂··· ⊂Gn =G,
�ν : {0} =G0 ⊂G1 ⊂G2 ⊂ ··· ⊂Gk−1 ⊂Hk ⊂Gk+1⊂··· ⊂Gn =G, (4.1)

for 1≤ k≤n−1.

Proposition 4.3. Suppose that µ and ν are fuzzy subgroups of G whose

representative keychains are of the form 1λ1λ2 ···λn and whose underlying

flags are �µ and �ν , respectively, as described above. Then

(i) µ∧ν is represented by the keychain

1λ1λ2 ···λk−1λk+1λk+1 ···λn on �µ or on �ν , (4.2)
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(ii) µ+ν is represented by the keychain

1λ1λ2 ···λk−1λkλkλk+2 ···λn on �µ or on �ν . (4.3)

Before we give the proof, we note that �µ can equivalently be replaced by

�ν without any loss of generality.

Proof. (i) It is straightforward from Proposition 4.1 that (µ ∧ ν)(x) has

the same keychain pins as µ and ν on all Gi’s for i= 1,2, . . . ,k−1,k+1, . . . ,n.

It suffices to prove the case for i = k. So, consider x ∈ Gk+1 \Gk−1. Then

(µ∧ν)(x)≥ λk+1. Suppose that (µ∧ν)(x) > λk+1. Then either (µ∧ν)(x)= λs
for some 1≤ s ≤ k or (µ∧ν)(x)= 1. The latter case implies µ(x)= 1= ν(x).
But, x 
∈Gk−1 implies µ(x) < λk−1. This in turn implies µ(x) 
= 1, a contradic-

tion. For the former case, λs ≥ λk, implying µ(x) ≥ λk, which implies x ∈ Gk.
Similarly, x ∈ Hk. So, x ∈ Gk∩Hk. By the maximality of the chains involved,

Gk∩Hk = Gk−1. This implies x ∈ Gk−1, which is a contradiction to the choice

of x. Thus, (µ∧ν)(x)= λk+1 for all x ∈Gk+1 \Gk−1.

(ii) Firstly, we observe that Gk+1 = Gk +Hk by the maximality of chains.

Secondly, similar to the proof of case (i), for the sum, it is enough to consider

x ∈ Gk+1 \Gk−1. Then (µ+ν)(x) ≥ µ(x1)∧ν(x2) ≥ λk for x = x1+x2 with

x1 ∈Gk and x2 ∈Hk. As before, suppose that µ(x1)∧ν(x2) > λk. Then either

µ(x1)∧ν(x2)= λs for some 1≤ s ≤ k−1 or µ(x1)∧ν(x2)= 1. The latter case

implies x = x1+x2 ∈Gk−1+Gk−1 =Gk−1, and in the former case, x = x1+x2 ∈
Gs +Gs = Gs . By the chain property, we conclude that x ∈ Gk−1, which is a

contradiction to the choice of x. Thus, (µ+ν)(x)= λk for all x ∈Gk+1 \Gk−1.

This completes the proof.

Suppose that we have two flags differing in two or more components but

not consecutively, such as

�µ : {0} =G0 ⊂G1 ⊂ ··· ⊂Gi1 ⊂ ··· ⊂Gi2 ⊂ ··· ⊂Gik ⊂ ··· ⊂Gn =G,
�ν : {0} =G0 ⊂G1 ⊂ ··· ⊂Hi1 ⊂ ··· ⊂Hi2 ⊂ ··· ⊂Hik ⊂ ··· ⊂Gn =G,

(4.4)

where

1≤ i1 < i1+2≤ i2 < i2+2≤ ···< ik−1 < ik−1+2≤ ik ≤n−1. (4.5)

Then, using the same argument as in Proposition 4.3 inductively, we have the

following corollary.

