THE CONJUGATION OPERATOR ON $A_q(G)$

SANJIV KUMAR GUPTA

Received 5 March 2002

Let q > 2. We prove that the conjugation operator H does not extend to a bounded operator on the space of integrable functions defined on any compact abelian group with the Fourier transform in l_q .

2000 Mathematics Subject Classification: 42A50, 43A17.

Let *G* be a compact abelian group with dual Γ . For $1 \le q < \infty$, the space A_q is defined as

$$A_q(G) = \{ f : f \in L^1(G), \ \hat{f} \in l_q(\Gamma) \}$$

$$\tag{1}$$

with the norm $||f||_{A_q} = ||f||_{L^1} + ||\hat{f}||_{l_q}$. Then $A_q(G)$ is a commutative semisimple Banach algebra with maximal ideal space Γ , in which the set of trigonometric polynomials is dense [4]. The A_p -spaces have been studied in [1, 6].

If *G* is, in addition, a connected group, then its dual can be ordered; there exists a semigroup $P \subset \Gamma$ such that $P \cap -P = \{0\}, P \cup -P = \Gamma$ (see [5]), and we say that $\gamma \in \Gamma$ is positive if $\gamma \in P$. If $f = \sum_{\gamma \in F} \hat{f}(\gamma)\gamma$ is a trigonometric polynomial, the conjugation operator *H* is defined as

$$Hf = \sum_{\gamma \in F} \operatorname{sgn}(\gamma) \hat{f}(\gamma) \gamma, \tag{2}$$

where $sgn(\gamma) = +1$ if $\gamma \in P$, -1 if $\gamma \in -P$, and 0 if $\gamma = 0$.

If $1 \le q \le 2$, then $A_q(G) \subset L^2(G)$, and it is easy to see that H extends to a bounded operator on $A_q(G)$. It was mentioned in [5] that the corresponding result for q > 2 is not known. Note that H extends to a bounded operator on $A_q(G)$ if and only if H extends to a bounded operator from $A_q(G)$ to $L^1(G)$. In [5], the following theorem was proved.

THEOREM 1. Let *G* be a compact, connected abelian group and *P* any fixed order on Γ . If q > 2 and ϕ is a Young's function, then the conjugation operator *H* does not extend to a bounded operator from $A_q(G)$ to $L^{\phi}(G)$.

We prove in Theorem 2 that *H* does not extend to a bounded operator on $A_q(G)$, q > 2, thus answering the problem mentioned in [5]. Also, Theorem 1 follows from our theorem (Theorem 2). Theorem 2 was proved for the circle group in [2] but for the completeness sake, we give it below.

THEOREM 2. Let *G* be a compact, connected abelian group and *P* any fixed order on Γ . If q > 2, then the conjugation operator *H* does not extend to a bounded operator on $A_q(G)$.

PROOF. We will show that *H* does not extend to a bounded operator from $A_q(G)$ to $L^1(G)$. The proof is divided into three steps.

STEP 1. Let $G = \mathbf{T}$, the circle group. Suppose that H extends as a bounded operator from A_q to L^1 . Choose $\mu_0 \in M(\mathbf{T})$, $\hat{\mu}_0 \in l_q$ such that μ_0 is not absolutely continuous. Define $T : L^1 \to L^1$ by

$$Tf = H(f * \mu_0), \tag{3}$$

where *T* is well defined as $f * \mu_0 \in A_q$ and *H* maps A_q into L^1 by our assumption on *H*. Hence, *T* is a multiplier from L^1 to L^1 , and therefore is given by a measure $\mu \in M(\mathbf{T})$ (see [3]). Hence

$$\operatorname{sgn}(n)\hat{\mu}_0(n) = \hat{\mu}(n). \tag{4}$$

Observe that

$$\hat{\mu}_0 = \frac{\hat{\mu}_0 + \hat{\mu}}{2} + \frac{\hat{\mu}_0 - \hat{\mu}}{2}.$$
(5)

Now, $(\hat{\mu}_0 + \hat{\mu})/2$ and $(\hat{\mu}_0 - \hat{\mu})/2$ are absolutely continuous by F. and M. Riesz theorem. Hence, $\hat{\mu}_0$ is absolutely continuous, which contradicts the choice of μ_0 . Hence, *H* is unbounded on A_q , q > 2.

STEP 2. Let *I* be a closed subgroup of *G* such that *H* does not extend as a bounded operator on $A_q(G/I)$. Then *H* does not extend as a bounded operator on $A_q(G)$.

PROOF. Let (f_n) be a sequence of trigonometric polynomials on G/I such that

$$||Hf_n||_{L^1(G/I)} \to \infty, \quad ||f_n||_{A_q(G/I)} \to 0, \quad \text{as } n \to \infty.$$
(6)

Let $g_n = f_n \circ q$, where $q : G \to G/I$ is the quotient map. Then it is easily seen that $Hg_n = (Hf_n) \circ q$, $\|Hg_n\|_{L^1(G)} = \|Hf_n\|_{L^1(G/I)}$, and $\|f_n \circ q\|_{A_q(G)} = \|f_n\|_{A_q(G/I)}$. Hence

$$||Hg_n||_{L^1(G)} \longrightarrow \infty, \quad ||g_n||_{A_q(G)} \longrightarrow 0, \quad \text{as } n \longrightarrow \infty,$$
 (7)

and Step 2 follows.

STEP 3. Since *G* is connected, Γ contains an element of infinite order, say γ_0 (see [3]). Let *S* denote the subgroup generated by γ_0 and let $I = S^{\perp}$. Then *G*/*H* is isomorphic to the circle group **T**. Now, the proof of the theorem follows from Steps 1 and 2.

ACKNOWLEDGMENT. This research was supported by Sultan Qaboos University, Oman.

REFERENCES

- L. M. Bloom and W. R. Bloom, *Multipliers on spaces of functions with p-summable Fourier transforms*, Harmonic Analysis (Luxembourg, 1987), Lecture Notes in Math., vol. 1359, Springer, Berlin, 1988, pp. 100–112.
- [2] J. T. Burnham, H. E. Krogstad, and R. Larsen, *Multipliers and the Hilbert distribution*, Nanta Math. **8** (1975), no. 2, 95-103.
- [3] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups. Integration Theory, Group Representations, Die Grundlehren der Mathematischen Wissenschaften, vol. 115, Academic Press, New York, 1963.
- [4] _____, Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups, Die Grundlehren der Mathematischen Wissenschaften, vol. 152, Springer-Verlag, New York, 1970.
- [5] W. Rudin, Fourier Analysis on Groups, Interscience Tracts in Pure and Applied Mathematics, no. 12, Interscience Publishers, New York, 1962.
- [6] U. B. Tewari and A. K. Gupta, *The algebra of functions with Fourier transforms in a given function space*, Bull. Austral. Math. Soc. 9 (1973), 73–82.

Sanjiv Kumar Gupta: Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khaud 123, Sultanate of Oman *E-mail address*: gupta@squ.edu.om