Corollary 4.4. Let µ and ν be two fuzzy subgroups whose underlying flags

�µ and �ν , respectively, differ in two or more components but not consecutively

as shown in (4.4). Then

(i) µ∧ν is represented by the keychain

1λ1 ···λi1−1λi1+1λi1+1 ···λik−1λik+1λik+1 ···λn on �µ or on �ν , (4.6)
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(ii) µ+ν is represented by the keychain

1λ1 ···λi1−1λi1λi1 ···λik−1λikλik ···λn on �µ or on �ν . (4.7)

Now, we would like to consider two flags differing in two or more compo-

nents consecutively, such as

�µ : ··· ⊂Gi−1 ⊂Gi ⊂Gi+1 ⊂ ··· ⊂Gi+k−1 ⊂Gi+k ⊂Gi+k+1 ⊂ ··· ,
�ν : ··· ⊂Gi−1 ⊂Hi ⊂Hi+1 ⊂ ··· ⊂Hi+k−1 ⊂Hi+k ⊂Gi+k+1 ⊂ ··· , (4.8)

for 1≤ i < ···< i+k≤n−1, k≥ 1. Then the flags �µ∧ν and �µ+ν are given by

�µ∧ν : ··· ⊂Gi−1 ⊂Gi+1∩Hi+1 ⊂ ··· ⊂Gi+k∩Hi+k ⊂ F ⊂Gi+k+1 ⊂ ··· ,
(4.9)

where F can be either Gi+k or Hi+k, and

�µ+ν : ··· ⊂Gi−1 ⊂ E ⊂Gi+Hi ⊂ ··· ⊂Gi+k−1+Hi+k−1 ⊂Gi+k+1 ⊂ ··· ,
(4.10)

where E can be either Gi or Hi, respectively.

In the above, we have only indicated the corresponding distinct components

in �µ , �ν , �µ∧ν , and �µ+ν and as the suppressed corresponding components

are assumed to be identical in the two flags.

Proposition 4.5. Suppose that µ and ν are fuzzy subgroups of G whose

representative keychains are of the form 1λ1λ2 ···λn and whose underlying

flags are �µ and �ν , respectively, as described above. Then

(i) µ∧ν is represented by the keychain

1λ1λ2 ···λi−1λi+1λi+2 ···λi+kλi+k+1λi+k+1λi+k+2 ···λn on �µ∧ν , (4.11)

(ii) µ+ν is represented by the keychain

1λ1λ2 ···λi−1λiλiλi+1 ···λi+kλi+k+2 ···λn on �µ+ν . (4.12)

Proof. As in Proposition 4.3, it suffices to consider only indices i,i+1, . . . ,
i+k.

(i) Let x ∈ Gi+1 ∩Hi+1 \Gi−1. Then clearly λi−1 > (µ∧ ν)(x) ≥ λi+1. Now,

suppose that (µ∧ν)(x) > λi+1. Then (µ∧ν)(x) = λi implying x ∈ Gi∩Hi =
Gi−1 by maximality of �µ and �ν . This is a contradiction to our choice of x.

Hence, (µ∧ν)(x)= λi+1.

Now, for other cases, let x ∈ Gi+j ∩Hi+j \Gi+j−1∩Hi+j−1 for j = 2,3, . . . ,k.

Then λi+j−1 > (µ∧ν)(x) ≥ λi+j . Suppose that (µ∧ν)(x) > λi+j . Then there

exists a pin λs representing the value of (µ∧ν)(x) and it is such that λi+j−1 >
λs > λi+j , which is a contradiction as λi+j−1 and λi+j are two consecutive pins.

Thus, (µ∧ν)(x)= λi+j .
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Next, let x ∈ F \Gi+k∩Hi+k, say F =Hi+k. Then ν(x)≥ λi+k and µ(x) < λi+k,
which implies (µ∧ν)(x)= µ(x) < λi+k. But, (µ∧ν)(x)≥ λi+k+1. Suppose that

(µ∧ν)(x) > λi+k+1. Then this leads to a contradiction as in the previous case.

Thus, (µ∧ν)(x)= λi+k+1. Similarly, if F =Gi+k.
Finally, let x ∈Gi+k+1\F , say F =Hi+k. Then (µ∧ν)(x)≥ λi+k+1 and ν(x) <

λi+k, which implies (µ∧ν)(x) < λi+k. As in the previous cases, we conclude

that (µ∧ν)(x)= λi+k+1. Similarly, for F =Gi+k. Thus (i) is proved.

(ii) Let x ∈ E \Gi−1, say E = Hi. Then ν(x) ≥ λi implying (µ+ν)(x) ≥ λi.
Suppose that (µ+ ν)(x) ≥ λi−1. Then x ∈ Gi−1, a contradiction. Thus, λi ≤
(µ+ν)(x) < λi−1. As in case (i) above, we conclude that (µ+ν)(x)= λi.

Next, let x ∈ Gi+Hi \E, say E = Hi. Then (µ+ν)(x) ≥ λi and ν(x) < λi.
Suppose that (µ+ ν)(x) ≥ λi−1. Then x ∈ Gi−1 ⊆ Hi, a contradiction. Thus,

λi ≤ (µ+ν)(x) < λi−1. Hence, as before, (µ+ν)(x)= λi. Similarly, if E =Gi.
Now, for other cases, let x ∈Gi+j+Hi+j \Gi+j−1+Hi+j−1 for j = 1,2, . . . ,k−1.

Then λi+j−1 > (µ+ν)(x)≥ λi+j . As in other parts of this proof, it is clear that

(µ+ν)(x)= λi+j .
Finally, letx∈Gi+k+1\Gi+k−1+Hi+k−1. Then (µ+ν)(x)≥λi+k+1. But,Gi+k+1=

Gi+k+Hi+k by maximality of the chains �µ and �ν . So, λi+k−1 > (µ+ν)(x) ≥
λi+k. Thus, (µ+ν)(x)= λi+k. This completes the proof.

The determination of the pinned flags of intersection and sum of two fuzzy

subgroups µ and ν , where the pins as well as the flags of the pinned flags

�µ and �ν representing µ and ν are distinct, in general, does not seem to

follow any particular pattern as we have derived above. This is illustrated by

the following example.

Example 4.6. Let G = Z72. Let �µ and �ν be the pinned flags of µ and ν on

G given by

�µ : 01 ⊂ Z3
1/2 ⊂ Z9

1/5 ⊂ Z18
1/6 ⊂ Z36

1/9 ⊂ Z72
1/10,

�ν : 01 ⊂ Z3
1/3 ⊂ Z6

1/4 ⊂ Z12
1/7 ⊂ Z36

1/8 ⊂ Z72
1/11,

(4.13)

respectively. A simple calculation reveals the pinned flags for µ∧ν and µ+ν
to be

01 ⊂ Z3
1/3 ⊂ Z6

1/6 ⊂ Z18
1/8 ⊂ Z36

1/9 ⊂ Z72
1/11,

01 ⊂ Z3
1/2 ⊂ Z6

1/4 ⊂ Z18
1/5 ⊂ Z36

1/7 ⊂ Z72
1/10,

(4.14)

respectively. In the above calculation, notice that the roles played by the pins

and the components of the flags are equally important in a way in which they

are tied to each other. Suppose that we retain the flags but the pins for µ and

ν are changed to

1
1
3

1
9

1
18

1
36

1
72
, 1

1
72

1
90

1
100

1
110

1
120

, (4.15)
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respectively. Then µ∧ν and µ+ν have the pinned flags given by

01 ⊂ Z3
1/72 ⊂ Z6

1/90 ⊂ Z12
1/100 ⊂ Z36

1/110 ⊂ Z72
1/120,

01 ⊂ Z3
1/3 ⊂ Z9

1/9 ⊂ Z18
1/18 ⊂ Z36

1/36 ⊂ Z72
1/72,

(4.16)

respectively. Similarly, we could retain the pins but change the flags of µ and ν ;

for example, in (4.13) above we retain the same pins but swop the underlying

flags. Then a simple calculation shows that we arrive at different (from (4.14))

pinned flags for µ∧ν and µ+ν . The complete determination of the pinned

flags for µ and ν in the most general case will be dealt with in another paper.
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